
Free-start attacks on NaSHA

Ivica Nikolić and Dmitry Khovratovich

University of Luxembourg

Abstract. We present a free-start collision and a free-start preimage
attack on NaSHA. The attacks exploit the fact that when the state, ob-
tained after the linear transformation, is only partially fixed then the
quasigroup operations are fully determined. The free-start collision at-
tack requires 232 computations for all digests. The free-start preimage
attack requires around 2n/2 for NaSHA-n1. The attacks show a weakness
in the compression function of NaSHA, yet they do not contradict the
NIST security requirements.

1 Description of NaSHA

The hash family NaSHA[1] is based on the Merkle-Damgard construc-
tion with a double pipe chaining value. The compression function f of
NaSHA takes two inputs: the message and the previous chaining value.
The internal state is a quadruple pipe state. This state can be represented
as 16 64-bit words for NaSHA-256, and 32 words for NaSHA-512. The
compression function f(M, H) can be represented as f(M, H) =MT
(LinTr(t(M, H))), where LinTr is a linear transformation, and MT
=RA ◦A is an unbalanced Feistel network. The exact definition of the
underlying transformations can be found in [1].

2 Free-start collisions

We will present a free-start collision attack on NaSHA with differences
in the message input and the chaining value.
First, we will explain how to launch a truncated differential attack only
onMT part (the differential is presented in Fig. 1). Then, we will extend
this attack for the whole compression function.
Let us denote L̃ = (L1, L1, . . . , L2q) the internal state of NaSHA after
the linear transformation LinTr. Let two states L̃1, L̃2 differ only in the
first two words L1, L2, such that L1

1+L1
2 = L2

1+L2
2 = C (L1

i = L2
i , i > 2).

Then, for both of the states the quasigroup transformations A and RA
are identically determined. Their leaders are also equal.
Now, let us take a look at the Feistel network used in NaSHA. In A , first
is updated L1. Let K1 = F (l1, L1) be the updated value of this word.
Since there is a difference (between L̃1 and L̃2) in L1 it follows that
K1

1 and K2
1 also differ. Next is updated L2. Let K2 = F (K1, L2). We

1 Truncated digests require the same effort as the non-truncated.



. . .

f

0 0 0

. . .0 0 0

f

. . .0 0 00

f

. . .0 0 00

. . .

. . .0 0 00

f

. . .0 0 00

. . .0 0 00

. . .0 0 00

f

g

. . .0 0 00

g

. . .0 0 00

. . .

. . .0 0 00

g

. . .0 0 00

g

. . .0 0 00

0

0

∆1

∆3

∆2

∆2

∆3

∆3

∆3

∆3

∆3

∆3

∆3

∆3

∆4

2

Figure 1: Truncated differential for the MT transformation used in the free-start
collision attack.

require zero difference in K2, i.e. F (K1
1 , L1

2) = F (K2
1 , L2

2). Note that this
is possible because there is a difference in both of the input arguments.
The condition can be rewritten as:

F (F (l1, L
1
1), C − L1

1) = F (F (l1, L
2
1), C − L2

1)

This means that we need a collision for the function F (F (l1, X), C −
X). By the birthday paradox, this collision can be produced with 232

computations. After we have obtained a zero difference in K2, then all of
the following updates in A produce also zero difference since the input
words and the quasigroup operations are equal. Now, let us take a look



at RA . Similarly, all the updates produce zero difference. Only the last
update, produces some difference in the first word. But this word is not
taken in the output chaining value. Therefore, the presented differential,
produces collisions for the MT part.
Now, let us try to extend the attack for the whole compression function.
Let L̃1, L̃2 be two states that produce collision for MT . Then, since
the linear transformation is easily invertible, for each of the state it is
possible to find the starting initial state value (chaining value and the
message input). Hence, we can obtained a free-start collision for the
whole compression function. The attack complexity is 232.
Note that if, when inverting these two states, we have obtained initial
states with differences only in the message words, this would mean a
real collision for the compression function. Yet, for the linear transfor-
mation, specified in NaSHA, this type of scenario is not possible for the
differential that we have presented.

3 Free-start preimages

We will show how to attack NaSHA-256. Similar technique can be used
for attacking NaSHA-512. Our attack strategy is the following. Again we
start with an internal state L̃ = (L1, L1, . . . , L16) obtained after the lin-
ear transformation. There we fix the sums L1+L2, L3+L4, . . . , L15+L16.
Thus, the quasigroup operations and the leaders are fully determined.
Then, depending on the target hash value H∗, we show how to find the
exact values of the words L1, L2, . . . , L16. At the end, we invert the linear
transformation and obtain an initial state, hence a free start preimage.
Before presenting the attack in details let us first deal with the quasi-
group operations.

Quasigroup transformations. Each of the quasigroup transformations
A and RA used in NaSHA consists of 16 applications of quasigroup
operation ∗. Let F (x, y) = (x + y) ∗ y be the operation used in A , and
G(x, y) = x ∗ (x + y) the one used in RA . Further in the attack, we will
need to invert these two functions. If either x or y is fixed, then inverting
the functions is trivial: we have to try all 264 possible inputs. Hence,
we can assume that one inversion costs 264 computations. Another way
of inverting the functions is using precomputed tables with all possible
input-output values. Then, inverting costs only 128 computations (binary
search among 2128 values), but the memory cost is 2128. The functions
are invertible with high probability as stated in [1, Proposition 4].

Now we can present the attack. Let L̃ = (L1, L1, . . . , L16) be the internal
state after the linear transformation, and let

L1 + L2 = L3 + L4 = . . . = L15 + L16 = C2 (1)

Note that we fix only the sums but not the exact values of the words.
With superscript i we will denote the state after the i-th update ofMT .

2 Different constants can be used for different pairs.



For example, the initial state is L̃0, the state after A is L̃16, and the final
state, after the whole MT is L̃32. Let H∗ = (H1, H2, H3, H8) be the
target hash value. We will show how to fix, sequentially, all the words in
L̃0, L̃1, . . . , L̃16. Note that we deal with unbalanced Fiestel network, the
words of two sequential states L̃i−1, L̃i differ only in Li. Below is the
algorithm that finds the state L̃0 from any target hash value (see Fig. 2).
1. Fix L29

4 = H1, L
25
8 = H2, L

21
12 = H3, L

17
16 = H8

2. Find L16
16 from G(L17

16, l2) = L16
16

3. Take random value for L0
16. Then L0

15 = C − L0
16

4. Find L15
15 from F (L15

15, L
15
16) = L16

16.
5. Find L15

18 from G(L17
15, L

17
16) = G(L15

15, L
17
16) = L15

18

6. Find L14
14 from F (L14

14, L
14
15) = L15

15

7. Find L19
14 from G(L18

14, L
18
15) = G(L14

14, L
18
15) = L19

14

8. Take random value for L0
14. Then L0

13 = C − L0
14

9. Find L13
13 from F (L13

13, L
13
14) = F (L13

13, L
0
14) = L14

14.
10. Find L20

13 from G(L19
13, L

19
14) = G(L13

13, L
19
14) = L20

13

11. Find L20
12 from G(L20

12, L
20
13) = L21

12. Find L12
12 from F (L12

12, L
12
13) = L13

13.
If L20

12 6= L12
12 go to step 8.

12. Take random value for L0
12. Then L0

11 = C − L0
12

13. Find L11
11 from F (L11

11, L
11
12) = F (L11

11, L
0
12) = L12

12.
14. Find L22

11 from G(L21
11, L

21
12) = G(L11

11, L
21
12) = L22

12.
15. Find L10

10 from F (L10
10, L

10
11) = L11

11.
16. Find L23

10 from G(L22
10, L

22
11) = G(L10

10, L
22
11) = L23

10.
17. Take random value for L0

10. Then L0
9 = C − L0

10.
18. Find L9

9 from F (L9
9, L

9
10) = F (L9

9, L
0
10) = L10

10.
19. Find L24

9 from G(L23
9 , L2

103) = G(L9
9, L

2
103) = L24

9 .
20. Find L8

8 from F (L8
8, L

8
9) = F (L9

9). Find L24
8 from G(L24

8 , L24
9 ) = L25

8 .
If L24

8 6= L8
8 go to step 17.

21. Take random value for L0
8. Then L0

7 = C − L0
8.

22. Find L7
7 from F (L7

7, L
7
8) = L8

8.
23. Find L26

7 from G(L25
7 , L25

8 ) = G(L7
7, L

25
8 ) = L26

7 .
24. Find L6

6 from F (L6
6, L

6
7) = L7

7.
25. Find L27

6 from G(L26
6 , L26

7 ) = G(L6
6, L

26
7 ) = L27

6 .
26. Take random value for L0

6. Then L0
5 = C − L0

6.
27. Find L5

5 from F (L5
5, L

5
6) = L6

6.
28. Find L28

5 from G(L27
5 , L27

6 ) = G(L5
5, L

27
6 ) = L28

5 .
29. Find L4

4 from F (L4
4, L

4
5) = L5

5. Find L28
4 from G(L28

4 , L25
5 ) = L29

4 . If
L28

4 6= L4
4 go to step 26.

30. Take random value for L0
4. Then L0

3 = C − L0
4.

31. Find L3
3 from F (L3

3, L
3
4) = F (L3

3, L
0
4) = L4

4.
32. Find L30

3 from G(L29
3 , L29

4 ) = G(L3
3, L

29
4 ) = L30

3 .
33. Find L2

2 from F (L2
2, L

2
3) = F (L2

2, L
0
3) = L3

3.
34. Find L31

2 from G(L30
2 , L30

3 ) = G(L2
2, L

30
3 ) = L31

2 .
35. Take random value for L0

2. Then L0
1 = C − L0

2.
36. Find L1

1 from F (L1
1, L

1
2) = F (L1

1, L
0
2) = L2

2. If F (l1, L
0
1) 6= L1

1 go to
step 35.

After we find the state L̃0 we can easily invert the linear transformations
and obtain the initial state and thus find the input message and the
chaining value.
Now let us find the complexity of the whole preimage search. Note that
the main algorithm can be divided into 4 parts. The first part are steps



1-11, the second part are steps 12-20, the third part are 21-26, and the
last part are steps 30-36. We can assume that each part is a separate
algorithm which takes some input (from the previous part), and always
finds the right value for some of the state words L̃0. Hence, when comput-
ing the complexity of the whole attack, we need to add the complexities
of these four parts (rather than multiply). Each part has a loop which
runs around 264 times and uses some inversion of F and G. Hence, the
complexity of each part is around 2128. The complexity of the whole al-
gorithm is 2130. If a look-up table is used for inverting F and G then the
algorithm would require 266 computations and 2128 memory.

References

1. Smile Markovski, Aleksandra Mileva: NaSHA family of crypto-
graphic hash funcions. http://inf.ugd.edu.mk/images/stories/

file/Mileva/part2b1.pdf

http://inf.ugd.edu.mk/images/stories/file/Mileva/part2b1.pdf
http://inf.ugd.edu.mk/images/stories/file/Mileva/part2b1.pdf


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L0

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

L14

L15

L16

L17

L18

L19

L20

L21

L22

L23

L24

L25

L26

L27

L28

L29

L30

L31

L321 1 1 1

1

1

1

1

2

33

34

4

56

6 3

7

88

8

8

9

9

1011

11

1212

12

1213

13

14

15

15

16

1717

17

1718

18

1920

20

2121

21

2122

22

23

2626

26

24

24

25

2627

27

2829

29

3030

30

3031

31

32

3535

35

33

33

34

36

36

37

l1

l2

2

Figure 2: Steps of the free-start preimage finding algorithm.


	Free-start attacks on NaSHA
	Ivica Nikolic and Dmitry Khovratovich

