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1 Introduction

This document specifies four hash algorithms — JH-224, JH-256, JH-384, and
JH-512. The hash algorithms are very simple. They are efficient on many
platforms ranging from one-bit processor (hardware) to 128-bit processor
(SSE2 registers) since they are built on extremely simple components.

The JH hash functions are very efficient in software. With bit-slice
implementation using SSE2, the speed of JH is about 16.8 cycles/byte on
the Intel Core 2 Duo microprocessor running 64-bit operating system with
Intel C++ compiler (about 21.3 cycles/byte for 32-bit operating system).

The memory required for the hardware implementation of JH hash func-
tions is 1536 bits. With 256 additional memory bits, the round constants of
JH can be generated on the fly. JH-224, JH-256, JH-384 and JH-512 share
the same compression function, so it is very efficient to implement these four
hash algorithms together in hardware.

JH is strong in security. Each message block is 64 bytes. A message block
passes through the 35.5-round compression function that involves 9216 4-
bit-to-4-bit Sboxes. We found that a differential trail in the compression
function involves more than 600 active Sboxes. The large number of active
Sboxes ensures that JH is strong against differential attack [1].

This document is organized as follows. The specifications of JH are
given in Sec. 3, 4, 5 and 6. The bit-slice implementation of JH is given in
Sec. 7. Section 9 gives the security analysis of JH. The performance of JH
is described in Sec. 10. The design rationale and advantage are given in
Sec. 11 and Sec. 12, respectively. Sec. 13 concludes this document.

2 Efficient Differential Propagation Design

The compression function in JH is based on a bijective function. The Ef-
ficient Differential Propagation (EDP) design is used to design the bijec-
tive function in JH. EDP design uses the substitution-permutation network
(SPN). The input bits are divided into H‘ii:_ol a; elements, and these ele-
ments form a d-dimensional array. In the linear layer of the r-th round,
Maximum Distance Separable (MDS) code is applied along the (r mod d)-th
dimension. We believe that such design is the simplest approach to achieve
efficient differential propagation.

EDP design is not new. AES (Rijndael [6]) is based on EDP design with
a two-dimensional array. However, Rijndael with 192-bit and 256-bit block
sizes are not based on EDP design since MDS code is not applied to the
dimension with 6 (192-bit block size) or 8 (256-bit block size) elements.

We use an eight-dimensional EDP design in the design of the bijective
function in JH. The 1024 input bits to the bijective function are divided into
28 4-bit elements, and these elements form an eight-dimensional array.



3 Definitions

3.1 Notations

The following notations are used in the JH specifications.

Word
Ai

A group of bits.
The i*? bit in the word A. An m-bit word A is represented
as A= A0 | AL AZ|| ... || ™oL,

3.2 Parameters

The following parameters are used in the JH specifications.

The round constant words used in function F4 with 0 <
r <5x(d—1). Each Cﬁd) is a 29-bit constant word.
The dimension of a block of bits. A d-dimensional block
consists of 2¢ 4-bit elements.

Number of bits in a hash value. h = 1024.

The i*® hash value, with a size of k bits. H( is the initial
hash value; H®) is the final hash value and is truncated
to generate the message digest.

The j™ bit of the i*" hash value, where H® =
H ()0 H(i),1|| || M@

Length of the message, M, in bits.

Number of bits in a message block M®. m = 512.
Message to be hashed.

Message block i, with a size of m bits.

The ;™ bit of the ™ message block, ie., M® =
M@0 ALOA| | M @im—1

Number of blocks in the padded message.

3.3 Operations

The following operations are used in the JH specifications.

Bitwise AND operation.

Bitwise OR (“inclusive-OR”) operation.
Bitwise XOR (“exclusive-OR”) operation.
Bitwise complement operation.
Concatenation operation.

4 Functions

The following functions are used in the JH specifications.



4.1 S-boxes

So and S7 are the 4-bit-to-4-bit S-boxes being used in JH. Every round
constant bit selects which Sboxes are used (similar to Lucifer [9]).

x 0123456789 10]11]12]13]14]15
So()[9 [0 [4 [11]13[12[3 [15/1 [10/2 |6 |7 |5 |8 |14
Si(x)[3 | 12[6 [13[5 |7 |1 [9 |15/ 2 [0 |4 | 11| 10] 14| 8

4.2 Linear transformation L

The linear transformation L implements a (4, 2, 3) Maximum Distance Sep-
arable (MDS) code over GF(2%). Here the multiplication in GF(2%) is de-
fined as the multiplication of binary polynomials modulo the irreducible
polynomial 2 4+ 2 + 1. Denote this multiplication as ‘e’ .
Let A, B, C and D denote 4-bit words. L transforms (A, B) into (C, D)
as
(C,D)=L(A,B)=(5eA+2eB,2eA+ B).

More specifically, the bit-wise computation of L is given as follows. Let
A, B, C and D denote 4-bit words, ie., A = A°||AL||A%|| A%, B =
BY|BY|B?|B3 C=C"|C|C?||C3, and D = D°|| D' || D?|| D3. In
polynomial form, A is represented as A%? + Alx? + A%z + A3; 2e A is
given as Alz3 + A%2? + (A° + A3)z + A, The function (C,D) = L(A, B)

is computed as:

D’ = B'@Al; D'=B'® A%,
D* = BoAaA; D’=B oA,
c? = AeD'; C'=A'e D?;

C? = A’2eD*¢D'; C3=AaD".

4.3 Permutation P;

P, is a simple permutation on 2% elements. It is constructed from 7y, P}
and ¢g. Denote 2 input elements as A = (ag, a1, - -, asa_1), and 2¢ output
elements as B = (b, by, -, bga_1).

4.3.1 Permutation my

74 operates on 2¢ elements. The computation of B = 74(A) is as follows:

bgivo = agiyo fori=0to 2d-2 :
byiv1 = ags1  fori=0to297% —1;
biive = agipz fori=0to2972-1;
baiys = agi+2 fori=20to 2d-2 _ 1 :

The permutation 7y is illustrated in Fig. 1.



a, a4y a a, a, as a4y a, dg Gy Gy 4y G, Ay 4y a4

v by by by b by by by by by by by by by by

Figure 1: The permutation 74

4.3.2 Permutation P,

P’ is a permutation on 2¢ elements. The computation of B = P}(A) is given
as follows:

b, = a9 forizOto?d_l—l;

bi+2d*1 = agiy1 for i =0 to 2d=1 _ 1 ;
The permutation Pj is illustrated in Fig. 2.

4 4 @y a4y 45 4y 4y Ay dy G Ay 4y iy Gy s

Figure 2: The permutation P,

4.3.3 Permutation ¢,

bq is a permutation on 2¢ elements. The computation of B = ¢4(A) is given
as follows:

bi = a for i =0 to 2971 —1;
boivo = agi41 fori= 202 o 291 _ 1 :
boiy1 = agi4o fori= 202 o 291 _ 1 :

The permutation ¢4 is illustrated in Fig. 3.

4.3.4 Permutation P;
P, is the composition of 74, Pj and ¢g:
Py = ¢40 Pjomg

The permutation Py is illustrated in Fig. 4.
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Figure 3: The permutation ¢4

a4 a  a a4 4y dg  a; 4y Ay a4, dy a4, 4

Figure 4: The permutation Py

4.4 Round function R,

The round function Ry implements the Efficient Differential Propagation
(EDP) design illustrated in Sec. 2. It consists of three layers: the Sbox
layer, the linear transform layer and the permutation layer P;. The input
and output sizes of Ry are 2912 bits. The 2%t2-bit input word is denoted
as A = (ao||l a1 | --- || aga_;), where each a; represents a 4-bit word. The
24+2 it output word is denoted as B = (bg || b1 || -+ || bya_1), where each
b; represents a 4-bit word. The 2%-bit round constant of the r-th round is

denoted as Cﬁd) = Cﬁd)’OHC’,gd)’l e ||Cr(d)’2d71. Let each v; and w; (0 <7 <
24 1) represent a 4-bit word. The computation of B = Ry(A, Cq@) is given
as follows:
1.  fori=0to?2¢—1,
{
. (d)g o N,
if Cx™" =0, then v; = Sp(a;) ;
if O\ =1, then v; = S (a;) ;
}
2. (w2i, wait1) = L(vai,vai41) for 0<i <297t -1

3. (bOabl,"'7b2d—1) :Pd(w0aw1a"'aw2d—1);

Two rounds of Ry are illustrated in Fig. 5.
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Figure 5: Two rounds of Ry (round constant bits not shown)

4.5 Bijective function E,

E, is based on the d-dimensional EDP design. It is constructed from 5(d —
1) rounds of Ry, plus an additional Sbox layer. The 29+2-bit input and
output are denoted as A and B, respectively. Let each @, denote a 29+2-bit
word for 0 < r < 4d+ 1, and Q = (¢roll g1l -+ || gr2a_1), where each
qr; denotes a 4-bit word. Let R} denote the round function R4 with the
linear transformation and permutation being removed. Let d' = d — 1. The
computation of B = E;(A) is given as follows:

1. grouping the bits of A into 2¢ 4-bit elements to obtain Qo :
2. forr=0to5(d—1)—1, Q1= Ra(Qy,C?):

3. Qs—1)+1 = RZ(Q5(d—1)7Cg()?G)l,1)) ;

4. de-grouping the 2¢ 4-bit elements in (5(d—1)+1 to obtain B ;

The grouping of bits into 4-bit elements in the first step and the de-grouping
in the last step are designed to achieve efficient bit-slice software implemen-
tation. The grouping in the first step is given as follows (as shown in Fig. 6):



for i = 0 to 291 — 1,
{

Qo.2i = AiHAiJerHA@'+2-2¢”AZ‘+3-2‘1 ;

1 od—1) (i1od—119d ,ii19d—149.9d| ,iiod—141.0od
— Ait2 HA1+2 +2 ||Az+2 +2-2 ||Az+2 +3-2 :

q0,2i+1

0 1 2 d-1 d-1 d-1 d-1 d
A A A Vs 42 Ve AT 47
Azd Azd +1 Azd w20F Azd +241 Azd 241 Azhzd"n Azd 22 Az.zd -1
Az.zd Az.zd +1 Az.zd 42 Az.zd +24711 Az-zd 271 Az-zd +297 41 Az-zd 29 As.zd -1
As.zd As.zd +1 A“d w3 A}zd +2411 As-zd 241 As-z” +2970 41 As-zd 424008 A4.2d -1

v v v v v v v v
_______________________ | A
| 900  9o2 Qog e Qo1 | Yox 903 Qo5 e Qo011

Figure 6: The grouping in function Fy

The de-grouping in the last step is given as follows (as shown in Fig. 7):

for i =0 to 291 — 1,
{ i|| Ri+2¢| pi+2-24| Ri+3-22
BY|B**'||B |B = G5(d—1)+1,2i }

i1 od—1 1 od—1_ 9d L od—1_9.9d 1 od—1_ 9 .9d
Bit2 HB1+2 +2 HBHQ +2-2 HBz+2 +3-2 = Q5(d—1)41,2i+1

r
(Dsa-s0_Dsasz Gsaas e 5o Jsaaat)
Y X X X
0 1 2 a
B B B i iR2TL 2T ip2THl 1 ip27Te2 b B!
24 2941 2942 2942411 24 4247 294297141 294297 42 2241
B B*T 32 Rl R B* T BT Bt B* T B
9 0d od 9d L nd-1_ 224 4241 2.29 424141 2.24 4947149 nd _
B2 gl g2t L R g2ty RrTL g2t L B3
Bs-zd Bs-zd +1 B3-2d 3 B3-2f‘ +2971 B3-2“ +247 Bs-zd +29741 Bs-zd 4242 B4.2d -1

Figure 7: The de-grouping in function Ejy

The round constants of Ey are given in Sect. 4.6.



4.6 Round constants of F,
(

The round constants Crd) for E4 are generated from the round function
R4_o (with all the round constants of Ry_o being set as 0). Each Cr(d) is a
2¢-bit word. They are generated as follows:

C(()d) is the integer part of (v/2 — 1) x 92 (in big endian form) ;
C\ = Ry o(CD,0) for 1 <r < 5(d—1).

r—1»

The values of C,ES) (0 < r < 35) are given in Appendix A.1.

5 Compression Function F}

Compression function Fy is constructed from the function Ey4. Fy compresses
the 291 bit message block M) and 29+2-bit H(~Y into the 292-bit H®

H® = Fy(HD M@y

The construction of Fy is shown in Fig. 8. According to the definition of
E4, the input to every first-layer Sbox would be affected by two message
bits; and the output from every last-layer Sbox would be XORed with two
message bits.

l | ] ¢
MO —

|
Ea . M(f)
| | ] H©®

Figure 8: The compression function Fy
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5.1 Iy

Fy is the compression function used in hash function JH. Fg compresses the
512-bit message block M@ and 1024-bit H~Y into the 1024-bit H®. Fy is
constructed from Eg. Let A, B denote two 1024-bit words. The computation
of H) = Fg(H~1), M®) is given as:

1. A =HOEDIgMDI  for0<j<511;
AJ = gi-1).g for 512 < j < 1023 ;

2. B = Eg(A) 3

3. HGG — BI for 0 < j <511 ;
H®J = Bi @ M®7-512  for 512 < j < 1023 ;

6 JH Hash Algorithms

Hash function JH consists of five steps: padding the message M (Sect. 6.1),
parsing the padded message into message blocks (Sect. 6.2), setting the
initial hash value H(® (Sect. 6.3), computing the final hash value H®)
(Sect. 6.4), and generating the message digest by truncating HN) (Sect. 6.5).

6.1 Padding the message

The message M is padded to be a multiple of 512 bits. Suppose that the
length of the message M is ¢ bits. Append the bit “1” to the end of the
message, followed by 384 — 1 + (—¢ mod 512) zero bits, then append the
128-bit block that is equal to the number ¢ expressed using a binary repre-
sentation in big endian form. Thus at least 512 additional bits are padded
to the message M.

6.2 Parsing the padded message

After a message has been padded, it is parsed into N 512-bit blocks, M @,
M@ .. MW The 512-bit message block is expressed as four 128-bit

words. The first 128 bits of message block i are denoted as M, (i), the next
128 bits are Ml(l), and so on up to M:,Ez).

6.3 Setting the initial hash value H©

The initial hash value H© is set depending on the message digest size. The
first two bytes of H(-1) are set as the message digest size, and the rest bytes
of H=1) are set as 0. Set M(® as 0. Then H©®) = Fy(H(1, M),

11



More specifically, the value of H ||H DLy HH(S_I)’15 is 0z00F0,
020100, 020180, 020200 for JH- 224 JH-256, JH-384 and JH-512, respec-
tively. Let HEDI = 0 for 16 < j < 1023. Set the 512-bit M©) as 0. The
1024-bit initial hash value H© is computed as

HO — Fg(H(_l),M(O)) )

6.4 Computing the final hash value H")

The compression function F is applied to generate H®Y) by compressing
MO M@ MW jteratively. The 1024-bit final hash value HW) is
computed as follows:

fori=1to N,
HG) — 8(H(Z—1) (2))

6.5 Generating the message digest

The message digest is generated by truncating H®).

6.5.1 JH-224

The last 224 bits of HN) are given as the message digest of JH-256:
H(N),SOOHH(N),801H o HH(N),1023 .

6.5.2 JH-256

The last 256 bits of H(N) are given as the message digest of JH-256:
H(N),768HH(N),769H . HH(N),lOQS )

6.5.3 JH-384

The last 384 bits of H) are given as the message digest of JH-384:
H(N),64OHH(N),641H . HH(N),1023 ]

6.5.4 JH-512

The last 512 bits of H) are given as the message digest of JH-512:

H(N),512HH(N),513H o HH(N),1023 _

12



7 Bit-Slice Implementation of JH

The description of JH given in Sect. 4 and Sect. 5 are suitable for efficient
hardware implementation. In this section, we illustrate the bit-slice imple-
mentation of JH. The bit-slice implementation of F,; uses d — 1 different
round function descriptions (the hardware description of F; uses identical
round function description).

7.1 Bit-slice parameters

The following additional parameters are used in the bit-slice implementation
of JH.

C;(d) The round constant words used in the bit-slice implemen-
tation of Ey with 0 < r < 5 x (d —1). Each Cﬁ(d) is a
24_bit constant word.

9., Even bits of C\Y. {9, = DO || D2 oA
cee ] C’T/«(d)’2d_2. Each C;fi),m is a 297 1bit constant word.

o, 0dd bits of Y. D = o@D P o @ |

r,0d;
el C;«(d)’Qd_l. Each C;(i)id is a 277 1-bit constant word.
H](.Z) The j** 128-bit word of the " hash value. H(()Z) is the
left-most 128-bit word of hash value H®.
M ]@ The j*" 128-bit word of the i*" message block. Mél) is

the left-most word of message block M®).

7.2 Bit-slice functions

The following functions are used in the bit-slice implementation of JH.

7.2.1 Sbox

Sbitsli implements both Sy and S; in the bit-slice implementation of JH.
Let each z; (0 < i < 3) denotes a 297 1-bit word. Let ¢ denote a 2971-
bit constant word. let ¢ denote a temporary word. (zg,z1,z2,23) =
Sbitsli(gq. 21, 29,23, ¢) is computed in the following 11 steps:

1. z3=—x3; 2. zo=2x0® (c&(—x2));
3. t=c®(xo&m); 4. zog=120 D (v2& x3);
5. xr3 = 23D ((ﬂﬂh) &xg) 3 6. r1 =x1D (Z‘o &a?g) 3
7. wa=x2® (2o & (—x3)); 8. my=uz0® (z1]|23);

9. 1'3:.733@(1'1&&32); 10. 3 :x1®(t&xo);
11. xo =20 & ¢;

13



7.2.2 Linear Transform

LYl implements the linear transform in the bit-slice implementation of JH.
Let each a; and b; (0 < i < 7) denotes a 2%~ 1-bit word. (bg,b1,---,b7) =

LY (ag, a1,- -, a7) is computed as follows:
by = asDar; bs = a5 @ az;
be = agDazDag; by =arDagp;
bp = ap®bs; b1 = a1 @ be ;
by = as®b; Dby; bs=a3Dby.

7.2.3 Permutation w

Let A = (ag,a1, - ,a2xaxn—1), Where a and n are positive integers. Let
B = (bg, b1, ,baxaxn—1)- Each a; and b; denotes a 4-bit element. The
permutation B = w(A,n) is computed as follows:

fori=0toa—1,
forj=0ton—1,
basixnti = @2xixntntj; D2xixninti = G2xixn+j;

For example, w(A, 1) swaps element ag; and ag;41.

7.2.4 Permutation w

Permutation w(A, n) swaps the bits in a word A. It is computed by treating
each bit in A as an element, then applying the permutation w(A,n).

7.2.5 Permutation o4

Permutation 4 operates on 2¢ elements. Let A = (ag || a1 || -+ || aga_1),
B = (bo || b1 |- || bga_q). Let n = 25 where § is an integer smaller than
d—1. B=054(A,n) permutes the odd elements in A as follows:
(blv b3, b5, -+, b2d—1) = u_j((ala asz, as, -+, a2d—1) 7”) ;
(b07b27b47"'7b2d—2) = (a’07a’27a47"'7a2d—2)'

7.2.6 Permutation oy

Permutation o4(A,n) operates on the bits in a word A. It is computed
by treating each bit in A as an element, then applying the permutation
(fd(A,n).

14



7.2.7 Round constants

Let IP; denote the inverse of F;. Let IP] denote the composition of r
permutation IPy :

IP; = IPjoIPjo---oIP, .

T

Note that IP] has the property that IP] = IP§+a'd.
Let permutation A;(A) operate on the bits in a word A. It is computed
by treating each bit in A as an element, then applying the permutation IP}.
Let 7}, denote a permutation. Let A, B and V; denote 24-bit words.
B = n};(A) is computed as follows:

Vo= 4;
fori=0tor—1, Vi1 =ocg(V;,20medld=1)y,
B =V

The round constant C;n(d) is generated from C,gd) as:

ClD = 0 Xj(CLD).
dc)ld are obtained by extracting

the even and odd bits of C'fn(d), respectively, as defined in Sec. 7.1. C’%g},en

The 29~ 1-bit constant words Cégi),en and C’;(

,0
and C;(Sc)ld are given in Appendix A.2.

7.2.8 An alternative description of round function R,

The description of Ry in Sect. 4.4 is suitable for hardware implementation.
But that description is not suitable for the bit-slice implementation. We give
here an alternative description of R4, and denote the r-th round function

as R:ir' The 2%-bit round constant of the r-th round is denoted as C;(d).
Let V.= v || v1 || -+ || vga_;, where each v; denotes a 4-bit word. The

computation of B = R} (A, C;n(d)) is given as follows:

1.  fori=0to2¢—1,
{
if C,/A(d)’i =0, then v; = Sp(a;);
if C;«(d)’i =1, then v; = S1(a;);
¥
2. B=qy(V, 2rmed(d-1))

Note that RZLT has the following properties:

15



1. The description of RZM is the same as R’ dr+a-(d—1) except for the dif-
ferent round constants.

2. For the same input passing through multiple rounds, at the end of the
a-(d—1)-th round, the output from Rim_( d-1) is identical to the output
from Rd,a-(dfl)'

Six rounds of R} . (0 <r <5) are illustrated in Fig. 9.

7.2.9 Bit-slice implementation of round function Ry

The above description of R}, can be implemented efficiently in a bit-slice
way. The method used is to separate the odd and even elements of A in

él,r‘ Denote the bit-slice implementation as Rgfff“. Let A and B represent
two 29t2_bit words, A = ag H al || a2 H cee H ar, and B = by ” b1 || by || ce || b7,
where each A; and B; represents a 24-1_hit word. Let each v; and u; (0<i<

7) denote a 24=1_bit word. The computation of B = RZ’;?”(A, C;fg?,en, Cl(g()i 2)

7‘?
is given as follows:

L. (v, v2, v4,v6) = SP*l(ag, as, a, ag, Crgez))en) ;

_ bitsli n(d) N .
(U17v37v5>v7) =5 sz(al’a3’a57a7’c7”,odd) )

2. (g, g, g, Ug, UL, U3, Us, wy) = LY (vg, va, v4, v6, V1, V3, Vs, V7) ;
3. bo = up; by = ug; by = ug; bg = ug;

by = w(uh 2rmod(d—1)) :

by = w(u?” 9rmod (d—l)) :

bs —w(U5 2rmod(d 1)) :

by = w(w, 9rmod (d—l)) :

7.2.10 Bit-slice implementation of Ej;

The 29+2-bit input and output are denoted as A and B, respectively. Let
each @, denote a 2972-bit word for 0 < r < 5(d — 1). Let R}%"**!i denote

the round function R*b“f‘*lZ with only the Sbox layer. The computation of
B = E;(A) is given as follows:

1. Q=4
1TSLe d d
2. forr=0to5(d—1)~1, Qu1 =Ry (Qr,Crthen, Clu) ;

*bitsli ’(d) /(d) .
3. Rd 5td 1) (QB d—1)> (dfl),even’CS(dfl),odd) )

The generation of the round constants is given in Sect. 7.2.7.
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a @ a a a, a; a, a, a4 A4, G, 4, G, d a, s
\
C e 10 2 0 2 0 2 10« L 2 JL « J[ £ ] ( Rowdo
)
alr )
C 0 2 10 2 00 2 J0 2 10 2 00 © J[ £ ] ( Rowmdl
$
[ 0 e 0 ¢ 0 ¢ 0 e 0 ¢ 0 ¢ 1 ¢ | > Round 2
————— )
3
C 2 10 2 0 ¢ 10 2 10 2 1 ¢ [ ¢ [ ¢ | [ Rowmds3
)
! MM < 3
| L || L || L || L || L || L Il L || I | > Round 4
J
3
| L || L || L || L || L || L || L || I | > Round 5
Y,

b, b b, by b, by b b, by by by b, b, by b, b

Figure 9: An alternative description of 6 rounds of R4(constant bits not
shown)

7.3 Bit-slice implementation of Fjy
Fy compresses the 512-bit message block M) and 1024-bit H0~Y into the
1024-bit H®. The computation of H®) = Fg(H =Y M®) is given as:

1. A=H"VeM? for0<;j<3;

Aj:Hj(i_l) ford <j <7,
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2. B=Fs(A);

3. HY =5, for 0 < j < 3:

H)=BjoMY,  ford<j<T;

Note that in round function Rgfﬁs”(A, C’fngfz),en, C;«(fc)ld)7 each word is 128-bit
and is thus suitable for SSE2 implementation. For a 128-bit word x, w(z,n)
can be implemented with two AND operations (AND with a constant to
extract the bits to be swapped), two shift operations and one OR operations
(note that the shift operations would be affected by the endianess of the
SSE2 register). In addition, w(z,32) and w(x,64) can be implemented with
one SSE2 shuffle operation. Thus the SSE2 implementation of Fg is very

efficient.

8 Variants of JH

The design of JH hash algorithms implies several variants by varying the
parameter d or by replacing Py with P} in round function Ry.

8.1 Varying the parameter d

The compression function Fj gives several compression functions by varying
the parameter d.

Fs. d = 6. We increase the round number from 25 (= 5(d — 1)) to 30
(= 6(d—1)). With 256-bit block size and 128-bit message block size, this
compression function is extremely hardware efficient. Hash function using
this compression function can achieve 128-bit security level for collision
resistance, preimage resistance and second preimage resistance for 256-bit
message digest size.

F;. d = 7. With 512-bit block size and 256-bit message block size, this
compression is used to generate 256-bit message digest size. The memory
required is half of that of Fg, and it achieves 128-bit security level for
comllision resistance, 256-bit security for preimage resistance.

Fy. d =9. With 2048-bit block size, this compression function is extremely
efficient on the future microprocessors that support shift and binary opera-
tions over 256-bit registers.

8.2 Replacing P; with P

Replacing permutation P; with Pj in round function R4, and change the
round number 5(d — 1) to 5d in E4, we can obtain another family of com-
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pression functions. This family of compression functions are slightly simpler
in hardware, but its bit-slice implementation requires twice amount of shift
operations as required in Fj. A few variants can be obtained by varying the
value of d.

9 Security Analysis of JH

The security of JH hash algorithms are stated below (I denotes the number
of message blocks, the length of a message is less than 212® bits):

collision  second- preimage
preimage
JH-224 2112 2224 2224
JH-256 9128 9256 9256
JH-384 2192 2384 2384
JH-512 2256 2512—10g2i 2512

Note that the second-preimage resistance of JH-512 is affected by herding
attack [10]. The reason is that the collision resistance of JH-512 is 2256
although the size of the hash value H® is 1024 bits. However, the second-
preimage resistance of JH-512 would not be affected by herding attack if
birthday attack is applied to find collisions in herding attack.

9.1 Differential cryptanalysis

Differential cryptanalysis is important in analyzing the security of a hash
function. It has been applied to break MD4, MD5, SHA-O0 and SHA-1
[8, 5, 2, 3, 14, 15, 16, 17].

We study the number of active Sboxes being involved in a differential
characteristic in F;. The symmetry structure of EDP design allows us to
determine the number of active Sboxes easily since many differential paths
(branches) are equivalent. We can replace Py with P} in Eq to get a sim-
pler variant whose security is equivent to that of the original £;. We can
also study the E; with small d to learn when the minimum number of ac-
tive Sboxes would occur. For example, two active Sboxes before the linear
transformation L would result in only one active Sboxes after L.

For d € {2,3,4}, we exhaustively searched for the minimum number of
active Sboxes. The minimum number of active Sboxes for 2d+ 1 Sbox layers
is 10, 20, 38 for d = 2,3,4, respectively. For d > 4, we found that the
minimum number of active Sboxes for 2d + 1 Sbox layers is 64, 112, 176, 296
for d = 5,6,7,8. It shows that the minimum number of active Sboxes does
increase significantly as the value of d increases.

For Eg, we found that the minimum number of active Sboxes for 36
Sbox layers is 624 when there are eight active elements in the input of Eg. If
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we conservatively assume that there are 236 multiple paths for a differential,
there are still around 600 effective active Sboxes. The large number of active
Sboxes shows that JH is strong against the differential cryptanalysis.

9.1.1 Effect of correlated active elements in differential attack

In the differential cryptanalysis of JH, each differential characteristic of an
Sbox has a probability of at most %. Each active Sbox may contribute 272
to the overall differential probability if the active SBoxes are assumed to be
independent. However, when there is correlation between active elements,
the overall differential probability may increase.

For the 8-bit-to-8-bit super Sbox (concept from Rijmen and Daemen)
consisting of two nonlinear layers (4 Sboxes connected by L), a differential
characteristic has a maximum probability of % = 27441 If we consider
that there are 16 combinations of those 4 Sboxes, then the average of those
16 maximum differential probabilities is 12875 = 27456 If only 3 Sboxes

256
are active, then the maximum differential probability is s% = 2-468  For

the 16-bit-to-16-bit super Sbox consisting of three nonliflz;r layers, there
are 4096 combinations of those 12 Sboxes. If there is only one active Sbox
in the first or last Sbox layer, then there are 7 active Sboxes being involved;
the maximum differential probability is 24%46 = 271054 and the average of
those 4096 maximum differential probabilities is 27199, When the minimum
number of active Sboxes occurs, we are mainly dealing the 8-bit-to-8-bit
super Sbox with 3 active Sboxes, and the 16-bit-to-16-bit super Sbox with
7 active Sboxes. In these situations, we see that the effective differential
characteristic of an active Sbox is less than 271 (but larger than 272).

If we consider that each active Sbox contributes 279 to the overall
differential probability, then the probability of a differential involves 600

active Sboxes is about 27999

9.1.2 Effect of message modification in differential attack

To study the collision resistance of JH, we conservatively assume that an
attacker can efficiently eliminate 16 rounds of Eg with message modification,
then there are 20 Sbox layers being left. For 20 Sbox layers of Fg, we
found that a differential characteristic involves at least 336 active Sboxes.
If we assume that there are 220 multiple paths for a differential, then a
differential has probability less than 271-9%336 5 220 — 9=484 \We thus expect
a differential collision attack can not succeed with less than 22°6 operations.

9.1.3 Second-preimage and preimage differential attacks

For the second-preimage resistance of JH, we note that a differential pass-
ing through at least two compression functions should be considered. The
reason is that the 512-bit message block size is only half that of the 1024-bit
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hash value H® and each compression function involves sufficient diffusion
and confusion. Since message modification in second-preimage attack is not
as efficient as that in collision attack, and at least two message blocks are
involved in a differential second-preimage attack, we expect that a differen-
tial exists with probability much less than 27°'2, and JH is secure against
the differential second-preimage attack.

For the preimage resistance of JH, we note that a differential passing
through at least two compression functions Fg should be considered. The
reason is that one more block is padded to the message before generating the
message digest. We expect that the complexity of the differential preimage
attack is more than the square of that of the collision attack. We thus expect
that JH is secure against the differential preimage attack.

9.2 Truncated differential cryptanalysis

For collision search, truncated differential cryptanalysis [11] may be viewed
as the bridge linking differential cryptanalysis and birthday attack. Dif-
ferential cryptanalysis can be viewed as truncated differential cryptanalysis
with input space 2, while birthday cryptanalysis can be viewed as truncated
differential cryptanalysis with input space 2 where n indicates the block
size of the compression function. Because of the nature of EDP design, it
is necessary to evaluate the security of JH against the truncated differential
cryptanalysis.

In the truncated differential cryptanalysis of JH, we focus on whether
an element is active or not instead of the value of the difference. Let us
consider those four Sboxes connected by a linear transformation L. If only
one of the two Sboxes before L is active, then both Sboxes after L are active
with probability 1. We call this event as active element expansion. If both
two Sboxes before L are active and independent, then the probability that
only one Sbox after L is active is 274. We call this event as active element
shrinking. If there are independent active Sboxes in the last Sbox layer,
then the probability that the difference of the output from an active Sbox
is cancelled by the message difference (if there is message difference at that
location) is 27%. For a truncated differential characteristic, we count the
number of active element shrinking events and the number of active Sboxes
in the last Sbox layer of Fg, and denote the sum of these two numbers as
TDs.

Exploiting the symmetry property of Fg, we found in our analysis that
the smallest value of TDg is 200 when there are eight active elements in the
input of Eg. If we assume that the message modification can effectively re-
move 8 rounds in the truncated differential attack (the message modification
in truncated differential attack is a bit difficult), then the smallest value of
TDsg is 144 when there are eight active elements in the input of Fg. Assume
that there are 226 multiple paths, it requires around 2144*4=26 = 2550 {iffer-
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ence pairs to generate a collision. Note that 232 messages with eight active
elements can generate only 293 difference pairs, the attack would require
much more than 22°6 messages.

Truncated differential cryptanalysis is not that efficient for preimage
and second-preimage attack. We thus do not apply truncated differential
cryptanalysis to find the preimage and second-preimage of JH.

9.3 Algebraic attacks

Algebraic attacks solve the nonlinear equations in order to recover the key or
message. For hash function cryptanalysis, algebraic attacks can be applied
to find collision, second preimage and preimage if the algebraic equations of
the compression function are very weak.

In the past several years, algebraic attacks have been proposed against
block ciphers, but so far there is no evidence that algebraic attacks can break
a practical block cipher faster than statistical cryptanalysis techniques, and
there is no evidence that the complexity of algebraic attacks against block
ciphers would be linear to the round number. The recent cube attacks, devel-
oped by Dinur and Shamir [7], can solve nonlinear equations with low degree
when a number of equations (involve the same secret key) are available.

To find a collision of JH hash algorithms with algebraic attack, the meet-
in-the-middle approach can result in algebraic equations of 18 Sbox layers.
To find a second-preimage with algebraic attack, two blocks of message must
be considered, and thus an algebraic attack needs to deal with algebraic
equations of 36 Sbox layers. Recovering a message from the message digest
would involve at least 36 Sbox layers since one more block is padded to the
message. Because of the algebraic degree of the Sbox is 3 and the number
of rounds being involved is large, we consider that JH is secure against
algebraic attacks.

To be conservative, we use constant bits to select Sboxes to further
strengthen JH against algebraic attacks.

10 Performance of JH

JH can be implemented efficiently on a wide range of platforms ranging from
one-bit processor (hardware) to 128-bit processor (SIMD/SSE2). The rea-
son is that EDP design allows JH being constructed from extremely simple
elements. The 5-bit-to-4-bit (including the constant bit) Sbox can be im-
plemented with 20 binary operations (including ANDNOT operation), and
the linear transformation L can be implemented with 10 binary operations.
The simple Sboxes and linear transformation ensures that JH is extremely
hardware and software efficient.
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10.1 Hardware

The hardware implementation of JH is extremely simple and efficient due
to the simple Sboxes and linear transformation. JH uses 1024-bit memory
for storing the state of Fg, 512-bit memory for storing the message block,
and 256-bit memory to store a round constant (if the round constants are
generated on-the-fly).

Let us compare JH with the ultra-lightweight block cipher PRESENT
[4]. The hardware complexity of JH is comparable to that of PRESENT,
except for the difference in block sizes. JH uses slightly more complicated
Sboxes and linear transformation than PRESENT. The block size of Fg is
about 16 times that of PRESENT, while the size of a round constant in Fg
is only 4 times that of key size of PRESENT. A rough estimation is that Fg
requires 16 times more gates than PRESENT. PRESENT uses about 1570
GE (gate equivalents), so JH may require 1570 x 16 ~ 25K GE (estimated).

10.2 8-bit processor

JH can be implemented on 8-bit processor in two approaches. One approach
is to implement the hardware description of JH with table lookup for Sboxes.
The advantage of this approach is that the constant bits can be generated on-
the-fly efficiently. Another approach is to implement the bit-slice description
of JH. With 1152-byte precomputed round constants being stored in ROM,
this implementation is expected to be quite fast. Given that the SSE2 bit-
slice implementation of JH runs at 16.8 cycles/byte on CORE 2 processor, we
can roughly estimate the speed of JH on 8-bit processor. The register size of
8-bit processor is 16 times smaller than that of SSE2 register. If we estimate
that the number of instructions being processed per clock cycle on 8-bit
processor is 5 times less than that on CORE 2 processor, the speed of the
bit-slice implementation of JH on 8-bit processor is about 16 x5x16.8 = 1344
cycles/byte (estimated).

10.3 Core 2 processor

The bit-slice implementation of JH is tested on the popular Core 2 processor.
The processor being used in the test is Core 2 Duo Mobile Processor P9400
2.53GHz. The Operating systems are 32-bit and 64-bit Windows Vista
Business. The compiler being used is the Intel C compiler 10.1.025 (IA-
32 version of the compiler is used with the 32-bit Vista, and Intel-64 version
of the compiler is used with the 64-bit Vista). The hash speed (for long
message) is 16.8 clock cycles/byte with the 64-bit Vista (with optimization
option -QxT -O2 of the Intel-64 Intel C compiler); and it is 21.3 clock
cycles/byte on the 32-bit Vista (with optimization option -QxT of the TA-
32 Intel C compiler).
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JH on 64-bit platform is faster than that on 32-bit platform. The reason
is that there are sixteen 128-bit registers on the 64-bit platform of Core 2
processor; while there are only eight 128-bit registers on the 32-bit platform
of Core 2 processor.

Microsoft Visual C++ 2005 and 2008 are not recommended for compiling
the SSE2 codes. It seems that the optimization of SSE2 instructions is not
implemented (or very poor) in Microsoft Visual C++ 2005 and 2008. The
speed of JH is about 40+ clock cycles/byte with the Microsoft compilers
with 64-bit operating system (with optimization option /O2).

11 Design Rationale

We give below the rationale of designing the components of JH.

11.1 Compression function [y

The construction of compression function Fy; from bijective function Ey is
new. It gives an extremely simple and efficient approach to construct a
compression function from a bijective function.

In Fy, the message block size is half of the block size of E4. The message
is XORed with the first half of the input to E,, then it is XORed with the
second half of the output from Ej; to achieve one-wayness. Besides the one-
wayness, this construction is very efficient — every bit in the output from
E; is not truncated; and the difference cancellation involving the message is
minimized. The message block size is only half of the block size of Eg, it is
to prevent copying a collision block to other locations, and it is also helpful
to resist attacks launched from the middle of Ej.

In the hash function, at least one more block is appended to the message.
The reason is that if the difference of two last message blocks eliminates the
difference of the inputs to Ej, then the outputs from Fj are not random.
Thus one more Fj; operation is needed to randomize the hash value.

11.2 EDP design

EDP design (Sec. 2) being used to construct the bijective function Ey is
very simple and efficient. The input to Ey is grouped into a d-dimensional
array. The nonlinear layer consists of Sboxes. In the linear layer of the r-th
round, MDS code is applied along the (r mod d)-th dimension of the array.
EDP design is the generalization of the AES design [6].

EDP design is easy to analyze due to its symmetrical construction.
Round constants are applied to prevent the symmetry property being ex-
ploited in attacks.
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EDP design is efficient in hardware since E; can be build upon small
components. EDP design is also efficient in software since it can be imple-
mented in a bit-slice approach.

11.3 Round number

The round number of Eg is 5(8 — 1) = 35. The round number is chosen
to satisfy two requirements. One requirement is that the round number
is the multiple of d — 1 so that the hardware description is simple since
at the end of the multiple of d — 1 rounds, the output from the hardware
description is identical to that from the bit-slice implementation. Another
requirement is that the round number should be larger than 4d in order to
build a conservative design. We thus set the round number of Eg as 35.

The round number 35 is used for all the JH algorithms for two reasons
— one reason is to achieve the simplicity of description and implementation;
another reason is to achieve extremely high security for JH-256 (JH-224)
so that it achieves 256-bit (224-bit) security level for preimage and second
preimage resistance, and it also eliminates the threat of multicollision attack
against JH-224 and JH-256.

11.4 Selecting SBoxes

Two Sboxes are used in JH. Each round constant bit selects which Sboxes
are used. Similar design has been used in Feistel’s block cipher Lucifer [9]
in which a key bit selects which Sboxes are used. The main reason that we
use two different Sboxes selected by round constant bits is to increase the
complexity of the system algebraic equations so that JH can have better
resistance against the future algebraic attack.

11.5 Designing SBoxes

The 4-bit-to-4-bit Sboxes in JH are designed to meet the following require-
ments:

1. There is no fixed point for each Sbox, i.e., the input is always different
from the output. For the same input, the outputs from two different
Sboxes are different.

2. Each differential characteristic has a probability of at most %.
3. Each linear characteristic [12] has a probability in the range % + i.

4. The nonlinear order of each output bit as a function of the input bits
is 3.

5. The algebraic normal forms of the two Sboxes are different.
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6. The resulting super Sboxes (formed with more than than one Sbox
layer, introduced by Rijmen and Daemen, mainly to address the effect
of correlated active elements) are strong against differential cryptanal-
ysis.

Putting two Sboxes together, we have a 5-bit-to-4-bit Sbox with one
input bit being the round constant bit that selects which Sboxes are used.
This Sbox satisfies the following requirements:

1. Each differential characteristic has a probability of at most %.
2. Each linear characteristic has a probability in the range % + %.

We searched for the 5-bit-to-4-bit Sbox that can be implemented with
small number of operations. The 5-bit-to-4-bit Sbox being used in JH can
be implemented with 20 binary operations (AND, ANDNOT, XOR, NOT,
OR).

11.6 Linear transform

The linear transform L is probably the simplest (4,2,3) MDS code over
GF(2%). Tt requires only ten XOR operations.

12 Advantages and Limitations
JH hash algorithms have the following advantages:

1. Simple design. Both the hardware and software (bit-slice) descriptions
of Fy3 are very simple, easy to implement (however, although both the
hardware and software descriptions of JH are simple, it requires some
efforts to work out the relations between them).

2. The design of the compression Fy gives a simple and efficient way to
construct a compression function from a bijective function.

3. EDP design gives a generalized design method of AES.

4. Security analysis can be performed relatively easily. Three approaches
are used to achieve this goal. The first approach is to avoid introduc-
ing variables into the middle of the compression function so that the
differential propagation can be analyzed relatively easily. The second
approach is to use the simple EDP design that can greatly simplify
the differential cryptanalysis. The third approach is that the EDP
involves multidimensional array. The array with low dimension can be
easily studied to estimate the strength of the high dimensional array.
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10.

13

High efficiency for collision resistance. Three approaches are used. The
first approach is to use the EDP design that would likely maximize the
difference propagation. The second approach is to minimize the differ-
ence cancellation within a compression function. The third approach
is to ensure that every operation in a compression function is involved
in at least one differential path if there is difference propagation within
that compression function.

JH can be implemented efficiently over one-bit processor (hardware)
to 128-bit processor (SIMD/SSE2). The reason is that EDP design
allows JH being built from extremely simple components.

Hardware efficient. The hardware description of JH is simple. The
internal state size of Eg is only 1024 bits and the message block size is
512 bits. The round constants can be generated on the fly with 256-bit
additional memory. Both the Sboxes and linear transformation in JH
are extremely simple.

Software efficient. JH is designed to exploit the computational power
of modern and widely used microprocessors. The bit-slice description
of Eg can be efficiently implemented with the SIMD/SSE2 instruc-
tions.

Several variants are available by varying the parameter d. The ex-
tremely hardware-efficient Fg (with 30 rounds) is suitable for achiev-
ing 128-bit security for collision resistance, preimage resistance and
second-preimage resistance.

It is convenient to use JH to substitute SHA2 [13] in almost all the
SHAZ2 applications.

Conclusion

In this document, we proposed JH hash algorithms which are both hardware
and software efficient. Our analysis shows that JH is very secure. However,
the extensive security analysis of any new design requires a lot of efforts
from many researchers. We thus invite and encourage researchers to analyze
the security of JH. JH is not covered by any patent and JH is freely-available.
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Round constants of Ejy

This section gives the round constants in EFg. FEg has 36 256-bit round
constants.

A.1 Round constants in the hardware implementation of Fjy

The round constants are generated from the first round constant using round
function Rg (with the round constants of Rg being set to 0).

Co0

co1

Cco2

Co3

Cco4

C05

Ccoé

cor

co8

Cco9

= 6a09e667f£3bcc908b2fb1366ea957d3e
3adec17512775099da2f590b0667322a
= bb896b£05955abcd5281828d66e7d99%a
c4203494£89bf12817deb43288712231
= 1836e76b12d79c55118a1139d2417d£f5
2a2021225f£6350063d88e5f1£f91631c
= 263085a7000fa9c3317c6ca8abb65f7a7
713c£4201060ce886af855a90d6adeed
= lcebafdblalbbaeb62al1fb3be2e14£f6
Ob7e48de85814270£d62e97614d7b441
= ebb64cbb574f7e09c75e2e244929e9549
279ab224a28e445d57185e7d7a09fdcl
= 5820f0£0d764cff3abb52abe41a82b9%e
ff6ee0aa615773bb07e8603424c3cf8a
= b126fb741733cbbfcef6f43a62e8e570
6a26656028aa897eclead616ce8£d510
= dbf0de32bca77254bb4£562581a3bc99
1c£94£225652c27f14eae958ae6aab616
= e6113be617f45£3deb3cff03919a94c3
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C10

C11

C12

C13

Ci14

C15

Ccié

C17

Cc18

C19

C20

c21

C22

Cc23

C24

C25

C26

ca7

Cc28

C29

C30

Cc31

2c927b093ac8f23b47£7189aadb9bc67
80d0d26052ca45d593ab5£fb310250639
0083afbbffel07dacfcba7dbe601al2b
43af1c76126714dfa950c368787c81lae
3beecf956c85c962086ae16e40ebb0bd
9aee8994d2d74abcdb7blef294eed5cl
520724dd8ed58c92d3f0e174b0c32045
Ob2aab8ceb3bdb9eleef66b376e0c565
d5d8fe7bacb8da866£859ac521£3d571
7a1523e£3d970a3a9b0b4d610e02749d
37b8d57c1885fe4206a7£338e8356866
2c2db8£7876685f2cd9a2e0ddb64c9d5
b£13905371£c39e0fa86e1477234a297
9df085eb2544ebf62b50686a71e6e828
dfed9dbeOb106c9452ceddf£3d138990
e6ebc42cb2d460c9d6e4791a1681bb2e
222e54558eb78d5244e217d1bfcf5058
8f1£57e44e126210£00763££f57da208a
5093b8f£7947534a4c260a17642£72b2
aedefd792ea148608cf116cb2bff66e8
£c74811266cd641112cd17801ed38b59
91a744efbf68b192d0549b608bdb3191
fc12a0e83543cecb5£882250b244£78e4
4b5d27d3368f9c17d4b2a2b216c7e74e
7714d2cc03e1e44588cd9936de74357¢
Oeal7cafb8286131bda9e3757b3610aa
3f77a6d0575053fc926eea7e237d£289
848af9f57eblab616e2c342c8ceab28b8
a95a5d16d9d87be9bb3784d0c351c32b
c0435¢cc3654fb85dd9335ba91ac3dbde
1£85d567d7ad16£9de6e009bca3£f95b5
927547febebedbe2fe99f1651ealchbfO
97dc3a3d40ddd21cee260543c288ec6b
c117a3770d3a34469d50dfa7db020300
d306a365374£a828c8b780eelb9d7a34
8f£2178ae2dbebe872fac789a34bc228
debf54a882743caad14£3a550fdbe68f
abd06c52ed58££091205d0£627574c8c
bclfe7cf79210£5a2286f6e23a27efal
631f4acb8d3ca4253e301849f157571d
3211b6c1045347befb7c77df3c6ca7bd
ae88f2342c23344590be2014fab4£179
£d4bf7c90db14£a4018£fcce689d2127b
93b89385546d71379fe41c39bc602e8b
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7c8b2f78ee914d1£0af0d437a189a8a4

C32 = 1d1e036abeef3f44848cd76ef6baa889
fcecb6cd7967eb909a464bfc23c72435

C33 = aBedededchbfebe88d4fb192e0a0821e9
35ba145bbfc59c2508282755a5df53a5

C34 = 8e4e37a3b970f0792e9d22a499a714c8
75760273£74a9398995d32c05027d810

C35 = 61cfad42792f93b9fde36eb163e978709
fafa7616ec3c7dad0135806c3d91a21b

A.2 Round constants in the bit-slice implementation of Fj

Each round constant used in the bit-slice implementation of Ejg is linked to
the corresponding round constant in the hardware implementation through

a permutation.

C’00_even
C’00_odd

C’01_even =

72d5dea2df15£f8677b84150ab7231557
81abd6904d5a87f64e9f4fc5c3d12b40
€a983ae05¢c45fa9¢c03c5d29966b2999%a

C’01_odd = 660296b4f2bb538ab556141a88dba231
C’02_even = 03a35a5c9a190edb403fb20a87c14410
C’02_odd = 1c051980849e951d6f33ebadbee7cddc
C’03_even = 10bal139202bf6b41dc786515f7bb27d0
C’03_odd = 0a2c8139372a78503f1abfd2410091d3
C’04_even = 422d5a0df6cc7e90dd629£9c92c097ce
C’04_odd = 185ca70bc72b44acd1df65d663c6fc23
C’05_even = 976e6c039ee0b81a2105457e446ceca8
C’05_odd = eef103bb5d8e61fafd9697b294838197
C’06_even = 4a8e8537db03302f2a678d2dfb9f6a95
C’06_odd = 8afe7381f8b8696c8ac77246c07f4214
C’07_even = cbf4158fbdc75ec475446fa78f11bb30
C’07_odd = 52de75b7aee488bc82b8001e98a6a3f4
C’08_even = 8ef48f33a9a36315aa5£5624d5b7£989
C’08_odd = b6f1ed207cbae0fd36cae95a06422c36
C’09_even = ce2935434efe983d533af974739%a4ba’
C’09_odd = d0f51f596f4e81860e9dad81afd85a9f
C’10_even = a7050667ee34626a8b0b28bebeb91727
C’10_odd = 47740726c680103fe0a07e6fc67e487b
C’11_even = 0d550aab4af8a4c091e3e79f978ef19e
C’11_odd = 8676728150608dd47e9e5a41f3e5b062

C’12_even =

fc9f1fec4054207ae3e41a00cef4c984

C’12_odd = 4£d794£59dfa95d8552e7e1124c354a5
C’13_even = 5bdf7228bdfe6e2878f57fe20fabc4b2
C’13_odd = 05897cefeed49d32e447e9385eb28597f
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C’14_even
C’14_odd
C’15_even
C’15_odd

705£6937b324314a5e8628f11dd6e465
c71b770451b920e774fe43e823d4878a
7d29e8a3927694£2ddcb7a099b30d9c1

= 1d1b30fbb5bdc1be0da24494f£29c82bf

C’16_even =

C’16_odd
C’17_even
C’17_odd

C’18_even =
= Tebbdaf1e20ac6304670b6cbccbe8ceb

C’18_odd
C’19_even
C’19_odd
C’20_even
C’20_odd

C’21_even =
= 9f3d6367e4046bbaf6cal%9abObb6eeTe

C’21_odd
C’22_even
C’22_odd
C’23_even
C’23_odd

a4e7ba31b470bf££0d324405def8bc48
3baefc3253bbd339459fc3c1e0298bal
e5c905£df7ae090£947034124290£134
a271b701e344ed95e93b8e364£2f984a
88401d63a06c£61547c1444b8752afff

a4db5a456bd4fca00da9d844bc83e18ae
7357ce453064d1ade8abce68145c2567
a3da8cf2cb0eel11633e906589a94999a
1£60b220c26£847bd1ceac7fa0d18518
32595ba18ddd19d3509alccOaaabb446

1fb179€229282174e9bdf7353b3651ee
1d57ac5a7550d3763a46c2fea37d7001
£735c1af98a4d84278edec209e6b6779

= 41836315ea3adba8fac33b4d32832c83

C’24_even =

C’24_odd
C’25_even
C’25_odd
C’26_even
C’26_odd

C’27_odd
C’28_even
C’28_odd

a7403b1£1c2747£35940£034b72d769a
e73e4e6cd2214f£db8£d8d39dc5759%¢ef
8d9b0c492b49ebdabba2d74968£3700d
7d3baed07a8d5584f5a5e9f0e4£88e65
a0b8a2f436103b530ca8079e753eecha

= 9168949256e8884f5bb05c55f8babc4c
C’27_even =

C’29_even =
= 923b94c30e794d1e797475d7b6eeaf3f

C’29_odd
C’30_even
C’30_odd
C’31_even
C’31_odd

C’32_even =
= 06f4b6e8bec1d43674ee8215bcef2163

C’32_odd
C’33_even
C’33_odd
C’34_even
C’34_odd

e3bb3b99£387947b75daf4d6726blchd
64aeac28dc34b36d6c34a5500828db71
£861e2f2108d512ae3db643359dd75fc
lcacbcf143ce3fa267bbd13c02e843b0
330a5bca8829a1757£34194db416535c¢

eaa8d4f7bel1a39215cf47e094c232751
26a32453ba323cd244a3174a6da6db5ad
b51d3ea6aff2c90883593d98916b3c5H6
4cf87cal7286604d46e23ecc086ec7f6
2f9833b3b1bc765e2bd666ab5efcdeb62a

fdc14e0df453c969a77dbac406585826
7ec1141606e0£al167e90a£3d28639d3f
d2c9£2e3009bd20c5faace30b7d40c30

= 742a5116£2e032980deb30d8e3cef89a

C’35_even =

C’35_odd

4bcb59e7bb5f£17992f£51e66e048668d3
9b234d57e6966731cce6a6£3170a7505
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