
The Twister Hash Function Family
www.twister-hash.com

October 28, 2008

Ewan Fleischmann
∗

Christian Forler
†

Michael Gorski
‡

∗Bauhaus-University Weimar , ewan.fleischmann@uni-weimar.de
†Sirrix AG security technologies , c.forler@sirrix.com
‡Bauhaus-University Weimar , michael.gorski@uni-weimar.de

Executive Overview

The main advantages of the Twister hash function family are:

• portable to many platforms 8, 32, 64 bit

• using well established and studied design concepts (MDS)

• security level can be expressed explicitly

• speed comparable with SHA-256 and SHA-512

• low memory requirements

• very fast for short message hashes

• very fast diffusion due to the MDS concept

• the initial value depends on the output size of the hash value

One of the most difficult tasks for cryptographer is to design a hash function which
reaches a claimed security level by being fast as well. It is often only a trade of between
security and speed. On the one hand, a hash function with a huge security margin offers
a high level of security but might be useless for practical applications. On the other
hand a very fast hash function might offer some unexploited weaknesses, while it is used
for crucial applications.

We have learned from the AES competition that a well designed block cipher must serve
the demand for speed while been easy to analyze without flaws or trapdoors inside.

Twister is a new family of cryptographic hash functions which we regard as an evolu-
tional step from the AES process as well as from the latest research in the young field of
cryptographic hash functions. The core of Twister consists of the well studied MDS
concept known from the AES winner Rijndael. The biggest advantage of this construc-
tion is its simplicity and the well studied security analysis. This makes the Twister
hash family very easy to analyze and we can even give some provable security claims.

Twister is defined for different internal state sizes and a variety of output sizes from
32 bits to 512 bits. This allows Twister to be a drop-in replacement for the entire
SHA/SHA2 family of hash functions.

3

4

Contents

1 Introduction 7
1.1 Related Work. 7
1.2 Twister Hash Function Family . 8

2 An Informal Description of Twister 9
2.1 The Compression Function . 9

2.1.1 A Mini-Round . 9
2.1.2 A Maxi-Round . 10
2.1.3 Instances . 11

2.2 The Output Function . 12

3 Design Principles of Twister 13
3.1 Security . 13
3.2 Evolutionary . 13
3.3 Simplicity . 14
3.4 Portability and Scalability . 14
3.5 Analyzability . 14
3.6 Speed . 14

4 Specification: The Twister Hash Function Family 15
4.1 Twister Components . 16

4.1.1 State S . 16
4.1.2 Checksum C . 16
4.1.3 TwistCounter φ . 16
4.1.4 Processed message counter hs ProcessedMsgCounter 16
4.1.5 Unprocessed message hs Data . 17
4.1.6 Unprocessed message length hs UnprocessedMsgCounter 17

4.2 The Compression Function . 17
4.2.1 Mini-Round . 18
4.2.2 Maxi-Round . 21

4.3 Postprocessing . 22
4.3.1 Padding . 22
4.3.2 Twister state finalization . 22
4.3.3 Message digest computation . 22

4.4 The Init() – Function . 23
4.5 The Update() – Function . 23

5

4.6 The Final() – Function . 24
4.7 Randomized Hashing . 24

5 Security 27
5.1 Generic Attacks . 27
5.2 On Collision Resistance . 30

5.2.1 Properties of Twister . 30
5.2.2 A Collision Attack Method on Twister 31
5.2.3 Pseudo Collisions on a Mini-Round 33

5.3 On (2nd) Pre-image Resistance . 33

6 Implementational Aspects and Performance 35
6.1 Finite Field Multiplication . 35
6.2 64-Bit Platforms . 35
6.3 32-Bit Platforms . 37
6.4 Specific Remarks for 8-Bit Platforms . 37
6.5 Dedicated Hardware . 37

6.5.1 Decomposition of the S-Box . 38
6.6 Multiprocessor Platforms . 38
6.7 Performance Measurements . 38

6.7.1 Performance Measurement Results on 64-Bit Platforms 38
6.7.2 Performance Measurement Results on 32-Bit Platforms 39
6.7.3 Performance Estimates for 8-Bit Platforms 40

7 Legal Disclaimer 41

8 About the Authors 43

References 44

A How to find (good) MDS matrices 49

B The AES/Twister S-BOX 51

C Examples 53
C.1 Twister-224 Examples . 53
C.2 Twister-256 Examples . 54
C.3 Twister-384 Examples . 55
C.4 Twister-512 Examples . 56

6

1 Introduction

The National Institute of Standards and Technology (NIST) is conducting a competition
which should lead to a new hash function standard. The new hash algorithm should
replace the entire SHA-2 [20] family and therefore must provide message digests of size
224, 256, 384 and 512 bits. The winner of the NIST hash function competition will
define the new SHA-3 standard for hash functions.

One of the most used primitives in modern cryptography are hash functions. A hash
function H : {0, 1}∗ → {0, 1}n is used to compute an n-bit fingerprint out of an
arbitrarily-sized input. Established security requirements for cryptographic hash func-
tions are collision-, pre-image and 2nd pre-image resistance – but ideally, cryptographers
expect a good hash function to behave like a random function. Nearly all iterative hash
functions are designed using the Merkle-Damg̊ard construction [17, 33]. A Merkle-
Damg̊ard hash function is an iterated hash function that uses a fixed length compres-
sion function C : {0, 1}nc × {0, 1}m → {0, 1}nc where nc is the size of the chaining
value and m the size of a message block. We have n = nc for hash functions using the
Merkle-Damg̊ard construction. By assuming a padded message M = (M1, . . . , Ml),
|Mi| = m, 1 ≤ i ≤ l and an internal chaining value hi ∈ {0, 1}nc (h0 is called the initial
value) the computation of the hash value for such a message M is as follows:

for i from 1 to l do
hi = C(hi−1, Mi)

return hl

The main benefit of the Merkle-Damg̊ard transformation is that it preserves colli-
sion resistance: if the compression function C is collision resistant, then so is the hash
function. Unfortunately, this result does not extend to 2nd pre-image resistance. Re-
cent results highlight some intrinsic limitations of the Merkle-Damg̊ard approach.
This includes being vulnerable to multicollision attacks [24], long second-pre-images at-
tacks [26], and herding [25]. Even though the practical relevance of these attacks is
unclear, they highlight some security issues which designers are well advised to avoid or
take care of.

1.1 Related Work.

Most popular hash functions such as MD5 [40], SHA-0 [35] or SHA-1 [34] possess weak-
nesses in their design, leading to a huge amount of attacks [6, 7, 12, 19, 39, 42, 43, 44].

7

But also most new hash functions [23, 27, 28, 2] which try to take care for weaknesses in
the Merkle-Damg̊ard -construction itself were broken soon after their publications
[31, 38, 37, 32, 22].

The concept of sponge functions [5] uses an a big internal state that absorbs a message of
infinite length and that later squeezes out an hash value of variable size. RadioGatún
[4] with XOR sponges and Grindahl [28] with truncate-overwrite sponges are the first
hash function that use this framework. Grindahl was shown to be vulnerable to several
attacks [37, 22].

1.2 Twister Hash Function Family

Twister is a family of hash functions with a large variety of output sizes. The minimum
output size is 32 bits. In our implementation the output size growths in 32 bits steps
up to 512 bits. We choose the 32 bits steps to cover up all SHA hash funtions.

Its internal state is 512 bit when the output size is smaller then 256 bit, else it is 1024
bit.

For all instances of Twister the internal state can be enlarged from output size n
to 2n, 3n or 4n. This depends on the security requirements and the memory which is
available on the desired platform. We developed a new design for the Twister hash
function family which is different from the classical Merkle-Damg̊ard design in many
ways.

8

2 An Informal Description of Twister

In this section, we give a general description of the Twister hash function family and
its building blocks. For a complete description of Twister, see the formal specifications
in Section 4. Twister follows a very simple and clear design goal. It consists of an
iterated compression function and of an output function.

2.1 The Compression Function

The compression function of Twister consists of building blocks called Mini-Rounds

which are grouped into Maxi-Rounds. Each Mini-Round is a combination of well studied
primitives, which are easy to analyze and fast to implement in software and hardware.
The instances of the Twister hash function family differ only in their construction of
a Maxi-Round. We will give an informal description of these principles below.

2.1.1 A Mini-Round

Mini-Round consists of the following primitives:

• MessageInjection inserts a 64-bit message block into the last row of the state matrix,

• SubBytes applies a non-linear S-Box table look up on each byte of the state matrix
in parallel,

• AddTwistCounter XOR’s a round dependent counter into the second column of the
state matrix,

• ShiftRows rotates i by i positions to the left,

• MixColumns applies a linear diffusion on each column of the state matrix in parallel

A visualization of a mini round is show in Figure 2.1

9

a SB(a)SubBytes

AddTwistCounter

ShiftRows

MixColumns

Message-Injection

Figure 2.1: A Mini-Round

2.1.2 A Maxi-Round

A Maxi-Round contains between three and four Mini-Rounds and zero or one blank

rounds. A blank round is a Mini-Round with no message input, which is equivalent to
the all zero message block. Each Maxi-Round uses also a feed forward operation, i.e., the
state before a Maxi-Round is feed forwarded with the state after a Maxi-Round. Figure
4.4 gives a high level description of a Maxi-Round.

10

...

replacemen

Mj Mj+s

Mini-Mini-
RoundRound

Maxi-Round

Hi−1 Hi

Figure 2.2: A Maxi-Round

2.1.3 Instances

Now we give an informal description of the compression function of the Twister in-
stances.

Twister-224 and Twister-256

The compression function of Twister-224 and Twister-256 consists of three Maxi-Rounds,
where each of them contains three Mini-Rounds. The compression function is displayed
in Figure 2.3. A zero indicates a blank round.

M1 M2 M3 M4 M5 M6 M7 M8 0

Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-

RoundRoundRoundRoundRoundRoundRoundRoundRound

Maxi-RoundMaxi-RoundMaxi-Round

Hi−1 Hi

Figure 2.3: The compression function of Twister-224 and Twister-256

Twister-384 and Twister-512

The compression function of Twister-384 and Twister-512 consists of three Maxi-Rounds,
where the first and the second Maxi-Round contains three Mini-Rounds each. The last
Maxi-Round contains four Mini-Rounds. We show the compression function in Figure
2.4. Furthermore Twister-384 and Twister-512 contains a 512-bit check sum which
will be computed as follows. The check sum can be regarded as a 8×8 matrix of 16 byte
entries. It is initialized with zero and updated before a message input takes place. Let
C[i] be the i-th column of the check sum and state[i] be the i-th column of the state.
Then the check sum is updated as C[i] = C[i] ⊕ state[0] � C[i + 1]. Whenever a blank

round takes place no update of the check sum is performed.

11

M1 M2 M3 M4 M5 M6 M7 M8 00

Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-

RoundRoundRoundRoundRoundRoundRoundRoundRoundRound

Maxi-RoundMaxi-RoundMaxi-Round

Hi−1 Hi

Figure 2.4: The compression function of Twister-384 and Twister-512

2.2 The Output Function

The Output-Round of Twister contains a global feed forwards as well as some Mini-Rounds
depending on the size of the hash output. First a Mini-Round is applied on the state
Hi−1, then the resulting state is XOR’ed with Hi−1 another Mini-Rounds is applied
which gives the state Hi. Let Hf be the final state after the last compression function
call. A 64-bit output stream outi is then obtained by XORing the first column of Hi with
the firs column of Hf . This procedure takes place until the needed amount of output
bits are obtained. The last output stream can be varied between 32 bits and 64 bits by
taking only the first half of outi. This allows to vary the output size for a huge amount
of applications. Figure 2.5 gives a high level description of a Output-Round.

outi

Mini-Mini-
RoundRound

Hi−1 Hi

Figure 2.5: An Output-Round

12

3 Design Principles of Twister

In this section we exlain our design purpose and describe why Twister was designed
as it is.

3.1 Security

The security of Twister is based on well studied concepts known from the AES [16].
The concept of MDS allows us to obtain a maximum of diffusion inside each column of
the state matrix. Since the message input is orthogonal with the diffusion of the state, we
allow a minimum of control on the state for an attacker. Introducing local feedforward as
well as blank rounds (rounds with no message input) furthermore reduce the influence
of an attacker on the state.

3.2 Evolutionary

During the last decade many hash function which uses a lot of different concepts. Even
in some cases it turns out that hash functions which seem to be weak due to a fast
break are even stronger than hash functions which were not broken so fast. But then
it turns out that using newly developed techniques lead to stronger attacks which make
pretended strong hash functions weak.

The Twister design is in some way evolutionary since we have learned from the AES
process in many ways. The well studied and analyzed block ciphers that were in the
final round of the competition lead to some well established design principles offering a
high level of cryptographic knowledge. Rijndael [14] therefore can be seen as one of the
most studied block ciphers during this process and also in the time after. Its concepts
of simple byte-wise operations SubBytes, ShiftRows and MixColumns are well analyzed
and it turns out that their combination can offer a high level of speed and security. We
adopt some of these concepts for Twister and we also learn from resent hash function
breakouts.

13

3.3 Simplicity

A strong hash function should not be hard to analyze, since if one cannot find an attack
due to the algorithmic complexity does not mean that there is not simple attack which
breaks the whole function in an easy way. We therefore only use very simple component
which form our Mini-Round. These components are well studied and well known but
combining these components to obtain a very good hash function is new. Our very
simple design and clear structure of Twister makes cryptanalysis easy and serves the
purpose that there are no simple attacks which cannot be found due to a complex and
unreadable algorithm.

3.4 Portability and Scalability

A many design criteria of Twister is its use to a huge range of applications. Due to
its byte-wise operations it scales perfect on 8, 16, 32 and 64-bit platforms. Twister
can be applied on smart cards with small 8-bit processors very efficiently. We offer an
optimized version for 32-bit and 64-bit environments. The portability will be enhanced
by its low memory requirements, which makes Twister even for low end platforms
valuable. For 32 and 64-bit multi-core we offer a high speed parallel mode of operation
which scales to reach the optimal level of processor usage.

3.5 Analyzability

Twister uses well known and well analyzed components inside its design. The security
level of Twister can be proven for the inner components which is more worth than just
a security claim. Using the concept of MDS lead to a very fast diffusing after just two
input blocks. This high level of diffusion makes Twister very close to a randomized
hash function which offers a hugh level of security by being fast as well.

3.6 Speed

Twister has not only a very high security level and is very fast as well. Compared with
members of the SHA-2 family Twister is at least as fast on 32 and 64-bit platforms.
Our developed modes of operation leads to very fast hashes of hugh messages in a multi-
core environment. This makes a parallel implementation of Twister very fast and
efficient. But, even short messages can be hash very fast with only few overhead.

14

4 Specification: The Twister Hash
Function Family

In this section we present our hash function. We start off with a description of the general
design strategy. The design is based on a blockcipher that is iterated using the Davies-
Meyer (DM) mode of operation [9]. Twister is a byte-oriented framework that operates
on a square state matrix. The building block of the blockcipher is called Mini-Round.
It takes a sub portion of the message and processes it into the state S whereas S is a
N × N byte-matrix, N ∈ N. After two Mini-Rounds, the state is guaranteed to have
full diffusion. Also, two subsequent iterations of the Mini-Round is can be proved to be
collision free. See Section 5 for a detailed discussion on our security issues.

After processing the padded message (i.e. the message is completely absorbed by the
state S), the output follows. This technique follows the design ideas of the sponge
function [5] by not presenting the complete internal state to the attacker at once but
slice by slice.

The following notations are used in the following:

S = (Si,j)1≤i,j≤N internal state matrix
C = (Ci,j)1≤i,j≤N internal checksum matrix
N number of rows and columns of the internal state matrix
msgsize size of unpadded message (in bits)
Rtotal number of total Mini-Rounds per compression function
Rmsg number of N-byte blocks processed per compression function
m size of the padded message, measured in N · Rmsg -byte

blocks, i.e. the number of compression function calls needed
to absorb the message into the state S

M = (M1, . . . , Mm) padded message to be handled by the Twister hash
function

Munpad unpadded message
out size of the hash value measured in N -byte blocks, i.e.

out = n/(8 · N)
n size of the hash value in bits, i.e. n = out · 8 · N ,

where n ≤ (8 · N)2

H = (H1, . . . , Hout) number of N -byte blocks of the hash output
φ TwistCounter

15

4.1 Twister Components

This section describes in detail the Twister components.

4.1.1 State S

Twister operats on a square state matrix S = (Si,j), 1 ≤ i, j ≤ N , consisting out of N
rows and columns, where each cell Si,j represents one byte.

S1,1 S1,2 ... S1,N

S2,1 S2,2 ... S2,N

...
...

. . .
...

SN,1 SN,2 ... SN,N

Notation: S(i→) := (Si,1, . . . , Si,N) denotes the i-th row vector and S(j ↓) := (S1,j , . . . , SN,j)
the j-th column vector.

4.1.2 Checksum C

The checksum enlarges the state of Twister-384 and Twister-512 to stick to our
wide-pipe design [29] decision.

The checksum is as the srtate S a square checksum matrix C = (Ci,j), 1 ≤ i, j ≤ N ,
consisting out of N rows and columns, where each cell Ci,j represents one byte.

C1,1 C1,2 ... C1,N

C2,1 C2,2 ... C2,N

...
...

. . .
...

CN,1 CN,2 ... CN,N

4.1.3 TwistCounter φ

The TwistCounter φ is a unsigned 64 bit integer that is added and decreased within a
Mini-Round to prevend slide attacks.

4.1.4 Processed message counter hs ProcessedMsgCounter

Processed message length hs ProcessedMsgCounter is a unsigned long long integer. The
purpose of the counter is to compute the length of a hashed message.

16

4.1.5 Unprocessed message hs Data

Unprocessed message bytes are stored inside a unsigned char array hs Data. This array
are filled up with data when the size of a message chunk is not divisible by 512.

4.1.6 Unprocessed message length hs UnprocessedMsgCounter

The number of unprocessed message bits are stored inside a integer UnprocessedMsgCounter.

4.2 The Compression Function

The Twister-hash function calls the compression function using the DM mode of op-
eration. After the message is absorbed in the internal state the output function is called
for every N bytes of output.

The compression function of Twister consists of building blocks called Mini-Rounds

which are grouped into Maxi-Rounds. Each Mini-Round is a combination of well studied
primitives, which are easy to analyze and fast to implement in software and hardware.
The instances of the Twister hash function family differ only in their construction of
a Maxi-Round.

The compression function takes a 512-bit block and processes them into the internal state
matrix S. As a Maxi-Round only indicates the position of the local feed forward XOR-
operation we will normally only discuss a compression function as a set of Mini-Rounds.
The local feed-forward operation is an optional security feature and is discussed in
Section 5. More general, the compression function works as follows. Let R be the number
of Mini-Rounds in a compression function. (Note: In Figure 4.1 we have R = 9.)

Twister-224 and Twister-256

The Twister-224 and Twister-256 compression function consists of three Maxi-Rounds.
Each Maxi-Rounds is followd by a feed-forward XOR-operation. The first and sec-
ond Maxi-Round consist of three Mini-Rounds. The last Maxi-Round consists of two
Mini-Rounds and one blank round. Figure 4.1 illustrats the compression function.

M1 M2 M3 M4 M5 M6 M7 M8 0

Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-
RoundRoundRoundRoundRoundRoundRoundRoundRound

Maxi-RoundMaxi-RoundMaxi-Round

Hi−1 Hi

Figure 4.1: The compression function of Twister-224 and Twister-256

17

Twister-384 and Twister-512

The Twister-384 and Twister-512 compression function consists of three Maxi-Rounds,
too. The first Maxi-Rounds consists of three Mini-Rounds. The second Maxi-Rounds

consists of a Mini-Round followed by a blank round and an other Mini-Round. The
last Maxi-Rounds consists of three Mini-Rounds followed by a blank round. Figure 4.2
illustrats the compression function.

M1 M2 M3 M4 M5 M6 M7 M8 00

Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-

RoundRoundRoundRoundRoundRoundRoundRoundRoundRound

Maxi-RoundMaxi-RoundMaxi-Round

Hi−1 Hi

Figure 4.2: The compression function of Twister-384 and Twister-512

4.2.1 Mini-Round

The Mini-Round is the underlying building-block of any Twister hash function. It’s
main purpose is to inject the message (Message-Injection) and to take care for the
diffusion of the state matrix S. It is visualized in Figure 4.3. Twister can handle at
most 264 Mini-Rounds. This limitation causes by the Add TwistCounter operation
where a 64 counter is added. Each Mini-Round can process 64 bit of message data.
Therefore, with a native usage of a Mini-Round it is possible to process up to 264 · 64
message bits. If this limitation became in the future a real world issue it is possible to
increase the size of the TwistCounter to 128 bit with almost no performance loss.

18

a SB(a)

Message-Injection

AddTwistCounter

SubBytes

ShiftRows

MixColumns

Figure 4.3: A Mini-Round

Message injection

A 64 bit message block m is inserted (via XOR ⊕) into the last row. By using the
notation m = (m[1], . . . , m[N]) whereas the length of m[N] is one byte, and

S(→ j) ⊕ m := (S1,j ⊕ m[1], . . . , SN,j ⊕ m[N])

we define the message injection process by

S(→ 1) = S(→N) ⊕ m.

Add TwistCounter

The TwistCounter φ is a unsigned 64 bit integer. The initial state is the maximum
value (0xFFFFFFFFFFFFFFFF). By using the notation φ = (φ[1], . . . , φ[N]) whereas the

19

length of φ[N] is one byte, and φ[1] is the most significant byte of φ. The counter is
added byte by byte - via the XOR operation - into the second column of the state S.

S2,↓ ⊕ φ := S2,1 ⊕ φ[1], . . . , S2,N ⊕ φ[N])

We define the TwistCounter addition by

S = S2,↓ ⊕ φ

After the additon φ is decreased by one.

SubBytes

The function is defined as an bijection

SubBytes : {0, 1}8 −→ {0, 1}8

and is used as an S-box for each byte. It should, among other properties, be highly
non-linear. A discussion on how to obtain such cryptographically strong S-Boxes (for
8x8 S-Boxes) can be found in [45]. Twister uses the well known and studied AES
S-Box. The S-Box can be found in the Appendix B.

We define the SubBytes operation by

Si,j = SB(Si,j) ∀i, j.

ShiftRows

ShiftRows is a cyclic left shift similar to the ShiftRows operation of AES. It rotates row
j by (j − 1) mod N bytes to the left.

We define the ShiftRows operation by

S(i,j−1) := S(i,j) ∀i, j.

MixColumns

The MixColumn step is a permutation operation on the state. It applies a N×N -MDS A
(a maximum distance separable matrix as defined below) to each column, i.e. performs
the operation A · S(j ↓).

Definition An [n,k,d] code with generator matrix

G = [Ik×k Ak×(n−k)]

is an MDS code if every square submatrix of A is nonsingular. The matrix A is called
a MDS-matrix.

20

Our chosen MDS matrix is cyclic, i.e., its i-th row can be obtained by a cyclic right
rotation of (02 01 01 05 07 08 06 01) by i entries. It has a branch number of 9 meaning
that if two 8 byte input vectors differ in 1 ≤ k ≤ 8 bytes, the output of MixColumns
differs in at least 9− k bytes. The 8× 8-MDS matrix used for all proposed instances of
Twister is:

MDS =

























02 01 01 05 07 08 06 01
01 02 01 01 05 07 08 06
06 01 02 01 01 05 07 08
08 06 01 02 01 01 05 07
07 08 06 01 02 01 01 05
05 07 08 06 01 02 01 01
01 05 07 08 06 01 02 01
01 01 05 07 08 06 01 02

























All of the byte entries are considered to be elements of F28. An element
∑7

i=0 aix
i ∈ F28

is represented by
∑7

i=0 ai2
i. The reduction polynomial m(x) of F28 is defined as

m(x) = x8 + x6 + x3 + x2 + 1. (4.1)

Properties of MDS matrices/codes can be found e.g. in [30]. A discussion on how to
obtain suitable MDS matrices can be found in Appendix A.

4.2.2 Maxi-Round

A Maxi-Round contains of several Mini-Rounds, blank round and a optional checksum
updates. We defined a checksum update operation as

C(i,↓) = C(i,↓) ⊕ C(i+1,↓) � S(i,↓)

Maxi-Rounds use also a feed forward operation where the state before a Maxi-Round Sk

is feed forwarded with the state after a Maxi-Round Sk+1. We defined the feed forward
operation as

S(i,j) := Sk
(i,j) ⊕ Sk+1

(i,j) ∀i, j.

Figure 4.4 illustrates a Maxi-Round.

...

Mj Mj+s

Mini-Mini-
RoundRound

Maxi-Round

Sk Sk+1

Figure 4.4: A Maxi-Round

21

4.3 Postprocessing

This section describes the Twister finalization process. It starts when the message is
completely over hand to the

Postprocessing shall take place after the message processed by the compression funtion.
This postprocessing consists of three steps:

1. Padding the message M

2. Twister state finalization

3. Message digest computation

4.3.1 Padding

The message, M, shall be padded before hash computation begins. The purpose of this
padding is to ensure that the padded message is a multiple of 512. Suppose that the
length of the message, M is l bits then the message can divide in n = l/512 512 bit
message blocks m1, . . . , mn and one final message block mf betweeen 0 and 511 bits. The
512 message blocks m1, . . . , mn are processed by the compression function. The final
message block mf is padded by append a ’1’ to the end followed by k = 511−(l mod 512)
zero bits. Afterwards the bitlength of mf is 512 and it can processed by the compression
function like all other message blocks bevor.

4.3.2 Twister state finalization

After the padding procedure the message length that is stored in a 64 unsigned integer is
injected like a message by XOR it byte by byte to the last row of the state S. Afterwards
the state is updated via a Mini-Round. the following steps depends on the hash value
size. The finalization ends with a blank round for Twister-224 and Twister-256 or
a Twister-256 compression function with the checksum state C as input for Twister-
384 and Twister-512. The checksum are transformed in a 64 byte message block m
where m = m[1], . . . , m[n] column by column.

m[i] = C(di/8e,i (mod 9))∀i = 1, . . . , 64

4.3.3 Message digest computation

The Output-Round computs the message digest. It contains a global feed forwards as
well as some Mini-Rounds depending on the size of the hash output. For every 64
message digest bits Mini-Round is applied on the state S, then the resulting state is
XOR’ed with Sk−1 another Mini-Rounds is applied which gives the state Sk. Let Sf be
the final state after the last compression function call. A 64-bit output stream outi is

22

then obtained by XORing the first column of Sk with the first column of Sk−1. This
procedure takes place until the needed amount of message digest bits are obtained. The
last output stream can be varied between 32 bits and 64 bits by taking only the first half
of outi. This allows to vary the output size for a huge amount of applications. Figure
4.5 illustrates the Output-Round.

outi

Mini-Mini-
RoundRoundSk−1 Sk

Figure 4.5: An Output-Round

4.4 The Init() – Function

The Init() function of Twister performs the the following steps:

1. Set the state to zero.

2. Copy the most significant byte of the output length to S7,1 and the least significant
byte to S7,2. The output length is specified in bits and the maximum supported
output length is 512 bit. Hence, the output length can be stored in two bytes.

3. The twist counter φ is initialized with 264 − 1.

4. Set the checksum for Twister-384 and Twister-512 to zero.

5. Set the unprocessed message counter hs Databitlen to zero.

6. Set the unprocessed message data hs Data to zero.

4.5 The Update() – Function

The Update() function of Twister process data using the Twister compression func-
tion. It acts as follows:

1. Concatenate the unprocessed message hs Data with the message M to the unpro-
cessed message M ′.

2. Divide M ′ in k 512 bit message blocks m1, ...mk and a final message block mf

between 0 and 511 bits.

3. Call for every mi for i = 0, ..., k the Twister compression function.

23

4. Add 512 · k to the processed message counter hs ProcessedMsgCounter.

5. Copy the value of mf to hs Data.

6. Set the unprocessed message counter hs Databitlen to the bitlen of mf .

4.6 The Final() – Function

The Finalize() function of Twister provides for the length padding of the message,
processes all unprocessed data, hashes the message length, (process the checksum) and
finally outputs the hash value. It acts as follows:

1. Concatenate a ’1’ bit to the unprocessed message data hs Data.

2. Fill hs Data up with ’0’ bits until the bit length is 512.

3. Call the compression function for hs Data.

4. Add the unprocessed message counter hs Databitlen to the processed message
counter hs ProcessedMsgCounter.

5. XOR hs ProcessedMsgCounter to the last row of the state S(N,→).

6. Perform a Mini-Round.

7. Perform a blank round if the output hash length hs Hashbitlen is less equal 256
bits.

8. Perform a Twister-256 compression function on the checksum state C when
hs Hashbitlen is between 256 and 512 bits.

9. Perform four times the Mini-Round for Twister-224 and Twister-256, six times
for Twister-384 and eight times for Twister-512 to compute the message digest.

4.7 Randomized Hashing

Twister supports randomized hashing in the following way. One can chose a so called
salt value of size at most 64 bits. If the salt is zero then the usual hash computation
will be performed. For salt values not equal to zero and smaller than 64-bit as many
zero’s will be padded such that a 64-bit block occurs. The salt s will be introduced in
the hash computation as a first input block followed by three blank rounds. This will
prevent Twister to any chosen salt attacks.

One can try to mount the following attack scenario if the salt is inserted as the first input
block without some blank rounds at the end. It might be more possible to transform
a chosen-IV attack into a real attack if an attacker chooses salt values s and s′ 6= s for
the first two input blocks M0 and M ′

0 6= M0 such that

Mini-Round(Mini-Round(IV, s), M0) = Mini-Round(Mini-Round(IV, s′), M ′
0)

24

Using at least two Mini-Rounds will lead to full diffusion 5.2.2 and will reduces an
attacker’s influence to generate different IV’s. Therefore our randomized hashing schema
is secure for two reasons. First, a salt value will not be introduced into the compression
function, which leads not additional degrees of freedom for an attacker. Second, the
degrees of freedom to choose the IV before the first input block are very low which gives
no additional power to an attacker and does not lead to further attacks on a chosen salt.

25

26

5 Security

In this section we analyze the security of Twister and show that it is resistant to all
known generic attacks.

5.1 Generic Attacks

Length-Extension Attacks. Given a hash function H based on a Merkle-Damg̊ard
construction. If one can find a collision for two messages M, M ′ with M 6= M ′, such that
H(M) and H(M ′) collide, then one can apply a length extension attack. For any message
N one can easily produce a collision for M ||N and M ′||N as H(M ||N) = H(M ′||N).
Our padding rule avoids such type of attacks since we concatenate the length of the
message to the message itself. Another attack can be as follows. For a known hash value
H(M) one can compute the hash value H(M ||X||N) for any suffix N , if the length of
an unknown message M is known as well as the padding X of M . We prevent Twister
to this kind of attack by two countermeasures: (i) By knowing only the hash value an
attacker can not easily determine the state S after the last compression function call
as he has only access to the result of the final() function. This function squeezes out
some bits of the state applying output transformation and squeezes out some bits again.
The bits of a squeezing process do not leave enough information to recover the internal
state. (ii) The multiple feed-forward does also prevent any attacker to successfully gain
any knowledge of prior state information. In each squeezing process the one feed forward
takes place.

Multi-Collision Attacks. Joux [24] found that when iterative hash functions are used,
finding a set of 2k messages all colliding on the same hash value (a 2k-multi-collision)
is as easy as finding k single collision for the hash function. Finding a collision in the
compression function, i.e., a single block collision one can find k of such collisions each
starting from the chaining value produced by the previous one-block collision. In other
words, one have to find two messages blocks Mi and M ′

i 6= Mi with C(hi−1, Mi) =
C(hi−1, M

′
i), where C(·) represents the compression function and hi the chaining value.

Then it is possible to construct 2k messages with the same hash value by choosing for
block i either the message block Mi or M ′

i . Joux also showed that the concatenation
of two different hash functions is not more secure against collision attacks than the
strongest one. This attack can find 2k-way internal multi-collisions with a complexity of
k · 2nc/2. An instance of Twister fully resists the multi-collision attack if 8 ·N2 ≥ 2nc,

27

since the complexity is determined by k · 2(8·N2)/2. All instances of Twister have this
feature, although the state of Twister-384 and Twister-512 is not big enough to
prevent this attack alone, including the check sum can be viewed as an enlarging of the
state, which then guarantees to prevent for this attack.

Herding Attacks. The herding attack [25] works as follows. An attacker takes 2k

chaining values which are fixed or randomly chosen. Then he chooses O(2nc/2−k/2)
message blocks. He computes the output of the compression function for each chaining
value and each block. It is expected that for each chaining value there exists another
chaining value, such that both collide to the same value. The attacker stores the message
block that leads to such a collision in a table and repeats this process again with the
newly found chaining values. Once the attacker has only one chaining value, it is used
to compute the hash value to be published. To find a message whose chaining value
is among the 2k original values, the attacker has to perform O(2nc−k) operations. For
such a message the attacker can retrieve from the stored messages the message blocks
that would lead to the desired hash value. The time complexity of this attack is about
O(2nc/2+k/2) operations for the first step and O(2nc−k) operations for the second step.
The whole attack on an n-bit hash function requires approximately 2(2nc−5)/3 work. For
Twister we have nc = 8 · N2 and with 8 · N2 ≥ (3nc + 5)/2 the attack has the same
complexity as for for a (second) pre-image attack on a random oracle. The complexity of
this attack decreases with increased size of the message. If the message is of size about
2t, then the complexity of the attack is 2(2nc−5)/3−t. One has to choose N such that the
hash function is protected against this kind of attack for a given upper bound. All of
our proposed instances of Twister resist this kind of attack.

Long 2nd pre-image Attacks. Dean [18] found that fix-points in the compression
function can be used for a second-pre-image attack against long messages in time O(nc ·
2nc/2) and memory O(nc ·2

nc/2), where nc = 8 ·N2 is the size of the internal state (which
is equal to the size of the hash output for a plain Merkle-Damg̊ard constructions).
Kelsey and Schneier [26] extend this result and provide an attack to find a 2nd pre-image
on a Merkle-Damg̊ard construction with Merkle-Damg̊ard strengthening much
faster than the expected workload of 2nc . The complexity of the attack is determined
by the complexity of finding expandable messages. These are messages of varying sizes
such that all these messages collide internally for a given IV. Expandable message can
either be found using internal collisions or fixed points between a one-block message and
an α-block message for varying values of α. The complexity of the generic attack to
find a 2nd pre-image for a 2k-message block is about k · 2nc/2+1 + 2nc−k+1 compression
function calls.

Long 2nd pre-image attacks in this form cannot be applied to the Twister framework
for three reasons. First, we include the twist counter which does not allow to find
expandable messages. Second, we make use of multiple feed-forwards and, third, the
internal chaining value is in general much larger than n. This make it harder to find

28

collisions and fix points since we essentially have a constructions similar to the wide-pipe
design [29].

Andreeva et al. [1] have shown that a combination of the attacks from [18, 26, 25] can
be mounted to dithered hash functions, which gives the attacker more control on the
second-pre-image, since he can choose about the first half of the message in an arbitrary
way. This attack can be done in time 2nc/2+k/2+2 +2nc−k. Although it is more expensive
than the attack of Kelsey and Schneier [26], it works even when an additional input to
the compression function (dithering) is given. One have to make the dithering as huge
as possible, such that there are no small cycles. Twister includes the twist counter φ
which is very large, i.e., the twist counter is of size of the maximal message length. The
larger this counter is the longer cycles we have, which increases the protection against
this type of attack.

Slide Attacks. Slide attacks are common in block cipher cryptanalysis, but they also
applicable to hash functions. Given a hash function H and two messages M and M ′

where M is a prefix of M ′, one can find a slid pair of messages (M, M ′) such that the the
last message input block of the longer message M ′ performs only an additional blank
round, e.g. for sponge constructions. These two messages are then slid by one blank
round. This attack allows to recover the internal state of a slid pair of messages an even
backward computation as shown in [22]. The twist counter φ avoids the possibility of
slide attacks, since XOR-ing a different value in each Mini-Round into the state matrix
does not allow to find slid pairs of messages. Furthermore, the last inserted message
block cannot be the all zero block due to the padding rules. Thus slide attacks are
unavailable for Twister.

Differential Attacks. The essential idea of differntial attack on hash functions [11], as
used to break MD5 and SHA-0/1, is to exploit a high-probability input/output differen-
tial over some component of the hash function, e.g. under the form of a ”perturb-and-
correct” strategy for the latter functions, exploiting high probability linear/non-linear
characteristics. In the design of the Twister framework, we applied the following
countermeasures against differential attacks:

• High-Speed-Diffusion. The strong diffusion capabilities of the Mini-Round in com-
bination with the non-linear S-Box make the exploit of linear approximations
highly implausible. As it is impossible to find a collision after one Mini-Round,
any attacker has to trail presumably very long paths to be able to find a collision.

• Nested feed-forward. The internal feed-forward operations aim at strengthening
the function against differential paths.

• Optional internal wide-pipe. this makes internal collision unlikely, and the output-
rounds make the differences much harder to predict in the hash value.

• Using different operators (e.g. � and ⊕) highly complicates the computation of
good differential paths.

29

5.2 On Collision Resistance

Twister provides maximal diffusion after two rounds due to the chosen MDS matrix for
MixColumns. If two input blocks differ in only one byte, then MC generates a difference
in all message bytes of the column where the difference is inserted. The SR operation of
the next round spreads the differences such that all columns contain at least one byte
difference. Twister also prevent that the following inputs cancel these differences out,
since they where inserted in different positions in each round.

Due to its very fast diffusion process (after two Mini-Rounds), near-collision are prac-
tically useless at the end of any compression function. To prevent collision attacks on
the internal state in Twister-512 we choose to employ an extra Mini-Round after ev-
ery ”message-insertion” as we have chose to not have the same security margin as with
Twister-256. As one can easily see, after a single Mini-Round one is not able to find
a collision, i.e. any collision has to involve more that one Mini-Round. We claim a
collision resistance of O(2out·N ·8) if out ≤ N (as in Twister-256 and Twister-512).

5.2.1 Properties of Twister

We have designed Twister such that a single Mini-Round is proven to be collision free.
This is expressed by the following lemma.

Lemma 5.2.1 From any state hi−1 one cannot find input message blocks M , M ′ 6= M
such that

Mini-Round(hi−1, M) = Mini-Round(hi−1, M
′)

for all M , M ′ 6= M .

Proof Assume that hM
i is the state after inserting the message block M and hM ′

i is the
state after inserting M ′. Then, if M and M ′ are different in byte j the states hM

i and
hM ′

i are different in column j in at least 9 − k bytes. This is due to the MDS property
of our diffusion layer, which has a brach number of 9.

�

We can also show that Twister offers full diffusion after two input blocks.

Lemma 5.2.2 Given an internal state hi−1 and two input blocks M1 and M ′
1 where

M1 6= M ′
1. Then, we have full diffusion of the state after two Mini-Rounds.

Proof The message distribution process is visualized in Figure 5.1. Two messages M1

and M ′
1 6= M1 are different in at least one byte. Due to the diffusion of MixColumns at

30

Mi

Mi

First Mini-Round

Second Mini-Round

ShiftRows

ShiftRows

MixColumns

MixColumnsInjection

Injection

Figure 5.1: Visualization of the diffusion of a message after two Mini-Rounds

least one state column differs in 8 bytes. The ShiftRows of the following Mini-Round

with no message input will distribute the all difference column into a one byte difference
in each state column. After that MixColumns generates a difference in all state bytes.
Which leaves to full diffusion.

�

5.2.2 A Collision Attack Method on Twister

The first step in finding a collision for any instance of the Twister hash family is to
analyze a Mini-Round. We known from Lemma 5.2.1 that one cannot find a collision
after one input block and we know from Lemma 5.2.2 that we have full diffusion of the
state after two input blocks. Therefore we claim that an internal collision needs at least
three applications of a Mini-Round, i.e., three input blocks. This can be verified by
regarding the differential properties of MixColumns that are shown in Table 5.1.

H
H

H
H

H
H

DI

DO 0 1 2 3 4 5 6 7 8

0 0 - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞
1 - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ 0
2 - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ -8 0
3 - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ -16 -8 0
4 - ∞ - ∞ - ∞ - ∞ - ∞ -24 -16 -8 0
5 - ∞ - ∞ - ∞ - ∞ -32 -24 -16 -8 0
6 - ∞ - ∞ - ∞ -40 -32 -24 -16 -8 0
7 - ∞ - ∞ -48 -40 -32 -24 -16 -8 0
8 - ∞ -56 -48 -40 -32 -24 -16 -8 0

Table 5.1: Column Properties of the state matrix after multiplication with an MDS ma-
trix. Approximate probability that two 8-byte input words with DI different
bytes on predefined positions maps to two 8-byte output words with DO differ-
ent bytes on predefined positions by the MixColumns operation. The values
are base-2 logarithms.

31

We find the following lemma:

Lemma 5.2.3 Starting from an all zero internal state and inserting a one byte differ-
ence in the first input block, then at least 49 bytes are different after the second input
round.

Proof A one byte input difference will cause an difference in a whole state column due
to the MDS property of MixColumns. The next input difference can be chosen such that
the last byte difference in the all difference state column will be canceled out. Thus,
the state contains seven columns having 2 non-zero bytes and one all zero byte column
after the following ShiftRows. Thus, at least seven bytes are non-zero when applying
MixColumns in an column with two non-zero byte differences. Finally, the complete
state matrix contains at least 49 non-zero bytes. A graphical representation is shown in
Figure 5.2.2.

Input 1 Input 2

SR

SR,

MC

MC

�

Lemma 5.2.4 i) Starting from an all difference internal state one needs at least two
input rounds to obtain an all zero internal state. This occurs for random messages with
probability 2−512. ii) Any differential starting from an all zero internal state and ending
in an all zero internal state needs at least three input rounds. iii) Such a three round
differential occurs with probability 2−512.

Proof i) By starting from an all difference internal state and inserting a any difference
which does not cancel any state byte difference out we apply a first Mini-Round. Due
to Table 5.1 MixColumns generates a non-zero difference in the last byte of a column
and a zero difference in the remaining bytes with probability 2−56. This occurs for eight
columns with probability 2−448. The input block in of the second round will cancel the
difference in the first row out. This happens for a randomly chosen input block with

32

replacemen Input 1 Input 2
SR,

MC

probability 2−64. Thus, an all zero internal state occurs after at least two input rounds
with probability 2−512.

ii) If we insert a non-zero difference in all bytes of the first input block, the internal state
after the first MixColumns is all different. The argument of i) then can be applied. iii)
follows from i) and ii).

�

These lemmas show that we can compute lower bounds on the differential probabilities
which are needed to find a collision.

5.2.3 Pseudo Collisions on a Mini-Round

It definitely would be easy to construct a collision of a Mini-Round by the following
scenario. Choosing two states IV1 and IV2 6= IV1 such that for a message block Mi

Mini-Rounds(IV1, Mi) = Mini-Rounds(IV2, Mi),

holds. Such an attack would never lead to a collision of a Maxi-Round due to the local
feedforward that captures a Maxi-Round. Thus, although pseudo collisions can easily be
found for a Mini-Round it thus not lead to a collision of a Maxi-Round and thus also not
leave to a collision in the compression function of Twister.

5.3 On (2nd) Pre-image Resistance

The Mini-Rounds are easily invertible as they are (after message injection) permutations.
This is beneficial for collision-resistance but might lead to problems with (2nd) pre-image
resistance. We care for this problem by applying feed-forward XORs with the internal
state. So any attacker that tries to mount an pre-image attack has to recover the state
from the hash value. For this, the attacker has to guess one bit for every hash output
bit (this is due to the Output-function). Let H = (h1, . . . , hout·N) be the hash output for
hashing a message M , |hi| = 1 byte. Assume that an attacker tries to mount a (2nd)
pre-image attack. In order to invert a Mini-Round, the attacker has to recover the entire
internal state S. As the attacker has only 1/N-th of the internal state S(1, ↓) ⊕ T(N, ↓) he
has to guess T(N, ↓) in order to recover one colum S(1, ↓) of S. Furthermore, he has to

33

guess all of the other colums to be able to invert. The complexity for guessing essentially
the whole matrix is O(2N ·8) so if we choose the output size of ·out · N ≤ N · N smaller
than the size of the internal state no attacker has any signigicant advantage in finding
a (2nd)-pre-image for any given hash value. Pre-images as well as (2nd) pre-images can
be found if an attacker can easily compute fix points in at least one Maxi-Round. Due to
the feed forward a fix point in a Mini-Round will not lead to a fix point in a Maxi-Round.

34

6 Implementational Aspects and
Performance

In this chapter we discuss issues related to the implementation of Twister on different
platforms. In essence, our techniques for implementing Twister rely on the following
key sources of information:

• Optimization techniques given by Daemen and Rijmen in [16].

• Bernstein and Schwabe presented at Indocrypt 2008 (preliminary version available
at [3]) some new techniques on how to reduce the number of instructions for an
AES implementation.

Several of the discussed issues are relevant to more than one platform.

6.1 Finite Field Multiplication

In the algorithm of Twister there are no multiplications of two variables in GF (28),
but only the multiplications of a variable with a constant. The latter is easier to imple-
ment than the former – especially in the context of hardware and high-speed software
implementations.

6.2 64-Bit Platforms

All the different steps for the round transformation can be combined in a single set of
look-up tables, allowing for very fast implementations on processors with word lengths
of 64 bits (or greater). We will use the following notations (for 1 ≤ x, y ≤ 8):

ay,x input state matrix element at position (x, y),

by,x state matrix element after SubBytes() at position (x, y),

cy,x state matrix element after ShiftRows() at position (x, y),

dy,x state matrix element after MixColumns() at position (x, y).

35

After the MixColumn-Operation, we have for 1 ≤ j ≤ 8:
























d0,j

d1,j

d2,j

d3,j

d4,j

d5,j

d6,j

d7,j

























=

























02 01 01 05 07 08 06 01
01 02 01 01 05 07 08 06
06 01 02 01 01 05 07 08
08 06 01 02 01 01 05 07
07 08 06 01 02 01 01 05
05 07 08 06 01 02 01 01
01 05 07 08 06 01 02 01
01 01 05 07 08 06 01 02

























×

























S[a0,j]
S[a1,j+1mod 8]
S[a2,j+2mod 8]
S[a3,j+3mod 8]
S[a4,j+4mod 8]
S[a5,j+5mod 8]
S[a6,j+6mod 8]
S[a7,j+7mod 8]

























where S : {0, 1}8 −→ {0, 1}8 denotes the S-Box operation.

The matrix multiplication can be interpreted as a linear combination of all eight column
vectors:

























d0,j

d1,j

d2,j

d3,j

d4,j

d5,j

d6,j

d7,j

























=

























02
01
06
08
07
05
01
01

























S[a0,j] ⊕

























01
02
01
06
08
07
05
01

























S[a0,j] ⊕ . . . ⊕

























01
06
08
07
05
01
01
02

























S[a0,j+7mod 8]

We define now eight T -tables: T0, T1, . . . , T7:

T0[α] =

























02
01
06
08
07
05
01
01

























S[α], T1[α] =

























02
01
06
08
07
05
01
01

























S[α] . . . T7[α] =

























01
06
08
07
05
01
01
02

























S[α].

























d0,j

d1,j

d2,j

d3,j

d4,j

d5,j

d6,j

d7,j

























= T0[a0, j mod 8] ⊕ T1[a1, j + 1 mod 8] ⊕ T1[a1, j + 2 mod 8] ⊕ . . .

⊕T0[a0, j + 7 mod 8].

36

All operations are 64-bit XOR operations that can be implemented quite efficiently on
64-bit platforms.

6.3 32-Bit Platforms

By splitting the 64-bit look-up tables T0, . . . , T7 into 32-bit chunks we take presumably
about twice the time for a Mini-Round as compared to the 64-bit implementation, i.e.
the speed linearly scales down with the bandwidth available on a specific platform.

6.4 Specific Remarks for 8-Bit Platforms

The performance on 8-bit processors is an important issues, since most smart cards
have such a processor and many cryptographic applications run on smart cards. There
are several options for implementing Twister, depending on whether the requirements
demand for minimum space (i.e. low possibility for storing lookup-tables) or maximum
speed. If minimum space is requested, the multiplication of two elements in GF (28)
has to be performed in software and could not be stored as a lookup table. Specific
details for such issues can be found in [16, Chapter 4.1.1]. If space limitations is not an
issue, the technique for implementing Twister via lookup-tables should be chosen as
was discussed in section 6.2. As nearly all of the operations scale linearly down (i.e. a
64-bit XOR can be easily implemented via 8 times an 8-bit XOR) we simply have the
running time of 8 × running time on 64-bit.

6.5 Dedicated Hardware

Twister is suited to be implemented in dedicated hardware. There are several trade-
offs between chip area and speed possible. Because the implementation in software on
general-purpose processors is already very fast, the need for hardware implementation
will very probably be limited to very specific cases like:

1. Extreme high-speed chips with no area restrictions: the T -tables can be hardwired
and the XOR operations can be conducted in parallel.

2. Compact coprocessors on smart cards, there can either be only the S-Box hardwired
or, additionally (and if enough memory is available) the T -tables generated at
runtime.

3. If there is essentially no space to hardwire anything, even the S-Box can generated
at runtime.

37

6.5.1 Decomposition of the S-Box

As we use the Rijndael S-Box, we can assemble it using two transformations:

S[α] = f(g(α)),

where g(α) is the transformation

α → α−1 in GF (28)

and f(α) is an affine transformation.

The problem of designing efficient circuits for inversion in finite field has been studien
extensively before; e.g. by C. Paar and M. Rosner in [36] or, for a short summary, in
[16].

6.6 Multiprocessor Platforms

There is considerable parallelism possible. If look-up tables are used, all table lookups
can be done in parallel. The XOR operations can be done mostly in parallel as well. But
the limiting factor for Twister implementations is likely to be the number of memory
references that can be done per cycle, rendering the inner parallelism somewhat non-
productive.

6.7 Performance Measurements

6.7.1 Performance Measurement Results on 64-Bit Platforms

Twister was especially designed with 64-platforms in mind by making it possible to
aggregate 8 times an 8-bit table lookup into one single 64-bit table lookup. The following
performance measurements were conducted on:

Processor: Core2Duo T7300

Clock Speed: 2000 MHz

Memory: 2048 MB

Operating System: Linux, GNU Debian Lenny, Kernel 2.6.26-1 x64

Compiler: GCC 4.3, Optimization settings: -Os

For comparison, performance measurement results for SHA2 on the this platform are
given.

SHA-256: total 20.1 clock cycles per byte

SHA-512: total 13.1 clock cycles per byte

38

For Twister we have the following performance results:

Twister-224

Setup: negligible
Generation of Message Digest : 15.8 cycles per byte

Twister-256

Setup: negligible
Generation of Message Digest : 15.8 cycles per byte

Twister-384

Setup: negligible
Generation of Message Digest : 17.5 cycles per byte

Twister-512

Setup: negligible
Generation of Message Digest : 17.5 cycles per byte

6.7.2 Performance Measurement Results on 32-Bit Platforms

Processor: Core2Duo T7300

Clock Speed: 2000 MHz

Memory: 2048 MB

Operating System: Linux, GNU Debian Lenny, Kernel 2.6.26-1 x64

Compiler: GCC 4.1, Optimization settings: -Os

For comparison, performance measurement results for SHA2 on the this platform are
given.

SHA-256: total 29.3 clock cycles per byte

SHA-512: total 55.2 clock cycles per byte

For Twister we have the following performance results:

Twister-224

Setup: negligible
Generation of Message Digest : 35.8 cycles per byte

Twister-256

Setup: negligible
Generation of Message Digest : 35.8 cycles per byte

Twister-384

39

Setup: negligible
Generation of Message Digest : 39.6 cycles per byte

Twister-512

Setup: negligible
Generation of Message Digest : 39.6 cycles per byte

6.7.3 Performance Estimates for 8-Bit Platforms

As Twister nearly linearly scales down on low-end platforms we expect (assuming the
same technical background) that Twister has approximately the following performance
on 8-bit platforms. We assuem that all the T -tables are precomputed and available on
the platform.

Twister-224

Setup: negligible
Generation of Message Digest : 200 cycles per byte

Twister-256

Setup: negligible
Generation of Message Digest : 200 cycles per byte

Twister-384

Setup: negligible
Generation of Message Digest : 220 cycles per byte

Twister-512

Setup: negligible
Generation of Message Digest : 220 cycles per byte

This (downward) scalability is largely due to the fact that a 64-bit XOR operation can
be implemented using eight 8-bit XOR operations.

40

7 Legal Disclaimer

To the best of our knowledge, the Twister hash function is not encumbered by any
patents. We have not, and will not, apply for patents on anything in this document, and
we are unaware of any other patents or patent filings that cover this work. The example
source code – and all other code on the Twister website www.twister-hash.com – is
in the public domain and can be freely used.

We make this submission to NIST’s hash function competition solely as individuals. Our
respective employers neither endorse nor condemn this submission.

41

42

8 About the Authors

The Twister team consists of young, dynamic and high motivated PhD students which
are working all on topics of symmetric cryptography, especially on hash functions design
and cryptanalysis. Our team consists of researcher that are experts in theory and also
in practice.

43

44

Bibliography

[1] Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J. Hoch, John
Kelsey, Adi Shamir, and Sébastien Zimmer. Second Preimage Attacks on Dithered
Hash Functions. In Smart [41], pages 270–288.

[2] Jean-Philippe Aumasson, Willi Meier, and Raphael C.-W. Phan. The Hash Func-
tion Family LAKE. In FSE, page inproceeding, 2008.

[3] Daniel J. Bernstein and Peter Schwabe. New AES software speed records. Cryp-
tology ePrint Archive, Report 2008/381, 2008. http://eprint.iacr.org/.

[4] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Radiogatun,
a belt-and-mill hash function. Presented at Second Cryptographic Hash Workshop,
Santa Barbara (August 24-25, 2006), 2006. See http://radiogatun.noekeon.

org/.

[5] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge
Functions. Ecrypt Hash Workshop, 2007. See http://gva.noekeon.org/papers/

bdpv07.html.

[6] Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Franklin [21], pages 290–
305.

[7] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Cramer [13], pages
36–57.

[8] Alex Biryukov, editor. Fast Software Encryption, 14th International Workshop,
FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers,
volume 4593 of Lecture Notes in Computer Science. Springer, 2007.

[9] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the
block-cipher-based hash-function constructions from pgv. In Moti Yung, editor,
CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 320–335.
Springer, 2002.

[10] Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of Lecture Notes in Computer Science. Springer,
1990.

[11] Christophe De Cannière and Christian Rechberger. Finding sha-1 characteristics:
General results and applications. In Xuejia Lai and Kefei Chen, editors, ASI-

45

ACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 1–20. Springer,
2006.

[12] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer Science,
pages 56–71. Springer, 1998.

[13] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture
Notes in Computer Science. Springer, 2005.

[14] J. Daemen and V. Rijmen. AES Proposal: Rijndael. NIST AES Homepage: http:
//csrc.nist.gov/encryption/aes/round2/r2algs.htm, 1999.

[15] Joan Daemen and Vincent Rijmen. The design of rijndael: AES - the advanced
encryption standard, 2002.

[16] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

[17] Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard [10], pages
416–427.

[18] Richared D. Deam. Formal Aspects of Mobile Code Security. Ph.D. dissertation,
Princeton University, 1999.

[19] Hans Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253–271, 1998.

[20] FIPS. Secure Hash Standard. National Institute for Standards and Technology,
Gaithersburg, MD 20899-8900, USA, August 2002.

[21] Matthew K. Franklin, editor. Advances in Cryptology - CRYPTO 2004, 24th Annual
International CryptologyConference, Santa Barbara, California, USA, August 15-
19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer Science. Springer,
2004.

[22] Michael Gorski, Stefan Lucks, and Thomas Peyrin. Slide Attacks on Hash Functions.
In ASIACRYPT, pages 143 – 160, 2008.

[23] Deukjo Hong, Donghoon Chang, Jaechul Sung, Sangjin Lee, Seokhie Hong, Jaesang
Lee, Dukjae Moon, and Sungtaek Chee. A New Dedicated 256-Bit Hash Function:
FORK-256. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes
in Computer Science, pages 195–209. Springer, 2006.

[24] Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In Franklin [21], pages 306–316.

[25] John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nostradamus
Attack. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes
in Computer Science, pages 183–200. Springer, 2006.

[26] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions for

46

Much Less than 2n Work. In Cramer [13], pages 474–490.

[27] Lars R. Knudsen. SMASH - A Cryptographic Hash Function. In Henri Gilbert
and Helena Handschuh, editors, FSE, volume 3557 of Lecture Notes in Computer
Science, pages 228–242. Springer, 2005.

[28] Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl Hash
Functions. In Biryukov [8], pages 39–57.

[29] Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Bimal K.
Roy, editor, ASIACRYPT, volume 3788 of Lecture Notes in Computer Science,
pages 474–494. Springer, 2005.

[30] F. I. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes,
1977.

[31] Krystian Matusiewicz, Thomas Peyrin, Olivier Billet, Scott Contini, and Josef
Pieprzyk. Cryptanalysis of FORK-256. In Biryukov [8], pages 19–38.

[32] Florian Mendel and Martin Schläffer. Collisions for Round-Reduced LAKE. In
Yi Mu, Willy Susilo, and Jennifer Seberry, editors, ACISP, volume 5107 of Lecture
Notes in Computer Science, pages 267–281. Springer, 2008.

[33] Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [10], pages
428–446.

[34] National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard.
April 1995. See http://csrc.nist.gov.

[35] National Institute of Standards and Technology. FIPS 180: Secure Hash Standard.
1993. See http://csrc.nist.gov.

[36] Christof Paar and Martin Rosner. Comparison of arithmetic architectures for reed-
solomon decoders in reconfigurable hardware. In FCCM, pages 219–225. IEEE
Computer Society, 1997.

[37] Thomas Peyrin. Cryptanalysis of Grindahl. In ASIACRYPT, pages 551–567, 2007.

[38] Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Breaking a New
Hash Function Design Strategy Called SMASH. In Bart Preneel and Stafford E.
Tavares, editors, Selected Areas in Cryptography, volume 3897 of Lecture Notes in
Computer Science, pages 233–244. Springer, 2005.

[39] Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred Menezes,
editor, CT-RSA, volume 3376 of Lecture Notes in Computer Science, pages 58–71.
Springer, 2005.

[40] R. Rivest. The MD5 Message-Digest Algorithm, 1992.

[41] Nigel P. Smart, editor. Advances in Cryptology - EUROCRYPT 2008, 27th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture
Notes in Computer Science. Springer, 2008.

47

[42] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanal-
ysis of the Hash Functions MD4 and RIPEMD. In Cramer [13], pages 1–18.

[43] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-
1. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer
Science, pages 17–36. Springer, 2005.

[44] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Cramer [13], pages 19–35.

[45] Xun Yi, Shi Xing Cheng, Xiao Hu You, and Kwok Yan Lam. A Method for Ob-
taining Cryptographically Strong 8x8 S-boxes. In IEEE Global Telecommunications
Conference, GLOBECOM 97, Volume 2, pages 689–693, 1997.

48

A How to find (good) MDS matrices

The common way for finding MDS matrices is to use a generator matrix G = (Ik A)
of a Reed-Solomon code and take a sub matrix of A. This approach is deterministic
and does always give a MDS matrix of the desired size (assuming that the size is not
to big for MDS matrices over F256). Another way is to create random matrices and
check for the desired properties. This way, we found the MDS-matrix which is given in
section 4.2.1. Our MDS-finder (see our website on www.twister-hash.com algorithm
favors MDS-matrices that have the following properties that lead to less working-memory
requirements for look-up tables, higher speed (a multiplication by one is and addition)
and better hardware performance (cyclicity) [15]:

• ’low’ value of the entries especially as much values being ’1’ as possible,

• low number of different entries,

• cyclicity.

49

50

B The AES/Twister S-BOX

The twister S-box is taken from AES [16] which is as follows.

0x63 0x7c 0x77 0x7b 0xf2 0x6b 0x6f 0xc5

0x30 0x01 0x67 0x2b 0xfe 0xd7 0xab 0x76

0xca 0x82 0xc9 0x7d 0xfa 0x59 0x47 0xf0

0xad 0xd4 0xa2 0xaf 0x9c 0xa4 0x72 0xc0

0xb7 0xfd 0x93 0x26 0x36 0x3f 0xf7 0xcc

0x34 0xa5 0xe5 0xf1 0x71 0xd8 0x31 0x15

0x04 0xc7 0x23 0xc3 0x18 0x96 0x05 0x9a

0x07 0x12 0x80 0xe2 0xeb 0x27 0xb2 0x75

0x09 0x83 0x2c 0x1a 0x1b 0x6e 0x5a 0xa0

0x52 0x3b 0xd6 0xb3 0x29 0xe3 0x2f 0x84

0x53 0xd1 0x00 0xed 0x20 0xfc 0xb1 0x5b

0x6a 0xcb 0xbe 0x39 0x4a 0x4c 0x58 0xcf

0xd0 0xef 0xaa 0xfb 0x43 0x4d 0x33 0x85

0x45 0xf9 0x02 0x7f 0x50 0x3c 0x9f 0xa8

0x51 0xa3 0x40 0x8f 0x92 0x9d 0x38 0xf5

0xbc 0xb6 0xda 0x21 0x10 0xff 0xf3 0xd2

0xcd 0x0c 0x13 0xec 0x5f 0x97 0x44 0x17

0xc4 0xa7 0x7e 0x3d 0x64 0x5d 0x19 0x73

0x60 0x81 0x4f 0xdc 0x22 0x2a 0x90 0x88

0x46 0xee 0xb8 0x14 0xde 0x5e 0x0b 0xdb

0xe0 0x32 0x3a 0x0a 0x49 0x06 0x24 0x5c

0xc2 0xd3 0xac 0x62 0x91 0x95 0xe4 0x79

0xe7 0xc8 0x37 0x6d 0x8d 0xd5 0x4e 0xa9

0x6c 0x56 0xf4 0xea 0x65 0x7a 0xae 0x08

0xba 0x78 0x25 0x2e 0x1c 0xa6 0xb4 0xc6

0xe8 0xdd 0x74 0x1f 0x4b 0xbd 0x8b 0x8a

0x70 0x3e 0xb5 0x66 0x48 0x03 0xf6 0x0e

0x61 0x35 0x57 0xb9 0x86 0xc1 0x1d 0x9e

0xe1 0xf8 0x98 0x11 0x69 0xd9 0x8e 0x94

0x9b 0x1e 0x87 0xe9 0xce 0x55 0x28 0xdf

0x8c 0xa1 0x89 0x0d 0xbf 0xe6 0x42 0x68

0x41 0x99 0x2d 0x0f 0xb0 0x54 0xbb 0x16

Table B.1: The AES/Twister S-box

51

52

C Examples

This appendix is for informational purposes only.

C.1 Twister-224 Examples

In the following we show the result of an extremely long messages which is hash using
Twister-224: The message

abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno

is repeated 16777216 times which give the hash value

7D4235BD495A99F75302CB6547966B0BAC9206C174E954AD83DCF080

The following table shows some test vectors for short message inputs.

length message hash value

0 00 93CFDE255C161D1D06644413C6D7D7C1442E4654671AFAFC09D4A40E

1 00 0BD9F4888660AEDB72B943FEF54F69293691E991316C2F5F0CB87FE2

2 C0 33B9EE086BA1E051AB91281AA06846ACC891DCA5624B5A4F4A99A1D8

3 C0 8042AE83808FA215822A46B8409260B420FC09636D46C8B1C9EB231B

4 80 4F530B4AD1EA61B04FFD42C83C836307B3D7AC30A9E60C9710BD1242

5 48 4C0A0B005677E59427D43EE38A66946476A399E0B956D1633781F679

6 50 FCEB85A9CE861A8BA136A23833F9605A9D0626E541E960A4E937CE65

Table C.1: Short messages for /Twister-224

53

C.2 Twister-256 Examples

In the following we show the result of an extremely long messages which is hash using
Twister-256: The message

abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno

is repeated 16777216 times which give the hash value

C2EF0A386154AB0A34137799053C37D9A66CA4919FBC

6DECA873AE7580CAF132

The following table shows some test vectors for short message inputs.

length message hash value

0 00 CC043565D3016A5F4F0635FF0DE23

EEF069CE518266A488748DB9D69F0664484

1 00 97BAF8F9060BFAB752CDE28F5ACCC

780B1858D0A024A283926FAB696D5AF546B

2 C0 EEEAF40C2712BCEF07E746220B7D23

C6BA2DD9F5C3ECF590D1E0C17C3482077F

3 C0 72CCCBC49B05C7F7F5E9C383616594

7B36C14F334053E2C7B6C8DC906C55066A

4 80 31AF0D16733F327824F542427B1CB7F

6320D85750B33057F97C87043BE1E4C9A

5 48 B291BB6E8F1200D3EEB3BB07E359EA

AE8F65199FD2599883EEE3E99BDDCAF7A9

6 50 D6E468BEBBCA6D1BC4F34CFF0B4409

97C61B9F01F3E6C0E23BD81ECCA6780A31

Table C.2: Short messages for /Twister-256

54

C.3 Twister-384 Examples

In the following we show the result of an extremely long messages which is hash using
Twister-384: The message

abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno

is repeated 16777216 times which give the hash value

70C2D4390429DB964F939B92A3C74F8A8D851A4DAA6F82481B2471A

AD5FA6768D64254B433D509A4DBC64718F9E8026F

The following table shows some test vectors for short message inputs.

length message hash value

0 00 C19F4457E1B269F4C4502A54F5C1946544A0F1B6D1C99

85B5C94137806C4F8D7

F188374A2D7E01685B97E40F18DD6808

1 00 F154FE7598363EE2763930F5F399F0AD7830852641703A6

C4B752897EDA9AC64F08A91AECE9E50DCDCB80FFA33E338BD

2 C0 722BF0C945E15863C80588F47533BC4E7FE3207B11407F6

D525E365CE43F2F60BF3FBC0B1F32969192086D5D005AA9C2

3 C0 6748A9704C2452B5C6CF5262C5BE9F0ED29C0FACD821B

658CA93857513C40C616B346F6B1794E1E74964DF7564977909

4 80 F8FF0FA880919F7D302B66EA95C796DF97CE0CB204E91C

40626776E0E7A64E55491406FA8164196B33039538A2563DF3

5 48 BBBD380230A91CB05AD43ACE01B024585528D971FFC87

A194CE0BF4564EC1656AA7DC4E6F4E8264F0816905C8EF5606B

6 50 53024F774BDFF0AC54A4F42D7EDE8490BCEC2F955F60B

B9837EBB13F084AAD55B01C007CAF7C7DDDB4A436ADEB59F69B

Table C.3: Short messages for /Twister-384

55

C.4 Twister-512 Examples

In the following we show the result of an extremely long messages which is hash using
Twister-512: The message

abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno

is repeated 16777216 times which give the hash value

371C7D667057E67177901164A3CC627A55EAA2E5

BBB63D141F3344538A26F0277FFC3BA1B184E091871

6EA1C9DD2CCAE8C7ACB15FA9946583EDA5B9805FE9F9A

The following table shows some test vectors for short message inputs.

length message hash value

0 00 8F5A88005B2833AFCAA6EC3762F8135C00DCE5A5

0B74E4C340AFF10165745EC88B0B542D49345E863AFAA2

1A3F2D735191612DC214A8E4A8CA54147BDA477AD2

1 00 DB69DD03E42C4D256CFE87FD67E56039E172A985AC3F2

6C1BEE30563C262BD15EF06D9F1296BD92524874BA7A2

9E4B4C6AAB1267919061C77CD2E27AF69DF4D6

2 C0 E799E0EE71DBEC91B34B4E2E91481498E01A6FCE4A12F5BA

AE085ED8D31047F0E64E80857CCC224EA057F492F

A8DFBC98155D67197CB9DBEAC252673A423724C

3 C0 50DD967493AA124B145DF4753807B23C7165E4B85AC

51EEA2B0F1BE2BB541B17C20F27D1B1D923093E62DDACE

EEE41A8196839CFCD354F28D5F2A61F94E8E01F

4 80 DCC95B18A2F2E0D6FFA5A007EBA8DD2B1B0B97F96

BD04423B9BA3FFF2E2C2E723820451D04F7F83BB122

D9F8E27FE34346EDFDC8E9F9FB4D732C0CE937709AF7

5 48 BDF4009E3C01E4BB96DA092C406C8F87200

D415D00252D204B0774F49CA66AFAB1A6B375680CDFB9646587

FD35B71C67BD788BA7CFEEA13639EABCCB01FD2259

6 50 903470C64B53DFBBCE29CE003F7C98F25DDBE7AF81

C888778985C7D962F1979C97E657E2925EE8E3F85D

E96B245DA11BCC66C015ED107D79E85FE071BE58A5B5

Table C.4: Short messages for /Twister-512

56

