Preimage attack on Boole-n

Ivica Nikolié

University of Luxembourg

Abstract. Boole is a family of hash functions proposed for SHA-3. In
this paper we present a preimage attack on Boole-n that requires 276
computations and negligible memory.

1 Description of Boole

Boole family of hash functions [2] is based on a stream design. Internally,
Boole has a large state of 16 wordﬂ ot = (Re]0], Re[1], . .., Re[15]) and
3 additional word accumulators denoted by l¢,z¢, and 74(t is the time).
Hashing a message in Boole is done in three phases: 1)Input phase, where
the state and the accumulators are updated for each input word, 2)mixing
phase, where only the state is updated depending on the accumulators,
3)output phase, where the output is produced. In this phase, the accu-
mulators are not used.

The update of the state, referred as a cycle, is defined as :

Risili] — Rili+ 1] fori=1...14
Ri41[15] «— f1(Re[12] ® R:[13]) ® (R:[0] << 1)
Ri1[0] — Re[0] & f2(Re[2] & Re[15])

Note that this is an invertible function, i.e. if the new state o:41 is given,
it is easy to find the previous state oy.

Let w: be a message word. Then, the update of the accumulators is
defined as:

temp — fi1(lt) ® we
lt+1 «— temp <« 1
Ti41 < Ty D wy

rip1 — (re @ temp) > 1

The update of the accumulators is also an invertible function, i.e. if we
fix new accumulators l;11, X141, 7t+1 and the input message word w; we
can find the previous accumulators l;, x;, 7. Moreover, if we fix l;, l141
(r¢, 74+1) we can easily find the message word w;. This property is often
used in our preimage attack.
The message is absorbed in the input phase. Sequentially, for each mes-
sage word the following is done:

1. update the accumulators

! Boole-224 and Boole-256 use 32-bit words. Boole-385 and Boole-512 use 64-bit words.

2. R3] — R3] &1

3. R[13] — R[13] & r

4. update the state (cycle)
The description of the mixing phase, as well as the description of f1, fa,
has no importance in our attack. It is only relevant that this phase (func-
tions) is invertible.
Each iteration of the output phase produces one output word. One iter-
ation is defined as:

1. cycle

2. Output the word v = R[0] ® R[8] ® R[12]
For example, the output for Boole-256 is produced in 8 iterations.

2 Preimage attack on Boole

For finding preimage of a target hash value H* in Boole we will use the
meet-in-the-middle (MITM) attack. We will start from the initial state
and by changing the input words produce a set S; of intermediate state
values. Similarly, starting from the target hash value and going through
the output and mixing phase we will produce one state. Then from this
state, by taking different input words and still going backwards, we will
produce a set Sz of intermediate state values. If these two sets have at
least one common element then we will have a preimage for H™.

Note that the intermediate state in case of Boole has 16 state words and
3 accumulators, hence 19 words in total. If we apply straightforward the
MITM technique to Boole-n (with words of § bits), we will end up with

an attack that requires 2% *% — omn computations, an effort higher
than the simple brute force. Hence we have to reduce the size of the
intermediate space for the MITM technique. This is done by fixing the
state words R[3], R[4],..., R[12] to zerﬂ Then the elements of the sets
Sy and Sy will differ only in R[0], R[1], R[2], R[13], R[14] R[15} l z,r (9
words in total) and the MITM attack will require 25*% = 27 com-
putations. Further we will show how to fix the words R[3],..., R[12] in
forward and backward directions. We will fix the words for ¢ = 10.

2.1 Fixing R[3], R[4],..., R[12] forwards

From the description of the accumulator update function we can see
that it is easy to find a message input word w such that the value of the
r—accumulator after the update will be any prefixed.
From the description of the input phase is follows that Rio[3] = Ro[4] =
. = R1[12] = Ro[13] @ r1. Hence, we can control the value of Ri0[3] by
defining the value of r;1. Similarly, for R10[4] we get that Rio[4] = Ro[5] =
. = R2[12] = R1[13]®r2. Again, we can control this value with r2. The
same reasoning can be applied for fixing the values of Ri9[5], ..., Ri0[12].
Note that we can not control the values of more than these 10 words
because when we fix the value of r; with the input word w;, it means
that we have fixed the value of I; also. But when the value of I; is added
to R[3] (which is fixed to zero) it will produce a new value not necessary
equal to zero.

2 Actually, any values can be taken.

0 1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15

| | |
| [o |
| | |
O T I) e . 1]
D [| [[[||
I [| [[[[|
] I O I 1]
T)) O O 1]
[l —
(] [[—
][] — -

I00ONERRERN

T10

] -
o (][[—
| (][l —
I3 I) O N [1111
|| J(I [
1| [—— — —
(5| — — — —
[[
|| [
| |

EREREEROON

l20

Figure 1: Meet-in-the-middle attack on Boole.

2.2 Fixing R[3], R[4],..., R[12] backwards

Before explaining how to fix these values when going backwards, let us
first deal with reversing the final output phase.

In each cycle of this phase one output word is produced. Hence, the
digest is produced in 8 cycleﬂ The output word v; is defined as v; =
R:[0] ® R:[8] @ R¢[12]. Let H* = (ho, ..., hr) is the target hash value. We
have to construct a state o = (R¢[0], ..., R¢[15]) such that ho = v, h1 =
Vi1, -« -y b7 = vepr. We put any values in R¢[0], R¢[9], R¢[10], ..., R¢[15].

3 For Boole-224 and Boole-384, the output is produced in 7 and 6 cycles, respectively.

Then, we find R:[8] from the equation R;[8] = R:[0] & R:[12] @ ho. Ob-
viously we get that v¢ = ho. After the cycle update we find the value of
Ry[1] from the equation R:[1] = R41[0] = Re+1[8] D Re+1[12] @ h1. The
values for R¢[2],..., R¢[7] can be found similarly. This way we have de-
fined the rest of the word in the state o:. Therefore, we have inverted the
output phase for a state that produces the required target hash value.
Let us fix the accumulators to any values. Then, inverting the mixing
phase is trivial because the length of the preimage is ﬁxecﬂ and the ac-
cumulators are fixed.

After we have obtained one valid state o1 that produces the target,
from this state, still by going backward, we can start building the dif-
ferent intermediate states for the meet-in-the-middle attack. We will
fix the values of Rio[3], Rio[4], ..., R10[12] to zero by controlling the
values of the [—accumulators. A similar technique as in forward direc-
tion is used. From the definition of the updating function we get that

Rlo[lﬂ = Ru[ll] = ... = R18[4] = ng (&) 120. Therefore if we take
loo = Rig we will get Ri0[12]. Similarly, for Rio[11] we have Rio[11] =
Ru[lo} =...= R17[4] = ng[?)} @ lig. Agaim we take l1g = R18[3] and

obtain R1o[11] = 0. The same method can be used to fix the variables
R10[10],. .., R10[3].

2.3 Meet-in-the-middle

We have obtained two sets S; and S> of intermediate state values with
fixed to zero registers R[3],..., R[12]. Hence the attack space for MITM
attack is only 9 words (each word is n/8 bits). Therefore, if both S; and
S2 have at least 276 different elements, then with high probability these
sets have one common element and therefore a preimage for the target
hash value can be found.

2.4 Complexity and memory requirements

If in our attack we use the classical MITM approach than we will need
2% computations and memory. Yet, it is possible to launch this attack
with negligible memory. This is done by using the memoryless MITM
attack described in [I]. We will try to describe in short how this attack
works. The memoryless version, similarly like the memoryless version
of the collision search attack [3], uses the cycle finding algorithm. Recall
that this algorithm deals only with one function. In the MITM attack we
have two functions: 1) f(z) - forwards from the initial value, and 2)g(z)
- backwards from the target hash value. Hence, in order to launch the
memoryless birthday attack, a switching function h(z) is introduced. It
is defined as:

h(z) = {f (a) i er(z) =0
g(x)7 if CT(x) =1

4 For Boole-224 and Boole-256 it is 512 bits (16 rounds: 8 in forward direction and 8
in backward). For Boole-384 and Boole-512 it is 1024 bits.

where cr(z) is some random function that outputs 0 and 1 with probabil-
ity 1/2. Then, by straightforward application of the memoryless collision
search algorithm, we can easily find a collision among the sets S1 and
S2 and therefore a preimage for the hash value. Now, let us specify the
functions f(z) and g(z) for our case. Let z in f(z) (forward direction) be
the first 9 input words. Hence, f(z) means we simply start from different
initial value. Then, we use the technique described to fix R[3],..., R[12]
in the following 10 iterations. Similarly, let = in g(x) (backward direction)
be the last 9 input words. So, when we go backwards, after the output
and mixing phases, we go additional 9 iterations and we assume that the
input words are words from z. Then, after we have obtained some state,
we use our technique to fix R[3],..., R[12] in backward direction. Note
that this way, our preimage has length of 9 4+ 9 + 10 + 10 = 38 words.
The attack requires only 278 computations and negligible memory.

References

1. H. Morita, K. Ohta, S. Miyaguchi: A switching closure test to analyze
cryptosystems Advances in Cryptology CRYPTO 1991, LNCS 576,
Springer-Verlag, 1992, p. 183-193.

2. G. G. Rose:Design and Primitive Specification for Boole. http://
seer-grog.net/BoolePaper.pdf

3. J.-J. Quisquater and J.-P. Delescaille:How easy is collision search.
New results and applications to DES. Advances in Cryptology -
CRYPTO 1989, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990,
pp. 408413.

http://seer-grog.net/BoolePaper.pdf
http://seer-grog.net/BoolePaper.pdf

	Preimage attack on Boole-n
	Ivica Nikolic
	Description of Boole
	Preimage attack on Boole
	Fixing R[3], R[4],…,R[12] forwards
	Fixing R[3], R[4],…,R[12] backwards
	Meet-in-the-middle
	Complexity and memory requirements

