
The Hash Function JH

September 15, 2009

Hongjun Wu

Institute for Infocomm Research, Singapore
wuhongjun@gmail.com

Contents

1 Introduction 4

2 The Compression Function Structure and the Generalized
AES Design Methodology 4
2.1 A new compression function structure 5
2.2 The generalized AES design methodology 6

3 Definitions 6
3.1 Notations . 6
3.2 Parameters . 7
3.3 Operations . 7

4 Functions 7
4.1 S-boxes . 7
4.2 Linear transformation L . 8
4.3 Permutation Pd . 8

4.3.1 Permutation πd . 8
4.3.2 Permutation P ′

d . 9
4.3.3 Permutation φd . 9
4.3.4 Permutation Pd . 9

4.4 Round function Rd . 10
4.5 Bijective function Ed . 10
4.6 Round constants of Ed . 13

5 Compression Function Fd 13
5.1 F8 . 14

6 JH Hash Algorithms 14
6.1 Padding the message . 14
6.2 Parsing the padded message 14
6.3 Setting the initial hash value H(0) 14
6.4 Computing the final hash value H(N) 15
6.5 Generating the message digest 15

6.5.1 JH-224 . 15
6.5.2 JH-256 . 15
6.5.3 JH-384 . 15
6.5.4 JH-512 . 15

7 Bit-Slice Implementation of JH 16
7.1 Bit-slice parameters . 16
7.2 Bit-slice functions . 16

7.2.1 Sboxes . 16
7.2.2 Linear Transform . 17

1

7.2.3 Permutation ω̄ . 17
7.2.4 Permutation ω . 17
7.2.5 Permutation σ̄d . 17
7.2.6 Permutation σd . 17
7.2.7 Round constants . 18
7.2.8 An alternative description of round function Rd 18
7.2.9 Bit-slice implementation of round function Rd 19
7.2.10 Bit-slice implementation of Ed 19

7.3 Pseudo code for the bit-slice implementation of E8 20
7.4 Bit-slice implementation of F8 21

8 Variants of JH 22
8.1 Varying the parameter d . 22
8.2 Replacing Pd with P ′

d . 22

9 Security Analysis of JH 22
9.1 Differential cryptanalysis . 23

9.1.1 Effect of correlated active elements in differential attack 24
9.1.2 Differential collision attack and message modification . 24
9.1.3 Second-preimage and preimage differential attacks . . 24

9.2 Truncated differential cryptanalysis [13] 25
9.2.1 Truncated differential collision attack 25
9.2.2 Truncated differential (second) preimage attack 25

9.3 Algebraic attacks . 26
9.4 Security of the JH compression function structure 26
9.5 Security of padding and final truncation 28

10 Performance of JH 28
10.1 Hardware . 28
10.2 8-bit processor . 29
10.3 Intel Core 2 microprocessor 29

11 Design Rationale 30
11.1 Compression function Fd . 30
11.2 The generalized AES design methodology 30
11.3 Round number . 31
11.4 Selecting SBoxes . 31
11.5 SBoxes . 31

11.5.1 Security requirements 31
11.5.2 Constructing SBoxes 32

11.6 Linear transform . 33

12 Advantages and Limitations 33

13 Conclusion 35

2

A Round constants of E8 37
A.1 Round constants in the hardware implementation of E8 . . . 37
A.2 Round constants in the bit-slice implementation of E8 39

B Algebraic Normal Forms of Sboxes 40
B.1 Algebraic normal forms of S0 41
B.2 Algebraic normal forms of S1 41
B.3 Algebraic normal forms of S0 ⊕ S1 41
B.4 Algebraic normal forms of S−1

0 41
B.5 Algebraic normal forms of S−1

1 42
B.6 Algebraic normal forms of S−1

0 ⊕ S−1
1 42

3

1 Introduction

This document specifies four hash algorithms – JH-224, JH-256, JH-384, and
JH-512. The hash algorithms are very simple. They are efficient on many
platforms ranging from one-bit processor (hardware) to 128-bit processor
(SSE2 instructions) since they are built on extremely simple components
and suitable for bit-slice software implementation.

In the design of JH, we propose a new compression function structure
to construct a compression function from a large block cipher with constant
key. We also generalize the AES [8] design methodology to high dimensions
so that a large block cipher can be constructed from small components
easily. With the new compression function structure and the generalized
AES design methodology, the security of the JH compression function with
respect to differential cryptanalysis [3] can be analyzed relatively easily.

The JH hash functions are very efficient in software. With bit-slice
implementation using SSE2, the speed of JH is about 16.8 cycles/byte on
the Intel Core 2 Duo microprocessor running 64-bit operating system with
Intel C++ compiler (about 21.3 cycles/byte for 32-bit operating system).

The memory required for the hardware implementation of JH hash func-
tions is 1536 bits. With 256 additional memory bits, the round constants of
JH can be generated on the fly. JH-224, JH-256, JH-384 and JH-512 share
the same compression function, so it is very efficient to implement these four
hash algorithms together in hardware.

JH is strong in security. Each message block is 64 bytes. A message block
passes through the 35.5-round compression function that involves 9216 4×4-
bit Sboxes. We found that a differential trail in the compression function
involves more than 600 active Sboxes. The large number of active Sboxes
ensures that JH is strong against differential attack.

This document is organized as follows. The specifications of JH are given
in Sect. 3, 4, 5 and 6. The bit-slice implementation of JH is given in Sect. 7.
The variants of JH are given in Sect. 8. Section 9 gives the security analysis
of JH. The performance of JH is described in Sect. 10. The design rationale
and advantage are given in Sect. 11 and Sect. 12, respectively. Sect. 13
concludes this document.

2 The Compression Function Structure and the
Generalized AES Design Methodology

Two techniques are used in the design of JH. We proposed a new compression
function structure that provides an efficient way to construct a compression
function from a block cipher with constant key; and we used the generalized
AES design methodology that provides a simple approach to design large
block ciphers (efficient in hardware and software) from small components.

4

2.1 A new compression function structure

JH compression function is constructed from a bijective function (a block
cipher with constant key). The compression function structure is given in
Fig. 1. The block size of the block cipher is 2m bits. In the compression
function, the 2m-bit hash value H(i−1) and the m-bit message block M (i)

are compressed into the 2m-bit H(i). Message digest size is at most m bits.

Figure 1: The JH compression function structure

The above compression function structure is simple and efficient. With
the key of block cipher being set to constant (permutation), no extra vari-
ables are introduced into the middle of the compression function, so it is
much easier to analyze the security of this compression function with re-
spect to differential attack (similar feature has appeared in the previous
Sponge structure [2]). With no truncation of the block cipher output, this
structure is quite efficient.

With respect to differential cryptanalysis, we notice that the security
evaluation cost of permutation is the lowest; while that of Davies-Meyer
structure [23] is very high. Matyas-Meyer-Oseas (MMO) structure [15] is
easier to evaluate than Davies-Meyer structure, but its key schedule does
not contribute to differential propagation in a compression function in which
there is a difference in message. If MMO structure is improved so that its
key schedule can always contribute to differential propagation, it becomes
sponge structure. If the permutation output in a sponge structure is not
truncated so as to improve the computational efficiency, we obtain the JH
compression function structure.

5

2.2 The generalized AES design methodology

AES uses the substitution-permutation network (SPN) with the input as
a two-dimensional array. A Maximum Distance Separable (MDS) code is
applied to the columns in the even rounds (considering the first round as
the zero-th round), and the MDS code is applied to the rows in the odd
rounds. Because of the row rotations in AES, the round functions in AES
are identical (i.e. there are only mixcolumn operations in AES).

We generalize the AES design to high dimensions so that a large block
cipher can be easily constructed from small components. In the generalized
AES design methodology, the input bits are divided into

∏d−1
i=0 αi (αi ≥ 2)

elements, and these elements form a d-dimensional array. In the linear
layer of the r-th round, an MDS code is applied along the (r mod d)-th
dimension. We believe that the generalized AES design methodology is
probably the simplest approach to design an efficient large block cipher
from small components.

Here is an example. If we extend AES to three (or four) dimensions,
we obtain a block cipher with 512-bit (or 2048-bit) block size immediately.
We need to point out that Rijndael with 192-bit and 256-bit block sizes are
not based on the generalized AES design since MDS code is not applied to
the dimension with 6 (192-bit block size) or 8 (256-bit block size) elements.
CS block cipher [18] is based on the generalized AES design with three
dimensions, but CS cipher is only efficient on 8-bit platforms.

We use the eight-dimensional generalized AES design to construct the
block cipher in JH. The 1024 input bits to the block cipher are divided into
256 4-bit elements, and these elements form an eight-dimensional array. The
constant round keys are generated from a six-dimensional block cipher.

For hardware implementation, the round functions of the JH block ci-
pher are identical (using techniques similar to the AES row rotations); for
fast software implementation, we use seven different round functions so as
to use bit-slice implementation that exploits the power of 128-bit SIMD in-
structions. The JH block cipher combines the best features of AES (SPN
and MDS code) and Serpent (SPN and bit-slice implementation) [1].

3 Definitions

3.1 Notations

The following notations are used in the JH specifications.

Word A group of bits.
Ai The ith bit in the word A. An m-bit word A is represented

as A = A0 ‖A1 ‖A2 ‖ · · · ‖Am−1 .

6

3.2 Parameters

The following parameters are used in the JH specifications.

C
(d)
r The round constant words used in function Ed with 0 ≤

r ≤ 5× (d− 1). Each C
(d)
r is a 2d-bit constant word.

d The dimension of a block of bits. A d-dimensional block
consists of 2d 4-bit elements.

h Number of bits in a hash value. h = 1024.
H(i) The ith hash value, with a size of h bits. H(0) is the initial

hash value; H(N) is the final hash value and is truncated
to generate the message digest.

H(i),j The jth bit of the ith hash value, where H(i) =
H(i),0‖H(i),1‖ · · · ‖M (i),h−1.

` Length of the message, M , in bits.
m Number of bits in a message block M (i). m = 512.
M Message to be hashed.
M (i) Message block i, with a size of m bits.
M (i),j The jth bit of the ith message block, i.e., M (i) =

M (i),0‖M (i),1‖ · · · ‖M (i),m−1.
N Number of blocks in the padded message.

3.3 Operations

The following operations are used in the JH specifications.

& Bitwise AND operation.
| Bitwise OR (“inclusive–OR”) operation.
⊕ Bitwise XOR (“exclusive–OR”) operation.
¬ Bitwise complement operation.
‖ Concatenation operation.

4 Functions

The following functions are used in the JH specifications.

4.1 S-boxes

S0 and S1 are the 4×4-bit S-boxes being used in JH. Instead of being simply
xored to the input, every round constant bit selects which Sboxes are used
(similar to Lucifer [11]) so as to increase the overall algebraic complexity.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S0(x) 9 0 4 11 13 12 3 15 1 10 2 6 7 5 8 14
S1(x) 3 12 6 13 5 7 1 9 15 2 0 4 11 10 14 8

7

4.2 Linear transformation L

The linear transformation L implements a (4, 2, 3) Maximum Distance Sep-
arable (MDS) code over GF (24). Here the multiplication in GF (24) is de-
fined as the multiplication of binary polynomials modulo the irreducible
polynomial x4 + x + 1. Denote this multiplication as ‘•’ . Let A, B, C and
D denote 4-bit words. L transforms (A,B) into (C,D) as

(C ,D) = L(A , B) = (5•A + 2•B , 2•A + B) .

More specifically, the bit-wise computation of L is given as follows. Let
A, B, C and D denote 4-bit words, i.e., A = A0 ‖A1 ‖A2 ‖A3 , B =
B0 ‖B1 ‖B2 ‖B3 , C = C0 ‖C1 ‖C2 ‖C3 , and D = D0 ‖D1 ‖D2 ‖D3 . In
polynomial form, A is represented as A0x3 + A1x2 + A2x + A3 ; 2•A is
given as A1x3 + A2x2 + (A0 + A3)x + A0 . The function (C, D) = L(A, B)
is computed as:

D0 = B0 ⊕A1 ; D1 = B1 ⊕A2 ;
D2 = B2 ⊕A3 ⊕A0 ; D3 = B3 ⊕A0 ;
C0 = A0 ⊕D1 ; C1 = A1 ⊕D2 ;
C2 = A2 ⊕D3 ⊕D0 ; C3 = A3 ⊕D0 .

4.3 Permutation Pd

Pd is a simple permutation on 2d elements. It is similar to the row rotations
in AES so as to obtain identical round functions for hardware implemen-
tation. It is constructed from πd, P ′

d and φd. Denote 2d input elements as
A = (a0, a1, · · · , a2d−1), and 2d output elements as B = (b0, b1, · · · , b2d−1).

4.3.1 Permutation πd

πd operates on 2d elements. The computation of B = πd(A) is as follows:

b4i+0 = a4i+0 for i = 0 to 2d−2 − 1 ;
b4i+1 = a4i+1 for i = 0 to 2d−2 − 1 ;
b4i+2 = a4i+3 for i = 0 to 2d−2 − 1 ;
b4i+3 = a4i+2 for i = 0 to 2d−2 − 1 ;

The permutation π4 is illustrated in Fig. 2.

Figure 2: The permutation π4

8

4.3.2 Permutation P ′
d

P ′
d is a permutation on 2d elements. The computation of B = P ′

d(A) is given
as follows:

bi = a2i for i = 0 to 2d−1 − 1 ;
bi+2d−1 = a2i+1 for i = 0 to 2d−1 − 1 ;

The permutation P ′
4 is illustrated in Fig. 3.

Figure 3: The permutation P ′
4

4.3.3 Permutation φd

φd is a permutation on 2d elements. The computation of B = φd(A) is given
as follows:

bi = ai for i = 0 to 2d−1 − 1 ;
b2i+0 = a2i+1 for i = 2d−2 to 2d−1 − 1 ;
b2i+1 = a2i+0 for i = 2d−2 to 2d−1 − 1 ;

The permutation φ4 is illustrated in Fig. 4.

Figure 4: The permutation φ4

4.3.4 Permutation Pd

Pd is the composition of πd, P ′
d and φd:

Pd = φd ◦ P ′
d ◦ πd

The permutation P4 is illustrated in Fig. 5.

9

Figure 5: The permutation P4

4.4 Round function Rd

The round function Rd implements the generalized AES design methodology
illustrated in Sect. 2.2. It consists of three layers: the Sbox layer, the
linear transformation layer and the permutation layer Pd (similar to the
three layers in the round function of AES: Sbox layer, linear transformation
and row rotations). The input and output sizes of Rd are 2d+2 bits. The
2d+2-bit input word is denoted as A = (a0 ‖ a1 ‖ · · · ‖ a2d−1), where each
ai represents a 4-bit word. The 2d+2-bit output word is denoted as B =
(b0 ‖ b1 ‖ · · · ‖ b2d−1), where each bi represents a 4-bit word. The 2d-bit round

constant of the r-th round is denoted as C
(d)
r = C

(d),0
r ‖C(d),1

r · · · ‖C(d),2d−1
r .

Let each vi and wi (0 ≤ i ≤ 2d−1) represent a 4-bit word. The computation
of B = Rd(A,C

(d)
r) is given as follows:

1. for i = 0 to 2d − 1,

{
if C

(d),i
r = 0, then vi = S0(ai) ;

if C
(d),i
r = 1, then vi = S1(ai) ;

}
2. (w2i, w2i+1) = L(v2i, v2i+1) for 0 ≤ i ≤ 2d−1 − 1 ;

3. (b0, b1, · · · , b2d−1) = Pd(w0, w1, · · · , w2d−1) ;

Two rounds of R4 are illustrated in Fig. 6.

4.5 Bijective function Ed

Ed is based on the d-dimensional generalized AES design methodology. It
applies SPN and MDS code to a d-dimensional array with the MDS code

10

Figure 6: Two rounds of R4 (round constant bits not shown)

being applied along the (r mod d)-th dimension in the r-th round. It is con-
structed from 5(d−1) rounds of Rd, plus an additional Sbox layer. The 2d+2-
bit input and output are denoted as A and B, respectively. Let each Qr de-
note a 2d+2-bit word for 0 ≤ r ≤ 4d + 1, and Qr = (qr,0 ‖ qr,1 ‖ · · · ‖ qr,2d−1),
where each qr,i denotes a 4-bit word. Let R∗

d denote the round function
Rd with the linear transformation and permutation being removed. Let
d′ = d− 1. The computation of B = Ed(A) is given as follows:

1. grouping the bits of A into 2d 4-bit elements to obtain Q0 ;

2. for r = 0 to 5(d− 1)− 1, Qr+1 = Rd(Qr, C
(d)
r) ;

3. Q5(d−1)+1 = R∗
d(Q5(d−1), C

(d)
5(d−1)) ;

4. de-grouping the 2d 4-bit elements in Q5(d−1)+1 to obtain B ;

The grouping of bits into 4-bit elements in the first step and the de-grouping
in the last step are designed to achieve efficient bit-slice software implemen-
tation. The grouping in the first step is given as follows (as shown in Fig. 7):

11

for i = 0 to 2d−1 − 1,
{

q0,2i = Ai‖Ai+2d‖Ai+2·2d‖Ai+3·2d
;

q0,2i+1 = Ai+2d−1‖Ai+2d−1+2d‖Ai+2d−1+2·2d‖Ai+2d−1+3·2d
;

}

Figure 7: The grouping in function Ed

The de-grouping in the last step is given as follows (as shown in Fig. 8):

for i = 0 to 2d−1 − 1,
{

Bi‖Bi+2d‖Bi+2·2d‖Bi+3·2d
= q5(d−1)+1,2i ;

Bi+2d−1‖Bi+2d−1+2d‖Bi+2d−1+2·2d‖Bi+2d−1+3·2d
= q5(d−1)+1,2i+1 ;

}

Figure 8: The de-grouping in function Ed

The round constants of Ed are given in Sect. 4.6.

12

4.6 Round constants of Ed

The round constants C
(d)
r for Ed are generated from the round function

Rd−2 (with all the round constants of Rd−2 being set as 0). Each C
(d)
r is a

2d-bit word. They are generated as follows:

C
(d)
0 is the integer part of (

√
2− 1)× 22d

(in big endian form) ;
C

(d)
r = Rd−2(C

(d)
r−1, 0) for 1 ≤ r ≤ 5(d− 1) .

The values of C
(8)
r (0 ≤ r ≤ 35) are given in Appendix A.1.

5 Compression Function Fd

Compression function Fd is constructed from the function Ed. Fd compresses
the 2d+1-bit message block M (i) and 2d+2-bit H(i−1) into the 2d+2-bit H(i) :

H(i) = Fd(H(i−1),M (i)) .

The construction of Fd is shown in Fig. 9. According to the definition of
Ed, the input to every first-layer Sbox would be affected by two message
bits; and the output from every last-layer Sbox would be XORed with two
message bits.

Figure 9: The compression function Fd

13

5.1 F8

F8 is the compression function used in hash function JH. F8 compresses the
512-bit message block M (i) and 1024-bit H(i−1) into the 1024-bit H(i). F8 is
constructed from E8. Let A, B denote two 1024-bit words. The computation
of H(i) = F8(H(i−1), M (i)) is given as:

1. Aj = H(i−1),j ⊕M (i),j for 0 ≤ j ≤ 511 ;

Aj = H(i−1),j for 512 ≤ j ≤ 1023 ;

2. B = E8(A) ;

3. H(i),j = Bj for 0 ≤ j ≤ 511 ;

H(i),j = Bj ⊕M (i),j−512 for 512 ≤ j ≤ 1023 ;

6 JH Hash Algorithms

Hash function JH consists of five steps: padding the message M (Sect. 6.1),
parsing the padded message into message blocks (Sect. 6.2), setting the
initial hash value H(0) (Sect. 6.3), computing the final hash value H(N)

(Sect. 6.4), and generating the message digest by truncating H(N) (Sect. 6.5).

6.1 Padding the message

The message M is padded to be a multiple of 512 bits. Suppose that
the length of the message M is ` bits. Append the bit “1” to the
end of the message, followed by 384 − 1 + (−` mod 512) zero bits (for
` mod 512 = 0, 1, 2, · · · , 510, 511, the number of zero bits being padded are
383, 894, 893, · · · , 385, 384, respectively), then append the 128-bit block that
is equal to the number ` expressed using a binary representation in big en-
dian form. Thus at least 512 additional bits are padded to the message
M .

6.2 Parsing the padded message

After a message has been padded, it is parsed into N 512-bit blocks, M (1),
M (2), . . . , M (N). The 512-bit message block is expressed as four 128-bit
words. The first 128 bits of message block i are denoted as M

(i)
0 , the next

128 bits are M
(i)
1 , and so on up to M

(i)
3 .

6.3 Setting the initial hash value H(0)

The initial hash value H(0) is set depending on the message digest size. The
first two bytes of H(−1) are set as the message digest size, and the rest bytes
of H(−1) are set as 0. Set M (0) as 0. Then H(0) = F8(H(−1),M (0)).

14

More specifically, the value of H
(−1),0
0 ‖H(−1),1

0 ‖ · · · ‖H(−1),15
0 is 0x00E0,

0x0100, 0x0180, 0x0200 for JH-224, JH-256, JH-384 and JH-512, respec-
tively. Let H(−1),j = 0 for 16 ≤ j ≤ 1023. Set the 512-bit M (0) as 0. The
1024-bit initial hash value H(0) is computed as

H(0) = F8(H(−1),M (0)) .

6.4 Computing the final hash value H(N)

The compression function F8 is applied to generate H(N) by compressing
M (1), M (2), . . ., M (N) iteratively. The 1024-bit final hash value H(N) is
computed as follows:

for i = 1 to N ,
H(i) = F8(H(i−1),M (i)) ;

6.5 Generating the message digest

The message digest is generated by truncating H(N).

6.5.1 JH-224

The last 224 bits of H(N) are given as the message digest of JH-256:

H(N),800‖H(N),801‖ · · · ‖H(N),1023 .

6.5.2 JH-256

The last 256 bits of H(N) are given as the message digest of JH-256:

H(N),768‖H(N),769‖ · · · ‖H(N),1023 .

6.5.3 JH-384

The last 384 bits of H(N) are given as the message digest of JH-384:

H(N),640‖H(N),641‖ · · · ‖H(N),1023 .

6.5.4 JH-512

The last 512 bits of H(N) are given as the message digest of JH-512:

H(N),512‖H(N),513‖ · · · ‖H(N),1023 .

15

7 Bit-Slice Implementation of JH

The description of JH given in Sect. 4 and Sect. 5 are suitable for efficient
hardware implementation. In this section, we illustrate the bit-slice imple-
mentation of JH. The bit-slice implementation of Fd uses d − 1 different
round function descriptions (the hardware description of Fd uses identical
round function description).

7.1 Bit-slice parameters

The following additional parameters are used in the bit-slice implementation
of JH.

C
′(d)
r The round constant words used in the bit-slice implemen-

tation of Ed with 0 ≤ r ≤ 5 × (d − 1). Each C
′(d)
r is a

2d-bit constant word.
C
′(d)
r,even Even bits of C

′(d)
r . C

′(d)
r,even = C

′(d),0
r ‖ C

′(d),2
r ‖ C

′(d),4
r ‖

· · · ‖ C
′(d),2d−2
r . Each C

′(d)
r,even is a 2d−1-bit constant word.

C
′(d)
r,odd Odd bits of C

′(d)
r . C

′(d)
r,odd = C

′(d),1
r ‖ C

′(d),3
r ‖ C

′(d),5
r ‖

· · · ‖ C
′(d),2d−1
r . Each C

′(d)
r,odd is a 2d−1-bit constant word.

H
(i)
j The jth 128-bit word of the ith hash value. H

(i)
0 is the

left-most 128-bit word of hash value H(i).
M

(i)
j The jth 128-bit word of the ith message block. M

(i)
0 is

the left-most word of message block M (i).

7.2 Bit-slice functions

The following functions are used in the bit-slice implementation of JH.

7.2.1 Sboxes

Sbitsli implements both S0 and S1 in the bit-slice implementation of JH. Let
each xi (0 ≤ i ≤ 3) denotes a 2d−1-bit word. Let c denote a 2d−1-bit constant
word, t denote a temporary word. (x0, x1, x2, x3) = Sbitsli(x0, x1, x2, x3, c)
is computed in the following 11 steps (x3 are the least significant bits):

1. x3 = ¬x3 ; 2. x0 = x0 ⊕ (c &(¬x2)) ;
3. t = c⊕ (x0 &x1) ; 4. x0 = x0 ⊕ (x2 & x3) ;
5. x3 = x3 ⊕ ((¬x1)& x2) ; 6. x1 = x1 ⊕ (x0 & x2) ;
7. x2 = x2 ⊕ (x0 &(¬x3)) ; 8. x0 = x0 ⊕ (x1|x3) ;
9. x3 = x3 ⊕ (x1 &x2) ; 10. x1 = x1 ⊕ (t &x0) ;
11. x2 = x2 ⊕ t;

16

7.2.2 Linear Transform

Lbitsli implements the linear transform in the bit-slice implementation of JH.
Let each ai and bi (0 ≤ i ≤ 7) denotes a 2d−1-bit word. (b0, b1, · · · , b7) =
Lbitsli(a0, a1, · · · , a7) is computed as follows:

b4 = a4 ⊕ a1 ; b5 = a5 ⊕ a2 ;
b6 = a6 ⊕ a3 ⊕ a0 ; b7 = a7 ⊕ a0 ;
b0 = a0 ⊕ b5 ; b1 = a1 ⊕ b6 ;
b2 = a2 ⊕ b7 ⊕ b4 ; b3 = a3 ⊕ b4 .

7.2.3 Permutation ω̄

Let A = (a0, a1, · · · , a2×α×n−1), where α and n are positive integers. Let
B = (b0, b1, · · · , b2×α×n−1). Each ai and bi denotes a 4-bit element. The
permutation B = ω̄(A, n) is computed as follows:

for i = 0 to α− 1 ,
for j = 0 to n− 1 ,

b2×i×n+j = a2×i×n+n+j ; b2×i×n+n+j = a2×i×n+j ;

For example, ω̄(A, 1) swaps element a2i and a2i+1.

7.2.4 Permutation ω

Permutation ω(A,n) swaps the bits in a word A. It is computed by treating
each bit in A as an element, then applying the permutation ω̄(A,n).

7.2.5 Permutation σ̄d

Permutation σ̄d operates on 2d elements. Let A = (a0 ‖ a1 ‖ · · · ‖ a2d−1),
B = (b0 ‖ b1 ‖ · · · ‖ b2d−1). Let n = 2β, where β is an integer smaller than
d− 1. B = σ̄d(A,n) permutes the odd elements in A as follows:

(b1, b3, b5, · · · , b2d−1) = ω̄((a1, a3, a5, · · · , a2d−1) , n) ;
(b0, b2, b4, · · · , b2d−2) = (a0, a2, a4, · · · , a2d−2) .

7.2.6 Permutation σd

Permutation σd(A,n) operates on the bits in a word A. It is computed
by treating each bit in A as an element, then applying the permutation
σ̄d(A,n).

17

7.2.7 Round constants

Let IPd denote the inverse of Pd. Let IP r
d denote the composition of r

permutation IPd :

IP r
d = IPd ◦ IPd ◦ · · · ◦ IPd︸ ︷︷ ︸

r

.

Note that IP r
d has the property that IP r

d = IP r+α·d
d .

Let permutation λr
d(A) operate on the bits in a word A. It is computed

by treating each bit in A as an element, then applying the permutation IP r
d .

Let ηr
d denote a permutation. Let A, B and Vi denote 2d-bit words.

B = ηr
d(A) is computed as follows:

V0 = A ;
for i = 0 to r − 1, Vi+1 = σd(Vi, 2i mod (d−1)) ;
B = Vr;

The round constant C
′(d)
r is generated from C

(d)
r as:

C
′(d)
r = ηr

d ◦ λr
d(C

(d)
r) .

The 2d−1-bit constant words C
′(d)
r,even and C

′(d)
r,odd are obtained by extracting

the even and odd bits of C
′(d)
r , respectively, as defined in Sect. 7.1. C

′(8)
r,even

and C
′(8)
r,odd are given in Appendix A.2.

7.2.8 An alternative description of round function Rd

The description of Rd in Sect. 4.4 is suitable for hardware implementation.
But that description is not suitable for the bit-slice implementation. We give
here an alternative description of Rd, and denote the r-th round function
as R′

d,r. The 2d-bit round constant of the r-th round is denoted as C
′(d)
r .

Let V = v0 ‖ v1 ‖ · · · ‖ v2d−1, where each vi denotes a 4-bit word. The
computation of B = R′

d,r(A,C
′(d)
r) is given as follows:

1. for i = 0 to 2d − 1,

{
if C

′(d),i
r = 0, then vi = S0(ai) ;

if C
′(d),i
r = 1, then vi = S1(ai) ;

}
2. B = σ̄d(V, 2r mod (d−1))

Note that R′
d,r has the following properties:

18

1. The description of R′
d,r is the same as R′

d,r+α·(d−1) except for the dif-
ferent round constants.

2. For the same input passing through multiple rounds, at the end of the
α·(d−1)-th round, the output from R′

d,α·(d−1) is identical to the output
from Rd,α·(d−1).

Six rounds of R′
4,r (0 ≤ r ≤ 5) are illustrated in Fig. 10.

7.2.9 Bit-slice implementation of round function Rd

The above description of R′
d,r can be implemented efficiently in a bit-slice

way. The method used is to separate the odd and even elements of A in
R′

d,r. Denote the bit-slice implementation as Rbitsli
d,r . Let A and B represent

two 2d+2-bit words, A = a0 ‖ a1 ‖ a2 ‖ · · · ‖ a7, and B = b0 ‖ b1 ‖ b2 ‖ · · · ‖ b7,
where each Ai and Bi represents a 2d−1-bit word. Let each vi and ui (0 ≤ i ≤
7) denote a 2d−1-bit word. The computation of B = Rbitsli

d,r (A,C
′(d)
r,even, C

′(d)
r,odd)

is given as follows:

1. (v0, v2, v4, v6) = Sbitsli(a0, a2, a4, a6, C
′(d)
r,even) ;

(v1, v3, v5, v7) = Sbitsli(a1, a3, a5, a7, C
′(d)
r,odd) ;

2. (u0, u2, u4, u6, u1, u3, u5, u7) = Lbitsli(v0, v2, v4, v6, v1, v3, v5, v7) ;

3. b0 = u0; b2 = u2; b4 = u4; b6 = u6;

b1 = ω(u1, 2r mod (d−1)) ;

b3 = ω(u3, 2r mod (d−1)) ;

b5 = ω(u5, 2r mod (d−1)) ;

b7 = ω(u7, 2r mod (d−1)) ;

7.2.10 Bit-slice implementation of Ed

The 2d+2-bit input and output are denoted as A and B, respectively. Let
each Qr denote a 2d+2-bit word for 0 ≤ r ≤ 5(d − 1). Let R∗bitsli

d,r denote
the round function R∗bitsli

d,r with only the Sbox layer. The computation of
B = Ed(A) is given as follows:

1. Q0 = A ;

2. for r = 0 to 5(d− 1)− 1, Qr+1 = Rbitsli
d,r (Qr, C

′(d)
r,even, C

′(d)
r,odd) ;

3. B = R∗bitsli
d,5(d−1)(Q5(d−1), C

′(d)
5(d−1),even, C

′(d)
5(d−1),odd) ;

The generation of the round constants is given in Sect. 7.2.7.

19

Figure 10: An alternative description of 6 rounds of R4(constant bits not
shown)

7.3 Pseudo code for the bit-slice implementation of E8

Denote the 1024-bit input to E8 into eight words x0||x1|| · · · ||x7, where each
xi denotes a 128-bit word. Divide the 256-bit round constant C

′(8)
r into 128-

bit C
′(8)
r,even and 128-bit C

′(8)
r,odd. The values of C

′(8)
r,even and C

′(8)
r,odd are given in

Appendix A.2.
The computation of E8(x0||x1|| · · · ||x7) is given in the following pseudo

20

code:

for r = 0 to 34 ,

{

/* Sbox layer */

(x0, x2, x4, x6) = Sbitsli(x0, x2, x4, x6, C
′(8)
r,even) ;

(x1, x3, x5, x7) = Sbitsli(x1, x3, x5, x7, C
′(8)
r,odd) ;

/* MDS transformation */
(x0, x2, x4, x6, x1, x3, x5, x7) = L(x0, x2, x4, x6, x1, x3, x5, x7) ;

/* Swapping */
x1 = ω(x1, 2r mod7) ;
x3 = ω(x3, 2r mod7) ;
x5 = ω(x5, 2r mod7) ;
x7 = ω(x7, 2r mod7) ;

}
/* Last round */

(x0, x2, x4, x6) = Sbitsli(x0, x2, x4, x6, C
′(8)
35,even) ;

(x1, x3, x5, x7) = Sbitsli(x1, x3, x5, x7, C
′(8)
35,odd) ;

7.4 Bit-slice implementation of F8

F8 compresses the 512-bit message block M (i) and 1024-bit H(i−1) into the
1024-bit H(i). The computation of H(i) = F8(H(i−1),M (i)) is given as:

1. Aj = H
(i−1)
j ⊕M

(i)
j for 0 ≤ j ≤ 3 ;

Aj = H
(i−1)
j for 4 ≤ j ≤ 7 ;

2. B = E8(A) ;

3. H
(i)
j = Bj for 0 ≤ j ≤ 3 ;

H
(i)
j = Bj ⊕M

(i)
j−4 for 4 ≤ j ≤ 7 ;

Note that in function E(A), each word is 128-bit and is thus suitable for
SSE2 implementation. For a 128-bit word x, ω(x, n) can be implemented
with two AND operations (AND with a constant to extract the bits to be
swapped), two shift operations and one OR operations (note that the shift
operations would be affected by the endianess of the SSE2 register). In
addition, ω(x, 32) and ω(x, 64) can be implemented with one SSE2 shuffle
operation. Thus the SSE2 implementation of F8 is very efficient.

21

8 Variants of JH

The design of JH hash algorithms implies several variants by varying the
parameter d or by replacing Pd with P ′

d in round function Rd.

8.1 Varying the parameter d

The compression function Fd gives several compression functions by varying
the parameter d.

F6. d = 6. We increase the round number from 25 (= 5(d − 1)) to 30
(= 6(d − 1)). With 256-bit hash value and 128-bit message block, this
compression function is extremely hardware efficient. A tiny hash function
using this compression function can achieve 128-bit security level for
collision resistance, preimage resistance and second preimage resistance for
256-bit message digest size. Note that this tiny hash function is only to
meet the collision resistance requirement.

F7. d = 7. With 512-bit block size and 256-bit message block size, this
compression is used to generate 256-bit message digest size. The memory
required is half of that of F8, and it achieves 128-bit security level for
collision resistance, 256-bit security for preimage resistance.

F9. d = 9. With 2048-bit block size, this compression function is extremely
efficient on the future microprocessors that support shift and binary opera-
tions over 256-bit registers.

8.2 Replacing Pd with P ′
d

Replacing permutation Pd with P ′
d in round function Rd, and change the

round number 5(d − 1) to 5d in Ed, we can obtain another family of com-
pression functions. This family of compression functions are slightly simpler
in hardware, but its bit-slice implementation requires twice amount of shift
operations as that required in Fd. A few variants can be obtained by varying
the value of d.

9 Security Analysis of JH

The security of JH hash algorithms are stated below (l̄ denotes the number
of message blocks, the length of a message is less than 2128 bits):

22

collision second-
preimage

preimage

JH-224 2112 2224 2224

JH-256 2128 2256 2256

JH-384 2192 2384 2384

JH-512 2256 2512−log2 l̄ 2512

Note that the second-preimage resistance of JH-512 is affected by herding
attack [12]. The reason is that the collision resistance of JH-512 is stated
as 2256, although the size of the hash value H(i) is 1024 bits. However,
the second-preimage resistance of JH-512 would not be affected by herding
attack if birthday attack is applied to find collisions in herding attack.

9.1 Differential cryptanalysis

Differential cryptanalysis is important in analyzing the security of a hash
function. It has been applied to break MD4, MD5, SHA-0 and SHA-1
[10, 7, 4, 5, 19, 20, 21, 22].

We study the number of active Sboxes being involved in a differential
characteristic in Ed. Two techniques are used to find the minimum number
of active Sboxes. One technique is to exploit the symmetry structure of the
generalized AES design. Due to the symmetry property, many differential
paths (branches) are equivalent, so we only need to consider one of them.
We can also replace Pd with P ′

d in Ed to get a simpler variant whose security
is equivalent to that of the original Ed. Another technique is to study Ed

with small value of d to learn when the minimum number of active Sboxes
would occur. For example, the number of active of Sboxes are reduced when
two active Sboxes before the linear transformation L result in only one active
Sboxes after L.

For d ∈ {2, 3, 4}, we exhaustively searched for the minimum number
of active Sboxes. The minimum number of active Sboxes for 2d + 1 Sbox
layers is 10, 20, 38 for d = 2, 3, 4, respectively. For d > 4, we use the above
two techniques to find the minimum number of active Sboxes. For 2d + 1
Sbox layers, the minimum number of active Sbox is 64, 112, 176, 296 for
d = 5, 6, 7, 8. We conjecture that the minimum number of active Sboxes for
2d+1 Sbox layers can be approximated as at least (2d+1)×2d/2. It indicates
that the minimum number of active Sboxes does increase significantly as the
value of d increases.

For E8, we found that the minimum number of active Sboxes for 36
Sbox layers is 624 when there are eight active elements in the input of E8. If
we conservatively assume that there are 236 multiple paths for a differential,
there are still around 600 effective active Sboxes. The large number of active
Sboxes shows that JH is strong against the differential cryptanalysis.

23

9.1.1 Effect of correlated active elements in differential attack

In the differential cryptanalysis of JH, each differential characteristic of an
Sbox has a probability of at most 1

4 . Each active Sbox may contribute 2−2

to the overall differential probability if the active SBoxes are assumed to be
independent. However, when there is correlation between active elements,
the overall differential probability may increase.

For the 8-bit-to-8-bit super Sbox (concept from Rijmen and Daemen)
consisting of two nonlinear layers (4 Sboxes connected by L), a differential
characteristic has a maximum probability of 12

256 = 2−4.41. If we consider
that there are 16 combinations of those 4 Sboxes, then the average of those
16 maximum differential probabilities is 10.875

256 = 2−4.56. If only 3 Sboxes
are active, then the maximum differential probability is 10

256 = 2−4.68. For
the 16-bit-to-16-bit super Sbox consisting of three nonlinear layers, there
are 4096 combinations of those 12 Sboxes. If there is only one active Sbox
in the first or last Sbox layer, then there are 7 active Sboxes being involved;
the maximum differential probability is 44

216 = 2−10.54, and the average of
those 4096 maximum differential probabilities is 2−10.98. When the minimum
number of active Sboxes occurs, we are mainly dealing the 8-bit-to-8-bit
super Sbox with 3 active Sboxes, and the 16-bit-to-16-bit super Sbox with
7 active Sboxes. In these situations, we see that the effective differential
characteristic of an active Sbox is less than 2−1.5 (but larger than 2−2).

If we consider that each active Sbox contributes 2−1.5 to the overall
differential probability, then the probability of a differential involves 600
active Sboxes is about 2−900.

9.1.2 Differential collision attack and message modification

To study the collision resistance of JH, we conservatively assume that an
attacker can efficiently eliminate 16 rounds of E8 with message modification,
then there are 20 Sbox layers being left. For 20 Sbox layers of E8, we found
that a differential characteristic involves at least 336 active Sboxes. If we
assume that there are 220 multiple paths for a differential, then a differential
has probability less than 2−1.5×336 × 220 = 2−484. We thus expect that a
differential collision attack can not succeed with less than 2256 operations.

9.1.3 Second-preimage and preimage differential attacks

The probability of a differential in the compression function is about 2−900,
so even after trying all the 2512 − 1 possible values of a message block,
the chance to find a second preimage through differential attack is at most
2−388. So it is highly unlikely that a second preimage can be found through
differential attack when only one message block is considered.

For the preimage resistance of JH, a differential passes through at least
two compression functions since one more block is padded to the message

24

before generating message digest. Thus differential preimage attack is more
difficult than differential second-preimage attack. Thus JH is expected to
be secure against the differential preimage attack.

9.2 Truncated differential cryptanalysis [13]

In the truncated differential cryptanalysis of JH, we consider whether an
element is active or not instead of the value of the difference. Let us consider
those four Sboxes connected by a linear transformation L. If only one of
the two Sboxes before L is active, then both Sboxes after L are active with
probability 1. We call this event as active element expansion. If both two
Sboxes before L are active and independent, then the probability that only
one Sbox after L is active is 2−4. We call this event as active element
shrinking. If there are independent active Sboxes in the last Sbox layer,
then the probability that the difference of the output from an active Sbox
is cancelled by the message difference (if there is message difference at that
location) is 2−4. For a truncated differential characteristic, we count the
number of active element shrinking events and the number of active Sboxes
in the last Sbox layer of E8, and denote the sum of these two numbers as
TD8.

9.2.1 Truncated differential collision attack

Exploiting the symmetry property of E8, we found in our analysis that the
smallest value of TD8 is 200 when there are eight active elements in the input
of E8. If we assume that the message modification can effectively remove
8 rounds in the truncated differential attack (the message modification in
truncated differential attack is a bit difficult), then the smallest value of
TD8 is 144 when there are eight active elements in the input of E8. Assume
that there are 226 multiple paths, it requires around 2144×4−26 = 2550 differ-
ence pairs to generate a collision. Note that 232 messages with eight active
elements can generate only 263 difference pairs, the attack would require
about 2519 messages. Furthermore, we would point out that the power of
message modification would be significantly reduced if the number of dif-
ferential pairs is much more than the number of messages. We thus expect
that JH is secure against truncated differential collision attack.

9.2.2 Truncated differential (second) preimage attack

In the above analysis, the smallest value of TD8 is 200. It means that the
probability that a truncated differential pair results in a collision is at most
2−800. So even after trying all the 2512−1 possible values of a message block,
the chance to find a second preimage through truncated differential attack
is about 2−288. It is highly unlikely that a second preimage can be found
through truncated differential attack.

25

For the preimage resistance of JH, we note that a truncated differential
passes through at least two compression functions due to padding. Such
truncated differential is with probability much smaller than 2−512. We thus
expect that JH is secure against the truncated differential preimage attack.

9.3 Algebraic attacks

Algebraic attacks solve the nonlinear equations in order to recover the key or
message. For hash function cryptanalysis, algebraic attacks can be applied
to find collision, second preimage and preimage if the algebraic equations of
the compression function are very weak.

In the past several years, algebraic attacks have been proposed against
block ciphers, but so far there is no evidence that algebraic attacks can break
a practical block cipher faster than statistical cryptanalysis techniques, and
there is no evidence that the complexity of algebraic attacks against block
ciphers would be linear to the round number. The recent cube attacks [9]
can solve nonlinear equations with low degree, or with high degree but highly
non-random equations, when a number of equations (involve the same secret
key) are available.

To find a collision of JH hash algorithms with algebraic attack, the meet-
in-the-middle approach can result in algebraic equations of 18 Sbox layers.
To find a second-preimage with algebraic attack, two blocks of message must
be considered, and thus an algebraic attack needs to deal with algebraic
equations of 36 Sbox layers. Recovering a message from the message digest
would involve at least 36 Sbox layers since one more block is padded to the
message. Since the algebraic degree of the Sbox is 3 and the number of
rounds being involved is large, we consider that JH is secure against the
known algebraic attacks.

To be conservative, we use constant bits to select Sboxes to further
strengthen JH against algebraic attacks. Two 4× 4-bit Sboxes are used in
JH. Each bit of a 256-bit round constant selects which Sbox is used. Such
selection is to increase the overall algebraic complexity. The algebraic degree
of each Sbox (and its inverse) is 3.

9.4 Security of the JH compression function structure

The simple JH compression function structure reduces the cost of security
evaluation with respect to differential cryptanalysis. As shown in Sect. 9.1,
the JH compression function is secure against differential attack as long as
the bijective function being used is strong (there is sufficient confusion and
diffusion after message modification).

In the following, we study the security of the JH compression structure
with respect to other attacks (such as partial brute force) instead of
differential attack. Let E denote a 2m-bit bijective function (permutation)

26

in the compression function. Denote H(i) = H
(i)
left‖H(i)

right . M (i), H
(i)
left and

H
(i)
right are m-bit. The message digest size is m-bit.

Pseudo-collision (-preimage and -second primage) resistance. The
compression function of JH is reversible for a given message, so it is trivial to
get pseudo-collision (-preimage and -second preimage) of the JH compression
structure, as pointed out by Nasour Bagheri at the NIST mailing list.

However this type of attack (pseudo-collision, etc.) is not a threat to the
JH compression function structure since in applications, the 2m-bit initial
value of H(0) is fixed. In the design of JH, we have taken into consideration
the reversible property of the compression function, so we use 1024-bit hash
value for JH-512 so as to resist the meet-in-the-middle (second) preimage
attack.

The trivial pseudo-collision (-preimage -second preimage) has no effect
on the security of JH structure and sponge structure as long as the hash
value size is large enough. But pseudo-collision is a serious threat to
some other types of structures, such as the Davies-Meyer structure. (For
the Davies-Meyer structure, a pseudo-collision found through differential
attack reveals serious differential weakness in the compression function,
and the chance is there that the attack can be improved to find colli-
sion.) So whether pseudo-collision is important or not highly depends
on the compression function structure being used, and the attack being used.

Collision resistance. If differential attack is not used to find collision,
then for a difference in M (i), even finding collision of H

(i)
right already requires

2m/2 operations. It thus takes at least 2m/2 operations to find a collision.

Preimage resistance. If differential attack is not used to find preimage
attack, the direct approach is the brute force attack that requires 2m op-
erations. Another attack is the meet-in-the-middle approach that tries to
find a collision of a hash value – an attacker tries to find a collision at H(i).
However, the complexity of this approach is significantly higher than the
direct brute force attack since it requires the collision search over the space
of 22m, and it takes 2m operations and 2m memories.

Mendel and Thomsen have tried to reduced the complexity of the
meet-in-the-middle attack through finding multicollisions of half of a hash
value [16]. In their attack, the computational cost is reduced to 2510.3 with
2510.6 memory, and the number of memory access is increased to 2524 [24].
Their attack is much more expensive than the direct brute force attack that
requires only 2512 computations and almost no memory. So the security of
JH is not affected by their attack.

Second preimage resistance. If differential attack is not used to find

27

second preimage, the direct approach is the brute force attack that requires
2m operations; and the herding attack would not affect the security of JH due
to the 2m-bit hash value. The second preimage meet-in-the-middle attack
is the same as the preimage meet-in-the-middle attack, and the security of
JH is not affected.

9.5 Security of padding and final truncation

At least 512 bits are padded to the message so as the ensure that at least
one compression function is computed after the last bit of the message, then
the message digest is truncated from the output from the last compression
function.

If the last bit of M (N−1) is ‘1’, then it is possible to introduce difference
only to the last block MN since the message size can be either 512× (N−1)
or 512 × (N − 1) − 1. Now if there is collision for HN

right, then there is
collision for the message digest. And if there is non-randomness in HN

right,
then the message digest is nonrandom. However, the security of JH would
not be affected since there is no message modification in the last message
block, thus it is difficult to generate collision or nonrandomness for HN

right

(the message digest).
If the last bit of M (N−1) is ‘1’, then it is possible to introduce difference

only to the last block MN since the message size can be either 512× (N−1)
or 512×(N−1)−1. Now suppose that there is difference in H(N−1) such that
∆H(N−1) = ∆M (N), then there is no differential propagation in the bijective
function in the last compression function, and the message digest difference
would be ∆M (N). However, it is rather difficult to generate ∆H(N−1) to
satisfy ∆H(N−1) = ∆M (N) since the size of H(N−1) is 2m-bit and there is
only one choice for ∆M (N) 6= 0. So the security of JH would not be affected.

10 Performance of JH

JH can be implemented efficiently on a wide range of platforms ranging
from one-bit processor (hardware) to 128-bit processor (SIMD/SSE2). The
reason is that the generalized AES design allows JH being constructed from
extremely simple elements. The 5-bit-to-4-bit (including the constant bit)
Sbox can be implemented with 20 binary operations (including ANDNOT
operation), and the linear transformation L can be implemented with 10
binary operations. The simple Sboxes and linear transformation ensures
that JH is extremely hardware and software efficient.

10.1 Hardware

The hardware implementation of JH is extremely simple and efficient due
to the simple Sboxes and linear transformation. JH uses 1024-bit memory

28

for storing the state of E8, 512-bit memory for storing the message block,
and 256-bit memory to store a round constant (if the round constants are
generated on-the-fly).

We compare JH with the ultra-lightweight block cipher PRESENT [6].
The hardware complexity of JH is comparable to that of PRESENT, except
for the difference in block sizes. JH uses slightly more complicated Sboxes
and linear transformation than PRESENT. The block size of E8 is about 16
times that of PRESENT, while the size of a round constant in E8 is only 4
times that of key size of PRESENT. A rough estimation is that E8 requires
16 times more gates than PRESENT. PRESENT uses about 1570 GE (gate
equivalents), so JH may require 1570× 16 ≈ 25K GE (estimated).

There would be tradeoff for the hardware implementation of JH. To
reduce the number of gates, only two Sboxes and one MDS code need to be
implemented.

10.2 8-bit processor

JH can be implemented on 8-bit processor in two approaches. One approach
is to implement the hardware description of JH with table lookup for 5× 4-
bit Sboxes. The advantage of this approach is that the constant bits can be
generated on-the-fly efficiently. Another approach is to implement the bit-
slice description of JH. With 1152-byte precomputed round constants being
stored in ROM, this implementation is expected to be quite fast. Given that
the SSE2 bit-slice implementation of JH runs at 16.8 cycles/byte on CORE
2 processor, we can roughly estimate the speed of JH on 8-bit processor.
The register size of 8-bit processor is 16 times smaller than that of SSE2
register. If we estimate that the number of instructions being processed per
clock cycle on 8-bit processor is 5 times less than that on CORE 2 processor,
the speed of the bit-slice implementation of JH on 8-bit processor is about
16× 5× 16.8 = 1344 cycles/byte (estimated).

10.3 Intel Core 2 microprocessor

The bit-slice implementation of JH is tested on the popular Intel Core 2
microprocessor. The processor being used in the test is Core 2 Duo Mobile
Microprocessor P9400 2.53GHz (for each core, 32 KB L1 data cache and
32 KB L1 instruction cache). The operating systems are 32-bit and 64-bit
Windows Vista Business. The compiler being used is the Intel C++ compiler
10.1.025 (IA-32 version is used for 32-bit Vista, and Intel-64 version is used
for 64-bit Vista).

The hash speed is measured by hashing a 256-byte buffer for 224 times
(message length is 232 bytes), and using ‘startclock()’ and ‘finishclock()’ to
measure the hash duration. The hash speed is 16.8 clock cycles/byte with
the 64-bit Vista (with optimization option -QxT -O2 of the Intel-64 Intel

29

C++ compiler); and it is 21.3 clock cycles/byte on the 32-bit Vista (with
optimization option -QxT of the IA-32 Intel C++ compiler).

JH on 64-bit platform is faster than that on 32-bit platform. The reason
is that there are sixteen 128-bit XMM registers on the 64-bit platform of
Core 2 processor; while there are only eight 128-bit XMM registers on the
32-bit platform of Core 2 processor.

Microsoft Visual C++ 2005 and 2008 are not recommended for compiling
the SSE2 codes. It seems that the optimization of SSE2 instructions is not
implemented (or very poor) in Microsoft Visual C++ 2005 and 2008. The
speed of JH is about 40+ clock cycles/byte with the Microsoft compilers
with 64-bit operating system (with optimization option /O2).

11 Design Rationale

We give below the rationale of designing the components of JH.

11.1 Compression function Fd

The construction of compression function Fd from bijective function Ed is
new. It gives an extremely simple and efficient approach to construct a
compression function from a bijective function (a large block cipher with
constant key).

In Fd, the message block size is half of the block size of Ed. The message
is XORed with the first half of the input to Ed, then it is XORed with the
second half of the output from Ed to achieve one-wayness (for message).
Besides the one-wayness, this construction is very efficient – every bit in the
output from Ed is not truncated; and the difference cancellation involving
the message is minimized. The message block size is only half of the block
size of Ed, it is to prevent copying a collision block to other locations, and
it is also helpful to resist attacks launched from the middle of Ed.

In the hash function, at least one more block is appended to the message.
It is to randomize the final hash value before truncation.

11.2 The generalized AES design methodology

The generalized AES design methodology (Sect. 2.2) being used to construct
the bijective function Ed is simple and efficient. The input to Ed is grouped
into a d-dimensional array. The nonlinear layer consists of Sboxes. In the
linear layer of the r-th round, MDS code is applied along the (r mod d)-th
dimension of the array.

The generalized AES design is easy to analyze due to its symmetrical
construction. Round constants are applied to prevent the symmetry prop-
erty being exploited in attacks.

30

The generalized AES design is efficient in hardware since Ed can be built
upon small components and its round functions are identical. The general-
ized AES design is also efficient in software since it can be implemented in
a bit-slice approach.

11.3 Round number

The round number of E8 is 5 × (8 − 1) = 35. The round number is chosen
to satisfy two requirements. One requirement is that the round number
is the multiple of d − 1 so that the hardware description is simple since
at the end of the multiple of d − 1 rounds, the output from the hardware
description is identical to that from the bit-slice implementation. Another
requirement is that the round number should be larger than 4d in order to
build a conservative design. We thus set the round number of E8 as 35.

The round number 35 is used for all the JH algorithms for two reasons
– one reason is to achieve the simplicity of description and implementation;
another reason is to achieve extremely large security margin for JH-256 (JH-
224), and it also eliminates the threat of multicollision attack against JH-224
and JH-256.

11.4 Selecting SBoxes

Two Sboxes are used in JH. Each round constant bit selects which Sboxes
are used. Similar design has been used in Feistel’s block cipher Lucifer [11]
in which a key bit selects which Sboxes are used. The main reason that we
use two different Sboxes selected by round constant bits is to increase the
complexity of the system algebraic equations so that JH can have better
resistance against the future algebraic attack.

11.5 SBoxes

We list eight security requirements for the Sboxes, then give an approach to
construct the Sboxes efficiently.

11.5.1 Security requirements

The 4× 4-bit Sboxes S0 and S1 are designed to meet the following require-
ments:

1. There is no indentical point for two Sboxes, i.e., for the same input,
the outputs from two different Sboxes are different.

2. Each differential characteristic has a probability of at most 1
4 .

3. Each linear characteristic [14] has a probability in the range 1
2 ± 1

4 .

31

4. The nonlinear order of each output bit as a function of the input bits
is 3.

5. The algebraic normal forms of the two Sboxes are different. (Espe-
cially, some degree-3 monomials should appear in some algebraic nor-
mal forms of S0 ⊕ S1.)

6. The resulting super Sboxes (formed with more than than one Sbox
layer, introduced by Rijmen and Daemen, mainly to address the effect
of correlated active elements) are strong against differential cryptanal-
ysis.

Note that we do not enforce an input difference with one-bit weight results
in an output difference with at least two-bit weight. The reason is that the
linear transformation in JH is implemented as MDS code, instead of bit-wise
permutation.

Putting two Sboxes together, we have a 5 × 4-bit Sbox with one input
bit being the round constant bit that selects which Sboxes are used. This
Sbox satisfies the following requirements:

7. Each differential characteristic has a probability of at most 1
4 .

8. Each linear characteristic has a probability in the range 1
2 ± 1

4 .

11.5.2 Constructing SBoxes

The direct approach for constructing the Sboxes is to design two independent
Sboxes, then to select one of them using a constant bit. This approach is
excellent in security since the algebraic difference between these two Sboxes
can be maximized. However, such approach requires too many computa-
tions. To reduce computational cost, we construct two dependent Sboxes.
This approach gives tradeoff between computational cost and the algebraic
difference between those two Sboxes. Thus we can generate efficiently two
Sboxes with certain algebraic difference between them.

We search through a lot of circuits, then select the circuit that results in
the desired Sboxes. To search for the circuit corresponding to two 4× 4-bit
Sboxes, the following 11 steps are used (as shown in Sect. 7.2.1). In the first
step, one bit of the input is XORed to ‘1’ to ensure that the input ‘zero’
gets transformed. In the second step, the constant bit is multiplied with
another bit so as to alter the circuit. In the third step, a feedforward bit ‘t’
is generated to contain information of the constant bit and three input bits.
Step 4 to Step 9 are the invertible nonlinear functions that update the input.
Step 10 and Step 11 use the feedforward bit ‘t’ to alter the output so as to
increase the algebraic complexity, and to increase the algebraic difference
between those two Sboxes. Note that Step 10 and Step 11 are noninvertible.

32

We use the following options to generate a lot of circuits: from Step 2
to Step 10, every nonlinear operation can be set as one of two operations
(AND, OR); and each operand of the nonlinear operation can be set as itself
or its inverse. Thus there are about 227 possible circuits. These circuits
correspond to a lot of Sboxes, but most of the Sboxes are noninvertible. We
then search for the Sboxes that satisfy the above eight requirements.

The 5×4-bit Sbox being used in JH can be implemented with 20 binary
operations (AND, ANDNOT, XOR, NOT, OR), as given in Sect. 7.2.1.
The resulting Sboxes achieve good tradeoff between computational cost and
the algebraic difference between those two Sboxes. There are three degree-3
monomials in those 4 algebraic normal forms of S0⊕S1. We expect that such
algebraic difference is sufficient for increasing the algebraic complexity of the
compression function. The algebraic normal forms of S0, S1 and S0 ⊕ S1

are given in Appendix B.1, B.2 and B.3, respectively. The algebraic normal
forms of their inverse are given in Appendix B.4, B.5 and B.6, respectively.

11.6 Linear transform

The linear transform L is probably the simplest (4,2,3) MDS code over
GF (24). It requires only ten XOR operations.

12 Advantages and Limitations

JH hash algorithms have the following advantages:

1. Simple design. The overall design is very simple due to the simple
compression function structure and the generalized design methodol-
ogy. (The hardware and software descriptions are different so as to
achieve efficient hardware and software implementations. But it takes
some efforts to work out the relations between the hardware and soft-
ware descriptions).

2. The JH compression function structure gives a simple and efficient
approach to construct a compression function from a bijective function
(a block cipher with constant key). This structure is proposed to
improve the computational efficiency of sponge structure so that there
is no truncation of the output from the bijective function.

3. The generalized AES design methodology gives a simple way to con-
struct a large block cipher from small components by increasing the
dimension number.

4. Security analysis can be performed relatively easily. Three approaches
are used to achieve this goal. The first approach is to avoid introducing
extra variables into the middle of the compression function so that the

33

differential propagation can be analyzed relatively easily. The second
approach is to use the generalized AES design methodology that can
greatly simplify the differential cryptanalysis. The third approach is
that the generalized AES design involves a multidimensional array, so
the array with low dimension can be easily studied to estimate the
strength of the high dimensional array.

5. High efficiency for collision resistance. The generalized AES design
methodology would likely maximize the difference propagation. The
JH compression function is likely to minimize the difference cancella-
tion within a compression function.

6. JH can be implemented efficiently over one-bit processor (hardware)
to 128-bit processor (SIMD/SSE2 instructions). The reason is that the
generalized AES design allows JH being built from extremely simple
components.

(a) Hardware efficient. The hardware description of JH is simple.
The internal state size of E8 is only 1024 bits and the message
block size is 512 bits. The round constants can be generated on
the fly with 256-bit additional memory. Both the Sboxes and
linear transformation in JH are extremely simple.

(b) Software efficient. JH is designed to exploit the computational
power of modern and widely used microprocessors. The bit-
slice description of E8 can be efficiently implemented with the
SIMD/SSE2 instructions.

7. Several variants are available by varying the parameter d. The ex-
tremely hardware-efficient F6 (increasing the round number to 30) is
suitable for achieving 128-bit security for collision resistance, preimage
resistance and second-preimage resistance for a message with length
less than 264 bits. For this tiny hash function, the hash size is 256 bits,
the message block size is 128 bits, the message digest size is 256 bits.

8. It is convenient to use JH to substitute SHA2 [17] in almost all the
SHA2 applications.

Although JH can be used directly to construct a message authentication
code (MAC) (such as HMAC), the resulting MAC is not that efficient. In
general, constructing a MAC from a strong hash function is not that efficient
since the secret key in MAC can significantly reduce computational cost. We
think that a dedicated efficient MAC standard is needed since MAC is used
extensively in secure data communication, and the performance of MAC is
critical for high speed or hardware constrained applications.

34

13 Conclusion

In this document, we proposed JH hash algorithms which are both hardware
and software efficient. Our analysis shows that JH is very secure. However,
the extensive security analysis of any new design requires a lot of efforts
from many researchers. We thus invite and encourage researchers to analyze
the security of JH. JH is not covered by any patent and JH is freely-available.

Acknowledgement. Part of the design was done when the author was
studying at the research group COSIC of the Katholieke Universiteit Leuven.
I would like to thank Paul Crowley for independently implementing JH,
detecting the bug in my original JH code and suggesting the formula for
computing the number of zero bits being padded to the message.

References

[1] R. Anderson, E. Biham and L. Knudsen. “SERPENT: A Flexible Block
Cipher with Maximum Assurance.” The first AES candidate conference,
1998.

[2] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “Sponge Func-
tions.” ECRYPT hash workshop 2007.

[3] E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryp-
tosystems.” Advances in Cryptology – Crypto’90, LNCS 537, pp. 2-21,
Springer-Verlag, 1991.

[4] E. Biham, R. Chen, “Near-Collisions of SHA-0.” Advances in Cryptol-
ogy – CRYPTO 2004, pp. 290–305, Springer-Verlag, 2004.

[5] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, W. Jalby,
“Collisions of SHA-0 and Reduced SHA–1.” Advances in Cryptology –
EUROCRYPT 2005, pp. 36–57, Springer-Verlag, 2005.

[6] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.
J. B. Robshaw, Y. Seurin and C. Vikkelsoe, “PRESENT: An Ultra-
Lightweight Block Cipher .” Cryptographic Hardware and Embedded
Systems – CHES 2007, pp. 450–466, Springer-Verlag, 2007.

[7] F. Chabaud, A. Joux, “Differential Collisions in SHA-0.” Advances in
Cryptology – CRYPTO 1998, pp. 56-71, Springer-Verlag, 1998.

[8] J. Daeman and V. Rijmen, “AES Proposal: Rijndael.” Available on-line
from NIST at http://csrc.nist.gov/encryption/aes/rijndael/

35

[9] I. Dinur and A. Shamir, “Cube Attacks on Tweakable
Black Box Polynomials.” IACR ePrint, 2008. Available at
http://eprint.iacr.org/2008/385

[10] H. Dobbertin, “Cryptanalysis of MD4.” Fast Software Encryption –
FSE 1996, pp. 53–69, Springer-Verlag, 1996.

[11] H. Feistel, “Cryptography and Computer Privacy.” Scientific American,
vol.228(5), May 1973, pp 15–23.

[12] J. Kelsey, T. Kohno, “Herding Hash Functions and the Nostradamus
Attack.” Advances in Cryptology – EUROCRYPT 2006, pp. 183–200,
Springer-Verlag, 2006.

[13] L. Knudsen, “Truncated and Higher Order Differentials.” Fast Software
Encryption – FSE’94, pp. 196–211, Springer-Verlag.

[14] M. Matsui, “Linear Cryptanalysis Method for DES Cipher.” Advances
in Cryptology – Eurocrypt’93, LNCS 765, pp. 386-397, Springer-Verlag,
1994.

[15] S.M. Matyas, C.H. Meyer and J. Oseas, “Generating strong one-way
functions with cryptographic algorithm.” IBM Technical Disclosure
Bulletin, 27 (1985), 5658–5659.

[16] F. Mendel, S. S. Thomsen. “An Observation on JH-512.” Ecrypt hash
website. http://ehash.iaik.tugraz.at/uploads/d/da/Jh preimage.pdf

[17] National Institute of Standards and Technology, “Secure Hash Standard
(SHS).” Available at http://csrc.nist.gov/cryptval/shs.html

[18] J. Stern, S. Vaudenay. “CS-Cipher.” Fast Software Encryption –
FSE’98, pp. 189–205, Springer-Verlag, 1998.

[19] X. Wang, X. Lai, D. Feng, H. Chen, X. Yu, “Cryptanalysis of the
Hash Functions MD4 and RIPEMD.” Advances in Cryptology – EU-
ROCRYPT 2005, pp. 1–18, Springer-Verlag, 2005.

[20] X. Wang, H. Yu, “How to Break MD5 and Other Hash Functions.”
Advances in Cryptology – EUROCRYPT 2005, pp. 19–35, Springer-
Verlag, 2005.

[21] X. Wang, H. Yu, Y. L. Yin, “Efficient Collision Search Attacks on
SHA-0.” Advances in Cryptology – CRYPTO 2005, pp. 1–16, Springer-
Verlag, 2005.

[22] X. Wang, Y. L. Yin, H. Yu, “Finding Collisions in the Full SHA-1.”
Advances in Cryptology – CRYPTO 2005, pp. 17–36, Springer-Verlag,
2005.

36

[23] R. Winternitz. “A secure one-way hash function built from DES.” IEEE
Symposium on Information Security and Privacy, p. 88–90, 1984.

[24] H. Wu. “The Complexity of Mendel and Thomsen’s Preimage At-
tack on JH-512.” Ecrypt website. http://ehash.iaik.tugraz.at/uploads/
6/6f/Jh mt complexity.pdf

A Round constants of E8

This section gives the round constants in E8. E8 has 36 256-bit round
constants.

A.1 Round constants in the hardware implementation of E8

The round constants are generated from the first round constant using round
function R6 (with the round constants of R6 being set to 0).

C00 = 6a09e667f3bcc908b2fb1366ea957d3e
3adec17512775099da2f590b0667322a

C01 = bb896bf05955abcd5281828d66e7d99a
c4203494f89bf12817deb43288712231

C02 = 1836e76b12d79c55118a1139d2417df5
2a2021225ff6350063d88e5f1f91631c

C03 = 263085a7000fa9c3317c6ca8ab65f7a7
713cf4201060ce886af855a90d6a4eed

C04 = 1cebafd51a156aeb62a11fb3be2e14f6
0b7e48de85814270fd62e97614d7b441

C05 = e5564cb574f7e09c75e2e244929e9549
279ab224a28e445d57185e7d7a09fdc1

C06 = 5820f0f0d764cff3a5552a5e41a82b9e
ff6ee0aa615773bb07e8603424c3cf8a

C07 = b126fb741733c5bfcef6f43a62e8e570
6a26656028aa897ec1ea4616ce8fd510

C08 = dbf0de32bca77254bb4f562581a3bc99
1cf94f225652c27f14eae958ae6aa616

C09 = e6113be617f45f3de53cff03919a94c3
2c927b093ac8f23b47f7189aadb9bc67

C10 = 80d0d26052ca45d593ab5fb310250639
0083afb5ffe107dacfcba7dbe601a12b

C11 = 43af1c76126714dfa950c368787c81ae
3beecf956c85c962086ae16e40ebb0b4

C12 = 9aee8994d2d74a5cdb7b1ef294eed5c1
520724dd8ed58c92d3f0e174b0c32045

C13 = 0b2aa58ceb3bdb9e1eef66b376e0c565

37

d5d8fe7bacb8da866f859ac521f3d571
C14 = 7a1523ef3d970a3a9b0b4d610e02749d

37b8d57c1885fe4206a7f338e8356866
C15 = 2c2db8f7876685f2cd9a2e0ddb64c9d5

bf13905371fc39e0fa86e1477234a297
C16 = 9df085eb2544ebf62b50686a71e6e828

dfed9dbe0b106c9452ceddff3d138990
C17 = e6e5c42cb2d460c9d6e4791a1681bb2e

222e54558eb78d5244e217d1bfcf5058
C18 = 8f1f57e44e126210f00763ff57da208a

5093b8ff7947534a4c260a17642f72b2
C19 = ae4ef4792ea148608cf116cb2bff66e8

fc74811266cd641112cd17801ed38b59
C20 = 91a744efbf68b192d0549b608bdb3191

fc12a0e83543cec5f882250b244f78e4
C21 = 4b5d27d3368f9c17d4b2a2b216c7e74e

7714d2cc03e1e44588cd9936de74357c
C22 = 0ea17cafb8286131bda9e3757b3610aa

3f77a6d0575053fc926eea7e237df289
C23 = 848af9f57eb1a616e2c342c8cea528b8

a95a5d16d9d87be9bb3784d0c351c32b
C24 = c0435cc3654fb85dd9335ba91ac3dbde

1f85d567d7ad16f9de6e009bca3f95b5
C25 = 927547fe5e5e45e2fe99f1651ea1cbf0

97dc3a3d40ddd21cee260543c288ec6b
C26 = c117a3770d3a34469d50dfa7db020300

d306a365374fa828c8b780ee1b9d7a34
C27 = 8ff2178ae2dbe5e872fac789a34bc228

debf54a882743caad14f3a550fdbe68f
C28 = abd06c52ed58ff091205d0f627574c8c

bc1fe7cf79210f5a2286f6e23a27efa0
C29 = 631f4acb8d3ca4253e301849f157571d

3211b6c1045347befb7c77df3c6ca7bd
C30 = ae88f2342c23344590be2014fab4f179

fd4bf7c90db14fa4018fcce689d2127b
C31 = 93b89385546d71379fe41c39bc602e8b

7c8b2f78ee914d1f0af0d437a189a8a4
C32 = 1d1e036abeef3f44848cd76ef6baa889

fcec56cd7967eb909a464bfc23c72435
C33 = a8e4ede4c5fe5e88d4fb192e0a0821e9

35ba145bbfc59c2508282755a5df53a5
C34 = 8e4e37a3b970f079ae9d22a499a714c8

75760273f74a9398995d32c05027d810
C35 = 61cfa42792f93b9fde36eb163e978709

38

fafa7616ec3c7dad0135806c3d91a21b

A.2 Round constants in the bit-slice implementation of E8

Each round constant used in the bit-slice implementation of E8 is linked to
the corresponding round constant in the hardware implementation through
a permutation.

C’00_even = 72d5dea2df15f8677b84150ab7231557
C’00_odd = 81abd6904d5a87f64e9f4fc5c3d12b40
C’01_even = ea983ae05c45fa9c03c5d29966b2999a
C’01_odd = 660296b4f2bb538ab556141a88dba231
C’02_even = 03a35a5c9a190edb403fb20a87c14410
C’02_odd = 1c051980849e951d6f33ebad5ee7cddc
C’03_even = 10ba139202bf6b41dc786515f7bb27d0
C’03_odd = 0a2c813937aa78503f1abfd2410091d3
C’04_even = 422d5a0df6cc7e90dd629f9c92c097ce
C’04_odd = 185ca70bc72b44acd1df65d663c6fc23
C’05_even = 976e6c039ee0b81a2105457e446ceca8
C’05_odd = eef103bb5d8e61fafd9697b294838197
C’06_even = 4a8e8537db03302f2a678d2dfb9f6a95
C’06_odd = 8afe7381f8b8696c8ac77246c07f4214
C’07_even = c5f4158fbdc75ec475446fa78f11bb80
C’07_odd = 52de75b7aee488bc82b8001e98a6a3f4
C’08_even = 8ef48f33a9a36315aa5f5624d5b7f989
C’08_odd = b6f1ed207c5ae0fd36cae95a06422c36
C’09_even = ce2935434efe983d533af974739a4ba7
C’09_odd = d0f51f596f4e81860e9dad81afd85a9f
C’10_even = a7050667ee34626a8b0b28be6eb91727
C’10_odd = 47740726c680103fe0a07e6fc67e487b
C’11_even = 0d550aa54af8a4c091e3e79f978ef19e
C’11_odd = 8676728150608dd47e9e5a41f3e5b062
C’12_even = fc9f1fec4054207ae3e41a00cef4c984
C’12_odd = 4fd794f59dfa95d8552e7e1124c354a5
C’13_even = 5bdf7228bdfe6e2878f57fe20fa5c4b2
C’13_odd = 05897cefee49d32e447e9385eb28597f
C’14_even = 705f6937b324314a5e8628f11dd6e465
C’14_odd = c71b770451b920e774fe43e823d4878a
C’15_even = 7d29e8a3927694f2ddcb7a099b30d9c1
C’15_odd = 1d1b30fb5bdc1be0da24494ff29c82bf
C’16_even = a4e7ba31b470bfff0d324405def8bc48
C’16_odd = 3baefc3253bbd339459fc3c1e0298ba0
C’17_even = e5c905fdf7ae090f947034124290f134
C’17_odd = a271b701e344ed95e93b8e364f2f984a

39

C’18_even = 88401d63a06cf61547c1444b8752afff
C’18_odd = 7ebb4af1e20ac6304670b6c5cc6e8ce6
C’19_even = a4d5a456bd4fca00da9d844bc83e18ae
C’19_odd = 7357ce453064d1ade8a6ce68145c2567
C’20_even = a3da8cf2cb0ee11633e906589a94999a
C’20_odd = 1f60b220c26f847bd1ceac7fa0d18518
C’21_even = 32595ba18ddd19d3509a1cc0aaa5b446
C’21_odd = 9f3d6367e4046bbaf6ca19ab0b56ee7e
C’22_even = 1fb179eaa9282174e9bdf7353b3651ee
C’22_odd = 1d57ac5a7550d3763a46c2fea37d7001
C’23_even = f735c1af98a4d84278edec209e6b6779
C’23_odd = 41836315ea3adba8fac33b4d32832c83
C’24_even = a7403b1f1c2747f35940f034b72d769a
C’24_odd = e73e4e6cd2214ffdb8fd8d39dc5759ef
C’25_even = 8d9b0c492b49ebda5ba2d74968f3700d
C’25_odd = 7d3baed07a8d5584f5a5e9f0e4f88e65
C’26_even = a0b8a2f436103b530ca8079e753eec5a
C’26_odd = 9168949256e8884f5bb05c55f8babc4c
C’27_even = e3bb3b99f387947b75daf4d6726b1c5d
C’27_odd = 64aeac28dc34b36d6c34a550b828db71
C’28_even = f861e2f2108d512ae3db643359dd75fc
C’28_odd = 1cacbcf143ce3fa267bbd13c02e843b0
C’29_even = 330a5bca8829a1757f34194db416535c
C’29_odd = 923b94c30e794d1e797475d7b6eeaf3f
C’30_even = eaa8d4f7be1a39215cf47e094c232751
C’30_odd = 26a32453ba323cd244a3174a6da6d5ad
C’31_even = b51d3ea6aff2c90883593d98916b3c56
C’31_odd = 4cf87ca17286604d46e23ecc086ec7f6
C’32_even = 2f9833b3b1bc765e2bd666a5efc4e62a
C’32_odd = 06f4b6e8bec1d43674ee8215bcef2163
C’33_even = fdc14e0df453c969a77d5ac406585826
C’33_odd = 7ec1141606e0fa167e90af3d28639d3f
C’34_even = d2c9f2e3009bd20c5faace30b7d40c30
C’34_odd = 742a5116f2e032980deb30d8e3cef89a
C’35_even = 4bc59e7bb5f17992ff51e66e048668d3
C’35_odd = 9b234d57e6966731cce6a6f3170a7505

B Algebraic Normal Forms of Sboxes

This section gives the algebraic normal forms of S0, S1 and S0 ⊕ S1. The
input to an Sbox is denoted as x = x0‖x1‖x2‖x3, and the output of an Sbox
is denoted as y = y0‖y1‖y2‖y3.

40

B.1 Algebraic normal forms of S0

y3 = 1 + x3 + x2 + x2x1 + x3x2x1 + x3x2x0 + x3x1x0 + x2x1x0
y2 = x3x2 + x2x1 + x3x0 + x2x0 + x1x0 + x3x2x1 + x2x1x0
y1 = x2 + x3x2 + x1 + x2x0 + x2x1x0
y0 = 1 + x3 + x2 + x0 + x3x1 + x2x0 + x3x2x1 + x3x2x0 + x2x1x0

Monomial with degree 3 appears in all the four expressions. And monomial
with degree 3 appears in any linear combination of the above four expres-
sions.

B.2 Algebraic normal forms of S1

y3 = 1 + x3 + x2 + x3x1 + x2x1 + x3x2x0 + x3x1x0 + x2x1x0
y2 = 1 + x3 + x1 + x3x0 + x2x0 + x1x0 + x3x2x1 + x2x1x0
y1 = x3 + x2 + x1 + x0 + x3x2 + x3x1 + x3x2x1 + x3x2x0
y0 = x3 + x0 + x3x1 + x2x0 + x3x2x1 + x3x2x0 + x2x1x0

Monomial with degree 3 appears in all the four expressions. And monomial
with degree 3 appears in any linear combination of the above four expres-
sions.

B.3 Algebraic normal forms of S0 ⊕ S1

y3 = x3x1 + x3x2x1
y2 = 1 + x3 + x1 + x3x2 + x2x1
y1 = x3 + x0 + x3x1 + x2x0 + x3x2x1 + x3x2x0 + x2x1x0
y0 = 1 + x2

Note that the algebraic normal forms of S0 ⊕ S1 are not random. It is
due to tradeoff between the computational cost and the algebraic difference
between S0 and S1. We expect that such algebraic difference between S0

and S1 is sufficient for increasing the algebraic complexity of the overall
compression function.

B.4 Algebraic normal forms of S−1
0

y3 = 1 + x3 + x2 + x1 + x0 + x3x2 + x3x2x1 + x3x0
+ x3x2x0 + x3x1x0 + x2x1x0

y2 = x2 + x1 + x0 + x3x1 + x2x1 + x3x0 + x2x1x0
y1 = x0 + x3x2 + x3x1 + x3x0 + x2x0 + x3x2x1 + x2x1x0
y0 = x3 + x2 + x0 + x2x0 + x1x0 + x3x2x1 + x3x1x0 + x2x1x0

Monomial with degree 3 appears in all the four expressions. And monomial
with degree 3 appears in any linear combination of the above four expres-
sions.

41

B.5 Algebraic normal forms of S−1
1

y3 = x2 + x1 + x0 + x3x2 + x3x1 + x2x0 + x1x0
+ x3x2x1 + x3x1x0 + x2x1x0

y2 = 1 + x2 + x3x1 + x2x1 + x1x0 + x2x1x0
y1 = x3 + x0 + x3x2 + x3x0 + x1x0 + x3x2x1 + x3x2x0 + x2x1x0
y0 = 1 + x3 + x2x1 + x1x0 + x3x2x1 + x3x2x0 + x3x1x0

Monomial with degree 3 appears in all the four expressions. And monomial
with degree 3 appears in any linear combination of the above four expres-
sions.

B.6 Algebraic normal forms of S−1
0 ⊕ S−1

1

y3 = 1 + x3 + x3x1 + x3x0 + x2x0 + x1x0 + x3x2x0
y2 = 1 + x1 + x0 + x3x0 + x1x0
y1 = x3 + x3x1 + x2x0 + x1x0 + x3x2x0
y0 = 1 + x2 + x0 + x2x1 + x2x0 + x3x2x0 + x2x1x0

Note that the algebraic normal forms of S−1
0 ⊕ S−1

1 are not random. It is
due to tradeoff between the computational cost and the algebraic difference
between S−1

0 and S−1
1 . We expect that such algebraic difference between S−1

0

and S−1
1 is sufficient for increasing the algebraic complexity of the overall

compression function.

42

