Dynamic SHA2

Zijie Xu
E-mail: Hxuzijiewz@gmail.comH

Abstract. In this paper I describe the construction of Dynamic SHA2
family of cryptographic hash functions. They are built with design
components from the SHA-2 family, but I use the bits in message as
parameters of function G, R and ROTR operation in the new hash
function. It enabled us to achieve a novel design principle: When
message is changed, the calculation will be different. It makes the system

can resistant against all extant attacks. Dynamic SHA2 is posted[16]
Key words: Cryptographic hash function, SHA, Dynamic SHA2

1 Introduction

The SHA-2 family of hash functions was designed by NSA and adopted
by NIST in 2000 as a standard that is intended to replace SHA-1 in 2010
[6]. Since MD5, SHA-0O and SHA-1 was brought out, people have not
stopped attacking them, and they succeed. Such as: den Boer and
Bosselaers [2,3] in 1991 and 1993, Vaudenay [8] in 1995, Dobbertin [5]
in 1996 and 1998, Chabaud and Joux [4] in 1998, Biham and Chen [1] in
2004, and Wang et al. [9-12] in 2005. Most well known cryptographic
hash functions such as: MD4, MD5, HAVAL, RIPEMD, SHA-0 and
SHA-1, have succumbed to those attacks.

Since the developments in the field of cryptographic hash functions,
NIST decided to run a 4 year hash competition for selection of a new
cryptographic hash standard [7]. And the new cryptographic hash
standard will provide message digests of 224, 256, 384 and 512-bits.

In those attacks, we can find that when different message inputted,
the operation in the hash function is no change. If message space is
divided many parts, in different part, the calculation is different, the
attacker will not know the relationship between message and hash value.
The hash function will be secure. To achieve the purpose, Dynamic


mailto:xuzijiewz@gmail.com

SHA?2 use bits in message as parameter of function G, R and ROTR
operation to realize the principle.

My Work: By introducing a novel design principle in the design of hash
functions, and by using components from the SHA-2 family, I describe
the design of a new family of cryptographic hash functions called
Dynamic SHA2. The principle is:

When message is changed, the calculation will be different.

The principle combined with the already robust design principles present
in SHA-2 enabled us to build a compression function of Dynamic SHA?2
that has the following properties:

1. There is not message expansion part.

2. The iterative part includes three parts.

3. The first part includes one round. Mix message words once.
4. The second part includes 9 rounds. Mix no message word.

5. The third part includes 7 rounds. Mix message words 7 times.

2 Preliminaries and notation
In this paper I will use the same notation as that of NIST: FIPS 180-2
description of SHA-2 [6].

The following operations are applied to 32-bit or 64-bit words in
Dynamic SHA2:

1. Bitwise logical word operations:* /\’~AND ,*\/’-OR,* ® "~XOR and
‘—=’—Negation.

2. Addition ‘+’ modulo2* or modulo2®.

3. The shift right operation, SHR"(x), where x is a 32-bit or 64-bit word
and n is an integer with 0<n<32 (resp. 0<n<64).

4.The shift left operation, SHL"(x), where x is a 32-bit or 64-bit word and
n is an integer with 0<n<32 (resp. 0<n<64).

5. The rotate right (circular right shift) operation, ROTR"(x), where x is a
32-bit or 64-bit word and n is an integer with 0 < n < 32 (resp. 0 <n <



64).
6. The rotate left (circular left shift) operation, ROTL"(x), where x is a
32-bit or 64-bit word and n is an integer with 0 <n < 32 (resp. 0 <n <
64).

Depending on the context I will sometimes refer to the hash function as
Dynamic SHA2, and sometimes as Dynamic SHA2-224/256 or Dynamic
SHA2-384/512.

2.1 Functions
Dynamic SHA2 includes four functions. The functions are used in

compression function.

2.1.1 Function G(x1, x2, x3, t)
Function G operates on three words x1, x2, x3 and an integer t, produces

a word y as output. And function G as follow:

X1® X2 @ X3

t

(X1 AX2)®D X3 t

y =G, (X1,X2,X3) = ¢
t

(—(x1v x3)) v (x1 A (x2 @ x3))

0
1
2
(=(X1v (X2 @ X3))) v (x] A =x3) t =3

Table 2.1. function G for Dynamic SHA2

2.1.2 Function R(x1,x2,x3,x4,x5,x6,x7,x8,1)
Function R operates on eight words x1, x2, x3, x4, x5, x6, x7, x8 and an
integer t. produces one word y as output. Function R as follow:

y = ROTR' (X1 ® X2) + X3) ® x4) + X5) ® X6) + X7) ® X8)

2.1.3 Function R1(x1,x2,x3,x4,x5,x6,X7,x8)
Function R1 operates on eight words x1, x2, x3, x4, X5, x6, x7, x8.
produces one word y as output. Function R1 as table 2.3 show:

2.1.4 Function COMP(hv1,hv2, ... ,hv8,w(0),w(1),...,w(7),t)
Function COMP operates on sixteen words hvl,hv2, ...,hv8, w(0),
w(1),...,w(7) and an integer t. Function COMP is defined as table 2.4.



x1 x2 x3 f1 2 13 4
0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 0 1 0
0 1 1 0 1 0 1
1 0 0 1 0 0 1
1 0 1 0 1 1 0
1 1 0 0 1 1 1
1 1 1 1 0 0 0

Table 2.2 Truth table for logical functions
t0 = (((((x1 + X2) @ X3) + x4) ® X5) + X6) ® x7
) tl = (SHR " (t0) @ t0) A (2" -1)

Dynamic 2 =(SHR"(t1) @ tl) A (2" -1)
SHA2-224/256 | _ (SHR *(12) @ t2) A 31

y = ROTR (x8)

t0 = ((((( x1 + X2) @ x3)+ x4) @ X5) + x6) @ X7
tl = (SHR **(10) ® t0) A 27 -1)

Dynamic 2 =(SHR " (t) ® tl) A (2" -1)
SHA2-384/512 | 8= (SHR 2 (12) ® 2) A (2" -1)
t=(SHR °(3) ® t3) A 63
y = ROTR ‘(x8)

Table 2.3. function R1 for Dynamic SHA2

2.2 Dynamic SHA2 Constants
Dynamic SHA?2 does not use any constants.

2.3 Preprocessing

Preprocessing in Dynamic SHA?2 is exactly the same as that of SHA-2.
That means that these three steps: padding the message M, parsing the
padded message into message blocks, and setting the initial hash value,
H? are the same as in SHA2. Thus in the parsing step the message is
parsed into N blocks of 512 bits (resp. 1024 bits), and the i-th block of
512 bits (resp. 1024 bits) is a concatenation of sixteen 32-bit (resp. 64-bit)
words denoted as M¢", MV, M)

Dynamic SHA2 may be used to hash a message, M, having a length of |



Dynamic

SHA2-224/256

T =R(hvl, hv2, hv3, hv4, hv5, hv6, hv7, hv8, w(t) A 31)
hv8 = hv7

hv7 = ROTR (SHR°0O) 3L (6

hve =hvs + w((t +3) A7)

hvs = ROTR (SHR™ WO 3L (1 4)

hv4 = G(hvi, hv2, hv3, SHR ** (w(t))) + w((t +2) A 7)

hv3 = hv2

hv2 = hvl

hvi=T+w(t+1) A7)

T =R(hv1, hv2, hv3, hv4, hv5, hv6, hv7, hv8, (SHR * (w(t))) A 31)
hv8 =hv7 + w((t + 7) A 7)

hv7 = ROTR ©HR w0131 (1)
hvé =hv5 + w((t + 6) A 7)

hvs = ROTR ©HR w0231 1y 4)

hv4 = G(hvl, hv2, hv3, t A3) + w((t +5) A 7)
hv3 =hv2 + w(t)

hv2 = hvl

hvli=T+w((t+4)A7)

Dynamic

SHA2-384/512

T =R(hvl, hv2, hv3, hv4, hv5, hv6, hv7, hv8, w(t) A 63)
hv8 = hv7
hv7 = ROTR (SHR° (O 163 (6
hvé = ROTR (SHR™WON 8 (hy5) L w((t + 3) A 7)
hvs = ROTR (HR™ (0163 (1yy4)
hv4 = G(hv1, hv2, hv3, SHR % (w(t))) + w((t +2) A 7)
hv3 = ROTR (HR* 00 63 (1yy)
hv2 = hvl
vi=T+w((t+1)A7
h
T =R(hv1, hv2, hv3, hv4, hv5, hv6, hv7, hv8, (SHR * (w(t))) A 63)
hv8 =hv7 + w((t + 7) A7)
hv7 = ROTR HR™ W) 63 (y/6)
hv6 = ROTR SHR™MONA63 (hyB) | w((t + 6) A 7)
hv5 = ROTR (SHR 000163 (34)
hv4 = G(hv1, hv2, hv3, (SHR  (w(t))) A 3) + w((t + 5) A 7)
hv3 =hv2 + w(t)

hv2 = ROTR (SHR™ W00 63 (/1)
hvli=T+w((t+4)A7)

Table 2.4 function COMP for Dynamic SHA2




bits, where 0<| <%,

2.3.1 padding

2.3.1.1 Dynamic SHA-224/256
Suppose that the length of the message M is L bits. Append the bit “1” to
the end of the message, followed by k zero bits, where k is the smallest,

non-negative solution to the equation L+1+k = 448 mod 512. Then

append the 64-bit block that is equal to the number L expressed using a

binary representation.

Dynamic
SHA2-224

Dynamic
SHA2-256

Dynamic SHA2-384

Dynamic SHA2-512

H{%) = c1059 ed 8,

H (%) =367¢cd 507,
H{®) =3070dd17,
H{%) = £70e5939,

H{") = ffcoob31,
H{®) = 68581511 ,

H{®) =64 fo8 fa7,

H{%) = befa 4 fa4,

H{” = 6a09¢667 ,
H () = bb67ae85 ,

H (" = 3c6ef372,
H (" = a54ff53a,
H = 510e527f,

H " = 9b05688c,

H " = 1f83d9ab,

H (" = 5be0cd19,

H 50) = cbbb9d5dcl 059ed8 ,
H 1(0) = 629a292a36 7c¢d507
H 2(0) = 9159015230 70dd17,
H " =152fecd8f7 0e5939,
H 10) = 67332667ff c00b31,
H 5(0) = 8eb44a8768 581511,
H (Y = db0c2e0d64 f98fa7,
H 7(0) = 47b5481dbe fad4fa4,

H{” = 6a09e667f3bcc908,
H{” = bb67ae8584caa73b,
H{” =3c6ef372fe94f32b,

H§O) = a54ff53a5f1d36f1,

H{” =510e527fade682d1,
HS(O) =9b05688c2b3eb6elf,
Héo) =11f83d9abtb41bd6b,
H{ =5be0cd19137¢2179,

Table 2.5 The initial hash value, H® for Dynamic SHA

2.3.1.2 Dynamic SHA-384/512
Suppose that the length of the message M is L bits. Append the bit “1” to
the end of the message, followed by k zero bits, where k is the smallest,

non-negative solution to the equation L+1+k = 896 mod 1024. Then

append the 128-bit block that is equal to the number L expressed using a

binary representation.

2.4 Initial Hash Value H°’

The initial hash value, H® for Dynamic SHA is the same as that of
SHA-2 (given in Table 2.5).




Fori=1to N:
{
1.Initialize eight working variables a, b, ¢, d, ¢, f, g and h with the i-n"
hash value:
a=H{™ b=H c=H{ d=H{"
e=H{" B Hs(i‘])’ g=H (-’ h= H§”3
2. Iterative part , ’ ,
2.1 The first iterative part
COMP(a,b,c,d,e, f,g,h,w,,w,,w,, W,,w,, ws, w,,w,,0)
COMP(a,b,c,d,e, f,g,h,wg, w,,W,,, W, ,W,,, W, W,,Ws,0)

2.2 The second iterative part

Fort=0to &
{
T =Rl(a,b,c,d,e, f,g,h)
h=g
g=f
f=e
e=d
d=c
c=b
b=a
a=T
J
2.3 The third iterative part
Fort=1to 7
{
COMP(a,b,c,d,e, f,g,h,w,,w,w,, w,,w,, ws, W, W,,t)
COMP(a,b,c,d,e, f,g,h,wg, Wy, W,,, W, W,,, W,;, W, W,s,t)
)

3.Compute the i" intermediate hash value H® :
HP”=a+H{™", HO=b+HID, HO=c+H, HO=d+HD,
HY =e+H{™D, HO=f+HI, HO=g+HI", HO=h+HID

}

Table 2.6 Algorithmic description of Dynamic SHA2 hash function.




2.5 Dynamic SHA2 Hash Computation

The Dynamic SHA2 hash computation uses functions and initial
values defined in previous subsections. So, after the preprocessing is
completed, each message block, M@ M® . .M™ | is processed in
order, using the steps described algorithmically in Table 2.6.

The algorithm uses 1) a message schedule of sixteen 32-bit (resp.
64-bit) words, 2) eight working variables of 32 bits (resp. 64 bits) , and 3)
a hash value of eight 32-bit (resp. 64-bit) words. The final result of
Dynamic SHA2-256 is a 256-bit message digest and of Dynamic
SHA2-512 is a 512-bit message digest. The final result of Dynamic
SHA2-224 and Dynamic SHA2-384 are also 256 and 512 bits, but the
output is then truncated as 224 (resp. 384) bits. The words of the message
schedule are labeled W,W,,..W,. The eight working variables are
labeled a,b,c,d,e,f,g and h and sometimes they are called “state
register”. The words of the hash value are labeledH",H",...,H{", which
will hold the initial hash value, H®, replaced by each successive
intermediate hash value (after each message block is processed), H®,
and ending with the final hash value, H®™ .

Dynamic SHA?2 also uses one temporary words T.

3 Security of Dynamic SHA2

In this section I will make an initial analysis of how strongly collision
resistant, preimage resistant and second preimage resistant Dynamic
SHA?2 is. 1 will start by describing our design rationale, then 1 will
discuss the strength of the function against known attacks for finding
different types of collisions.

3.0 Cryptographic Hash Functions

After preprocess message, there are some message blocks that include
512(resp.1024) bits.

Let there exist message blocks M(1),M(2),...,M(n). Let f(h,Mi) is
compression function, it is as table 2.6. The operation of the iterated hash
function is as follows. First, an b-bit value h(0)=IV is fixed. Then the



message blocks are hashed in order. There exist f(h(i-1),M(1))=h(i) 1 =
1,2,...,n. As table 3.1

M1 M2 Mj Mn

. L.

IV —> f . — f —*F(x)

—

\ 4
—
—

Table 3.1 The iterated construction of compression function f

When someone find collisions, he can randomly guess message blocks
except for one block M(j) ,where 0<j<n. Then he can calculate out h(j-1)
with function f and message blocks M(1),...,M(j-1) , and he can
backward function f with message blocks M(j+1),...,M(n) to calculate
out h(j). At last he can just find suitable M(j) that mak f(h(j-1),M(j))=h(j)
to complete findding collisions. So I will discuss the security of Dynamic
SHA?2 in one block.

3.1 Properties of iterative part
The iterative part includes three parts.

3.1.1 Properties of iterative part one

In iterative part one, all message bits have been mixed. And function
COMP is called twice. All bits in message words W,,W, have been used
as parameters of function G, R and ROTR operation.

3.1.2 Properties of iterative part two
It is relatively easy to prove the following Theorem:

Theorem 1: The iterative part two of Dynamic SHA2 is a bijection
E011% - {0,11>". working variables are w-bit words.

Proof. Let hv=(a, b, ¢, d,e, f, g, h). where a, b, c, d,e, f, g, h are working
variables before iterative part two. And hvl= (al, bl, cl, dl,el, f1, gl,



hl), where al, bl, cl, dl,el, fl, gl, hl are working variables after
iterative part two.

The working variables are b-bit words. Then we have the function
F(hv)=hv’and F: {01} —{0,1};*"

It is enough to known that, to a given hv’, there is a hvl make
F(hv’)=hvl.

To a given hvl’, it is easy to backward the iterative part two and
compute the unique value for hvl. So to a given hvl’, there is a hvl
make F(hvl)=hvl1’.

So the iterative part two of Dynamic SHA2 is a bijection
E0,1% = {0,11%" O

After iterative part one, all bits in message have been mixed. From the
definition of function R1, it is enough to known that all bits in working
variables a,b,c,d,e,f,g will affect all bits in temporary words T. After call
function R1 9 times, all bits in working variables that before iterative part
two will affect all bits in working variables that after iterative part two.
So all message bits will affect all bits in last hash value.

3.1.3 Properties of iterative part three

In iterative part three, all message bits will be mixed seven times. And
function COMP is called fourteen times. All bits in message words
W, W, , W, , W, W, W, W, W W, W, W, W, W, W, have  been  used as

parameters of function G, R and ROTR operation.

In iterative part one and three, all bits in message have been used as
parameters of function G, R and ROTR operation. This will divide
message space into 2°" (resp. 2'"*) parts.

3.2 Design rationale

The reasons for principle: When message is changed, the
calculation will be different.

From the definition of function G, R and ROTR operations, it is easy
to know all bits in message have been used as parameters of function G,



R and ROTR operation. One bit different in message, different logical
function or different ROTR operation will be done, and it will make the
calculation different. Different message will lead to different calculation,
these different calculations divide message space into 2°(resp. 2'"*)
parts. In a part, there is 2’7" =1 (resp. 2'"*"'® =1) message value.

Why Dynamic SHA2 does not have constants?
The reasons why I decided not to use any constants is that Dynamic
SHAZ2 is secure enough.

Controlling the differentials is hard in Dynamic SHA2:

In Dynamic SHAZ2, it is known that when message is changed, the
calculation will be different. To analyze Dynamic SHA2, it need the
unchangeable formulas that represent function describe function G, R and
data-depend ROTR operation. There are three ways to analyze Dynamic
SHAZ2:

1. Guess the parameters of function G, R and ROTR operation. The
parameters of function G, R and ROTR operation divide message
space into 2°"* (resp. 2'"**) parts. In this way, someone select a part
in the message value space. And there is only one message value in
a part. He can not find collisions in the same part.

2. Someone can use Algebraic Normal Form (ANF) to represent
Dynamic SHA2, but the ANFs that represent function R, R1 has up
to 2 2% (resp. 2’ 2°%) monomials. If constitute the
Arithmetic function based on ANF, the degree of the Arithmetic
function represents function R, R1 and G is 261, 256, 5 (resp. 518,
512, 5), there are up to 2°' 2*° (resp. 2’ 2°?) monomials in
Arithmetic function represents function R, R1.

3. Someone can constitute Arithmetic functions to represent Dynamic
SHAZ2 as in Appendix 2. But the Arithmetic function that represents
function R and data-depend ROTR operation is complex
exponential function with round-off instruction. After iterative parts,
the Arithmetic function that represents function R and data-depend
ROTR operation will be very huge.



3.3 Finding Preimages of Dynamic SHA2
To a hash function f{(*), it need satisfy:

Given hash value H=f(M), it is hard to find message M that meet
H=f(M).

There are two ways to find preimages of a hash function:

1,From the definition of Dynamic SHA?2, it follows that from a given
hash digest it is possible to perform backward iterative steps by guessing
values that represent some relations between working variables of the
message part.

To do this, it needs the parameter of the ROTR operation and
function G, R in Dynamic SHA2. But in Dynamic SHA2, when message
changed, the parameter of the ROTR operation and function G, R will
change. So attacker had to guess the parameter that will be used in
Dynamic SHA2. From the definition of Dynamic SHAZ2, it is know that
all bits in message are used as the parameter of the ROTR operation and
function G, R. When attacker completes guessing parameters, he has

guessed all bits in message.

2, The probability of random guess of finding preimages is
2—224(resp. 2—256, 2—384’ 2—512).

3.4 Finding Second Preimages of Dynamic SHA2
To a hash function f(-), it need satisfy:
Given M, it is hard to find M’# M s.t. f(M) = {(M’).

There are five ways to find second preimages of a hash function:

1, Get hash value H=f(M) of message M, and find different message
M’ M that has hash value H= f(M’). In section 3.3, it is known
that it is hard to calculate out the message M’ from given hash value
H.

2, Given M, and find out the relationship between the difference AM
and the difference AH=f(M+AM)-f(M). And find out AM#0 that



make AH=0. To do this, someone will set up some system of
equations obtained from the definition of the hash function, then
trace forward and backward some initial bit differences that will
result in fine tuning and annulling of those differences and finally
obtain second preimages. It need know the unchangeable formulas
that represent hash function f. In Dynamic SHA2, when message is
changed, the calculation is different. To get unchangeable formulas
that represent hash function f, it need get ANFs for Dynamic SHA?2.
And the ANFs that represent function R, R1 has up to 2% 2**
(resp. 2°" 2°) monomials.

3. To get unchangeable formulas that represent hash function f. It can
constitute Arithmetic functions to represent Dynamic SHA2. And
the Arithmetic functions that represent function R, R1 and G are
exponential functions. Or someone had to constitute 261,256-degree
(resp. 518, 512-degree) Arithmetic function to represent function R,
R1, and there are up to 2*' 2% (resp. 2°"* 2°") monomials in
the Arithmetic function.

4. Guess the parameters of function G, R and ROTR operation. In this
way, a part in the message value space is selected. And there is only
one message value in a part. It can not find second preimages in the
same part.

5. The probability of random guess of finding second preimages is

27224 (resp. 2—256 , 2—384 , 27512 )

3.5 Finding Collisions in Dynamic SHA2
To a hash function f(-), it need satisfy:
It is hard to find different M and M’ s.t. f{(M) = (M’).

There are five ways to find collisions of a hash function:

1, Fix message M, and find different message M’ that has hash value
H=f(M). then the problem become finding Second Preimages of the
hash function.

2. Find out the relationship between the (M, M’) and the difference
AH=f(M)-f(M”). And find out (M,M") that make AH=0. To do this,



someone will set up some system of equations obtained from the
definition of the hash function, then trace forward and backward
some initial bit differences that will result in fine tuning and
annulling of those differences and finally obtain collisions. It need
know the unchangeable formulas that represent hash function f. In
Dynamic SHA2, when message is changed, the calculation is
different. To get unchangeable formulas that represent hash function
f, it need get ANFs for Dynamic SHA2. And the ANFs that
represent function R,R1 has up to 2°' 2% (resp. 2°° 2°7)
monomials.

3. To get unchangeable formulas that represent hash function f. It can
constitute Arithmetic functions to represent Dynamic SHA2. And
the Arithmetic functions that represent function R, R1 and G are
exponential functions. Or someone had to constitute 261, 256 -
degree (resp. 518, 512-degree) Arithmetic function to represent
function R , and there are up to 2 2% (resp. 2°% 2°7)
monomials in the Arithmetic function..

4. Guess the parameters of function G, R and ROTR operation. This
way is select a part in the message value space. And there is only
one message value in a part. It can not find collisions in the same
part.

5. The attack base on the birthday paradox. the workload for birthday
attack 1s of O(2!12) (resp. O(2'2) O(22) O(22%)).

3.6 Finding collisions in the reduced compression function of
Dynamic SHA2

If the message bits are mixed less twice. The system will be weak,
someone can backward Dynamic SHA?2 as table E.2 show.

If the message bits are mixed at least twice, message word w,,w,,w,, W,
are used as the parameter of the ROTR operation and function G, R. It
can backward iterative part as follow:
1. At first, there exist function COMPA and R1A:
1.1 Function COMPA operates on sixteen words hvl, hv2,...,hv§,
x0,x1,x1, x2, x3, x4, x5, x6, x7 and an integer t. Function COMPA



as table 3.2, 3.3, 3.4 show.
1.2. Function R1A operates on eight words x1,x1, x2, x3, x4, X5, x6,
x7, x8. produces one word y as output. Function R1 as table 3.2 and

table 3.3.
T =hvl, — x4
hvl, = hv2,

hv2, = hv3, —x0

hv3, = G(hvl,,hv2,,(hv4, — x5),t A 3)

hV4O — ROTR 32-(SHR %x0)A31) (hV51)

hv5, =hv6, —x6

hv6, = ROTR 2 (SHR™X0130) (hy 7

hv7, =hv8, —x7

T = ROTR 32-((SHR *°x0) A31) (T)

hv8, = (((((hvl, @ hv2,)+ hv3 )@ hv4 )+ hv5 )@ hv6,) +hv7 ) DT

T =hvl, —xl
hvl , =hv2,
hv2 , =hv3,

hv3_, =G(hvl,, hv2_,(hv4, —x2), SHR *(x0))

hv4 , = ROTR 3#:(SHR™0AD (hy 5

hvS_, =hv6, —x3

hv6_, = ROTR 3 (SHRH0A [y 7 1y

hv7_, =hvs,

T = ROTR %930 (T)

hv8 , = (vl ®hv2 )+ hv3 )@ hvd,)+hvs )@ hv6 ) +hv7 )@T

Table 3.2 function COMPA for Dynamic SHA2-224/256




T =hvl, — x4

hvlo — ROTR 64—((SHR54XO)/\63)hV2]

hv2, = hv3, —x0

hv3, = G(hvl,, hv2,,(hv4, — x5), SHR* (x0) A 3)

hV40 — ROTR 64—((SHR48XO)A63)(hV51)

hVSO — ROTR 64-((SHR *2x0) A63) (hV61 — X6)

hv6, = ROTR #(SHR™0169) (hy 7 )

hv7, = hv8, —x7

T = ROTR 64-((SHR3OXO)A63)(T)

hv8, = ((((((hvl, @ hv2,)+hv3,) @ hv4 )+ hv5,) D hv6, )+ hv7,) DT
T =hvl, —xl1

hvl , =hv2,

hv2_, = ROTR S+(SHR™063) (hy 3 )

hv3_, =G(hvl,,hv2 ,(hv4, —x2), SHR *(x0))

hV4_1 — ROTR 64—((SHR18XO)A63)(hV50)

hv5_, = ROTR 8+ (SHR™06) (hy 6 _ x3)

hv6_, = ROTR ®(SHRS06) (hy 7 )

hv7_, =hvg,

T = ROTR *0®(T)

hv8_, = ((((((hvl_ @ hv2 )+ hv3 )@ hv4d )+ hv5 )@ hvoe )+hv7 ST

Table 3.3 function COMPA for Dynamic SHA2-384/512

t0 = (((((X1 + X2) @ X3) + X4) D X5) + x6) D x7
. t1 = (SHR " (10) @ t0) A (27 -1)

Dynarmc 2 =(SHR"(t1) @ t1) A (2" -1)
SHA2-224/256 t = (SHR °(12) ® t2) A 31

y = ROTR *7(x8)

t0 = ((((( x1 + X2) D x3)+ x4) D X5)+ x6) D x7
tl = (SHR * (t0) ® t0) A 27 -1)

Dynamic 2 = (SHR " (t1) @ t1) A 2" -1)
SHA?2-384/512 | 3 =(SHR®(12) @ 2) A (2" -1)
t = (SHR °(13) @ t3) A 63
y = ROTR *7'(x8)

Table 3.4. function R1A for Dynamic SHA2



2. Base on function COMPA and R1A, we can backword the iterative
steps as follow:
2.1 Initialize eight last variables Q¢ , b16 yeres h16 , eight first
variables @_;
Wi, W, , W,
2.2 Input (a@_;, b, ... h, . w, w . w, ,0) into function
COMP, then we have &,,0,...h, .
2.3 Guess Wg , W9 yenes W15 . and input ( a16 . b16 yenes
h16 ,Wg , Wy ., W5 1) into function COMPA, then we have
Ay ,b14 yeves h14 .
2.4 Input (Qy , by, ... hy W w W, ,1) into function
COMPA, then we have 8,,,0,, ... N, .

2.5 From &;,,0,, ... Ny, . it can backword as follow:

b_l yeres h_l and eight message words

b

Fort=8to 0

{
T= Aig
A3 = bt+4
bt+3 =Ciia
Cz = dt+4
dt+3 =€i4
€z = fua
fis =0t
Ous =N
h.s =RIA(@.3,0,5,C55 0. €035 Triss 0an T)

}

Then we have @j, b, e h, .
2.6 Operate on Aj, b3 yeuns h3 and 4, b1 yeees h1 as table E.2 that

'

in Appendix 5. then we have Wy "W W
2.7 Compare ng ) Wg' geeesy W15' and Wg ) W9 geees W15 O If
( Wg' , W9' yerns W15 ' )= ( Wg R W9 yenns W15 ), then we find a
collision. Tf (Wg ', Wy ' . Wis'ys£(Wg W, . W,5) we had
to guess (Wg Wy ... W5) again. The size of the space of
( Wg' , W9' yeres W15' , We Wy Wi ) is 2'9%7 =2 (resp.



2164 — 2124 and the size of the space of (Wg , Wy .., Wis) is
2% (resp. 2°7). So the probability of (Wg',Wo' . W' )=
(Wg , Wy .. Wis)is 2% (resp. 27°?).
So if the message bits are mixed at least twice, the probability of
find the collision is less than 27" (resp.27°).

3.7 Security of message digest truncations

3.7.1 Security of message digest truncations of Dynamic
SHA2-224

The final result of Dynamic SHA2-224 include eight working variables
a,b,c,d,e,f,g,h, it iclude 256 bits. The output of Dynamic SHA2-224
include seven working variables a,b,c,d,e,f,g, it iclude 224 bits.

So the length of the final result of Dynamic SHA2-224 is 256, and
the length of the output of Dynamic SHA2-224 are 224. The size of the
space of final result of Dynamic SHA2-224 is 2*°, The size of the space
of output of Dynamic SHA2-224 is 2**. To given output 7-tuple(a’, b’,
c’, d’, e, {7, g’), there exist 2% working variables value h that make
8-tuple (a’, b’, c’,d’, e’, f°, g’, h) has same output 7-tuple(a’, b’, c’, d’, e’,
f, ).

To a given output of Dynamic SHA2-224, there are 2% final result
that has the given output. And the probability of find out a message that

—256

has the given final result is 2 So the probability of find out a

message that has the given given output is 277°x2% =272,

3.7.2 Security of message digest truncations of Dynamic
SHAZ2-384

The final result of Dynamic SHA2-384 include eight working variables
a,b,c,d,e.f,gh, it iclude 512 bits. The output of Dynamic SHA2-384
include six working variables a,b,c,d,e,f, it iclude 384 bits.

So the length of the final result of Dynamic SHA2-384 1s 512, and
the length of the output of Dynamic SHA2-384 are 384. The size of the
space of final result of Dynamic SHA2-384 is 2°"*, The size of the space
of output of Dynamic SHA2-384 is 2°*. To given output 6-tuple(a’, b’,
c’,d’, e, ), there exist 2% =2"* 2-tuple (g,h) that make 8-tuple (a’, b’,



c’,d’, e’, 7, g, h) has same output 6-tuple(a’, b’, ¢’,d’, e’, ).

To a given output of Dynamic SHA2-384, there are 2'** final result
that has the given output. And the probability of find out a message that
has the given final result is 27°”. So the probability of find out a
message that has the given given output is 27" x2'** =2,

4 Improvements
There are some improvements for Dynamic SHA2:

1. There is no any constant in Dynamic SHA2. Use constants will

increase system security.

2. In Keyed Hash function, the initial hash value is random variable to
attacker. If Dynamic SHA?2 is used in Keyed Hash function, by theorem 4,
it is easy know that the probability of hash value is 27* (resp.
270 97 IR,

There are some ways that we can adopt to get random initial hash
value, for example: IV, =1IV_ +c, IV, is i-th initial hash value, ¢ is
constant and c¢ is odd number. To do this, it need new communication

protocol.

3. If some algorithms that based on Arithmetic functions are developed to
break Dynamic SHA2. The message expansions will increase the degree
of the Arithmetic function that represents Dynamic SHA2. If the message
expansions is data depend function, the degree of the Arithmetic function
that represents the message expansions maybe be up to 512(resp.1024). It
will increase the ability that resists differential analysis

The message expansion maybe makes some hash values have more
probability than other hash value. With improvement 2, all hash value
will have same probability.

An examlep as follow:

Use a data-depend function as message expansion and the iterative
part include four parts. The message expansion and the fourth iterative

part as follow:



Dynamic
SHA2-224/256

10 = (((((x1+ X2) ® X3) + X4) @ X5) + X6) ® x7) + X8
t1 = ((((((X9 + X10) @ X1 1) + X12) ® x13) + X14) ® X15) + X16

p(i) = SHR* (t0) A (15) 0<i<7

p(i) = SHR* ¥ (t1) A (15) 8<i<15
15 .

2= " p()

Wins =W, OW, 00, 0<i<15

Dynamic
SHA?2-384/512

t0 = ((((((AIxT+x2) D x3) + x4) D X5) + X6) D xT7) +
+X8) D X9)+x10)D x11)+x12) D x13) + x14) @ X15) + x16

p(i) = SHR*'(t0) A (15) 0<i<l15
15 .

th=>"" p(i)

Wis =W OW e 0<1<15

Table 4.1. message expansion for Dynamic SHA

w, 0<i<15 are message words and w, 16<i<31 are message
expansion words,, and the iterative part will include four part, the fourth
iterative part as follow:

{

}

2.4 The fourth iterative part
For t=0 to 7

COMP (a,b,c,d,e, f,g,h, Wy, W7, Wig, Wig, Wag, Wy, Wy, Wys, T)
COMP (a,b,c,d,e, f,g,h,W,,, W5, Wy, Wy, Wye, Wag, Wy, Wy, T)

Table 4.2. the fourth iterative part for Dynamic SHA2
There are up to 2°7(resp.2'™) monomials in the ANFs and

Arithmetic functions that represent message expansion. The degree of

Arithmetic

functions that represent message expansion is up to

512(resp.1024).

5. Support of HMAC, randomized hashing function and
Pseudo-random function

Dynamic SHA2 can be used in different situation, such as: HMAC,
randomized hashing function and Pseudo-random function.




5.1 Support of HMAC
5.1.1 Constitute HMAC with Dynamic SHA?2
If there 1s a hash function H(.), the size of message block is b. The
definition of HMAC is:
HMAC(M)=H ((K* ®@opad) || H (K" ®@ipad) || M))
Where:
ipad =00110110...  repeat 0x36 64(resp.128) times.
opad =01011100...  repeat Ox5c 64(resp.128) times.

K = user key.

K*  =pad (b-len(K)) ‘0’ to user key K.  len(K) is length of
user key K.

M = message that input HMAC.

I = connection operation.

From the definition of HMAC, it is known that it can use Dynamic
SHA2-224/256/384/512 to constitute HMAC that produce 224(resp. 256,
384, 512)-bit message authentication code.

If the size of message block of hash function H is b, and the
bit-length of hash value is n. The steps as follow:

1. pad ‘0’ to the key K, and get the K* that include b bits.

2. let S,=ipad ®K* and S, =opad ®K*

3. get h1=H(S,|[M). M is message.

4. get HMAC=H(S,|h1)

5.1.2 Security of HMAC

Bellare, Canetti, R. and Krawczyk[BELL96a] had define
(€ .t,q,L)-weakly collision-resistant as follow:

Definition 5.1: We say that a family of keyed hash functions f'is
(€ ,tq,L)-weakly collision-resistant if any adversary that is not given
the key k, 1s limited to spend total time t, and sees the values of the
function Fk computed on q messages m1,m2,...,mq of its choice, each of
length at most L, cannot find messages m and m’ for which Fk(m) =
Fk(m’ ) with probability better than & .



Bellare, Canetti, R. and Krawczyk| BELL96a] had proved the
theorem as follow:

Theorem 5.1 If the keyed compression function f is an
& ,q,t,b)-secure MAC on messages of lengthbbits, and the keyed
iterated hash F is ( &,q,t,L)-weakly collision-resistant then the NMAC
function is an ( ét4F,q,t,L)-secure MAC.

Because the attacker need at least 2'” (resp. 2, 2", 2°%)
different message to find collision of Dynamic SHA2. By theorem 5.1, it
is known that if someone want to find collision of HMAC that
constituted with Dynamic SHA2, he need 2'”(resp. 2%, 2, 2°7%)
different (message, MAC) that produced with same key. And the
attacker has not the key, he can not produce these (message, MAC)
off-line. On a 1 Gbit/sec communication link, one would need more than
2" seconds to process all the data required by such an attack.

5.2 Support of randomized hashing function
5.2.1 randomized hashing function
In Draft NIST SP 800-106[17], Randomized Hashing function RF
is as follow:
RF(rv,m)=F(rv | M@ Rv || PL(rv))
Where:
RF = Randomized Hashing function
v = a random bit string that bit-length<1025
m = input message
F = hash function.
M =pad ‘1’ and some ‘0’ to m.
1.if m longer than (|rv|-2), just pad ’1°.
2. if m shorter than (|rv|-1), just pad ’1” and
some ‘0’ to make length M equal |rv|.

Rv =repeat rv some times, and truncated as |M|
PL(rv) = 16-bit binary string that describe the bit-length of rv
X| = bit-length of x.

I = connection operation.



. rv 1s a random bit string that bit-length<1025, m 1s message.
. let rlen=|rv|

. 1f (lm/>(rlen-2)) then M1=m||’1’

. if (jlm[>(rlen-2)) then M1=m||’1’

. 1f (jlm|<(rlen-1)) then M1=m||’1 ’|w|’0’

rlen-'|m|-1

N A W N =

6. let Rvl=1rv|...|[rv
—

IMJ/rlen+1

7. let Rv= Rv1 truncated as |[M1|

8. let M=rv||((M1@® Rv) ||16bitlen(rv)
9. return M

Table 5.1 function PM for Randomized Hashing function

l1.A=n. Comment: A is an integer.
2. For (integer 1= 15 down to 0)
2.1 B=Amod 2. Comment: B is an integer,
2.2 If (B =0), then
bi = “0. Comment: bi is a single “0” bit.
Else
bi =“1". Comment bi is a single “1” bit.
23A= |A/2]

3. 16bit=b0||b1]||...||b15;
4. return 16bit;

Table 5.2 function PL for Randomized Hashing function

There exist two function PM anf PL as table 5.1 and 5.2 show.

Function PM operate on a message m and a random bit string rv,
produce a new message M.

Function PL operate on an integer, produce a 16-bit bit string.

From the definition of Randomized Hashing function, it is easy




known that Dynamic SHA2 can be used function F in the definition.
Dynamic SHA2 are used in Randomized Hashing function as follow:
RF(rv,m)=F(PM(rv,m)), where F is Dynamic SHA2.

5.2.2 Security of randomized hashing function
If the randomized hashing function is constituted with hash function F.

Then if someone have a message m1 and a random bit string rv1,
then he can find (rv2,m2) that make RF(rvl,m1)= RF(rv2,m2) as table
5.3 show(the bit order is started from 1.):

1. set m2len is the length of the message m2 and r2len the length of

the random bit string rv2. where r2len<1025.

2. if m2len>r2len-2,

2.1 find a (r2len+m2len+1) bit-length message m3 that make
RF(rvl,m1)=F(m3||PL(r2len)). And the (r2len+m2len+1)-th
bit of m3 bl and the (((m2len+1) mod r2len)+1)-th bit of m3
b2 satisfy the follow requirement: bl @ b2=1.

2.2 the first r2len bits is random bit string rv2.

2.3. let Rv2=1rv2||...[[rv2

2.4 let Rv= Rv2 truncated as (m2len+r2len)
2.5 let m3’=m3®Rv
2.6 from the (r2len+1)-th bit to(m2len+r2len)-th bit of m3’ is
m2.
2.7 return m2 and rv2
3. if m2len<r2len-1
3.1 find a (r2len+r2len) bit-length message m3 that make
RF(rvl,m1)=F(m3|[PL(r2len)). And m3 satisfy the follow
two requirement:
3.1.A: the (r2lentm2len+1)-th bit of m3 bl and the
(m2len+1)-th bit of m3 b2 satisfy the follow
requirement: bl @ b2=1.

3.1.B: if m3=(0,05-. B sien), then



( meIen+29 te 7br2|en):( bm2|en+r2len+29 te ’bz*rZIen)

3.2 the first r2len bit is random bit string rv

3.3. let Rv=1v2|[rv2

3.4 letm3’=m3®Rv

3.5 from the (r2len+1)-th bit to(m2len+r2len)-th bit of m3’ is

m2.
3.6 return m2 and rv2
4. if not find message m3 that make RF(rv1l,m1)=F(m3||PL(r2len)).

Set the length of the message m2 and the length of the random bit string
rv2. goto step 2.

In this way to find a message m2 and a random bit string rv2
(rv2,m2)#(rvl,ml) that make RF(rvl,m1)= RF(rv2,m2), it need find the
Preimages of hash function F or Second Preimages of hash function F. it
1s hard find Preimages or Second Preimages of Dynamic SHA2. The
probability of finding Preimages or second preimages is 22 (resp.
2736, g, 92,

5.3 Support of Pseudo-random function
In section 10 of NIST SP 800-90[18], NIST has publish “Deterministic
Rrandom Bit Generator(DRBG) Mechanisms Based on Hash Functions.”

5.3.1 Support of HMAC based Pseudo-random function

In section 10.1.2 of NIST SP 800-90[18], NIST has publish
“HMAC_DRBG.”. It specify a construction of Pseudo-random function
that base on HMAC.

Here 1 specify a construction of Pseudo-random function based on
the “HMAC DRBG” of NIST SP 800-90[18]. And the HMAC
specified in setction 5.1 will de used in the construction of Pseudo-
random function.

5.3.1.1 Functions
Three function are used in the construction of HMAC based
Pseudo-random function.



5.3.1.1.1 Function Updata(provided_data, K, V)
Function Updata operate on three bit strings provided_data, K, V. and
produce a new key K and a new string V. Function Updata as table 5.3

show:

K=HMAC(K, V||0x00|| provided_data)
V=HMAC(K, V).

If (provided_data=NULL), then Return K, V
K=HMAC(K,V||0x01|| provided_data)

. V=HMAC(K, V)

. Return K, V

DU oA LN

Table 5.3 Function Updata of HMAC-based Pseudo-random function

5.3.1.1.2  Function Instantiate  (entropy _input,  nonce,
personalization_string)
Function Instantiate initialize some system parameters, when HMAC
based Pseudo-random function start.
Function Instantiate operate on three bit strings entropy_input, nonce,
personalization_string.
entropy_input is a string of bits obtained from the source of entropy
input.
nonce is a bit string.
a. An unpredictable value with at least 56 (resp. 128, 96,
256) bits of entropy.
b. A value that is expected to repeat no more often than a 56
(resp. 128, 96, 256)-bit random string would be expected to
repeat.
personalization_string is a string received from the consuming
application..
Function Instantiate produce a key K , a string V and an integet
reseed_counter . Function Instantiate as table 5.4 show:




1. seed_material = entropy_input || nonce || personalization_string.

2. K=0x00 00...00. Comment: outlen bits.

3. V=0x0101...01. Comment: outlen bits.
Comment: Update Key and V.

4. (K, V) = Update (seed_material, K, V).

5. reseed_counter = 1.

6. Return K, V, reseed_counter

Table 5.4 Function Instantiate of HMAC-based Pseudo-random function

5.3.1.1.3 Function Reseed (V, K, reseed counter, entropy_input,
additional _input)

If too many pseudo-random number were produced with same parameters,
someone will have enouhg data to attack the system. So after produce
some pseudo-random number, the system parameters must be reseted.
HMAC based Pseudo-random function will reset system parameters after
produce no more than 2* pseudo-random number.

The function of function Reseed is reset system parameters. Function
Reseed operate on four bit strings V, K, entropy_input, additional _input
and an integer reseed_counter.. Produce two new bit strings V, K, and an
new integer reseed_counter. Function Reseed is as table 5.5 show:

1. seed_material = entropy_input || additional_input.
2. (K, V)= Update (seed_material, K, V).

3. reseed counter =1.

4. ReturnV, K, reseed_counter

Table 5.5 Function Reseed of HMAC-based Pseudo-random function

5.3.1.2 HMAC based Pseudo-random function
When HMAC based Pseudo-random function start, system will call
tunction Instantiate to initialize some system parameters. And then
pseudo-random number will be produced as follow steps:
1. If reseed_counter > 2%, then return an indication that a reseed
1s required.
2. If requested_number_of bits> 2", then return an signal that
the requested_number_of _bits is error.




3. If additional_inputZ Null, then (Key, V) = Update
(additional_input, Key, V).
4. temp = Null.
5. While (len (temp) < requested_number_of_bits) do:
5.1 V=HMAC (Key, V).
52 temp=temp]|| V.
6. returned_bits = Leftmost requested_number_of bits of temp.
7. (Key, V) = Update (additional_input, Key, V).
8. reseed counter = reseed_counter + 1.
9. Return returned bits, and the new values of Key, V and
reseed_counter.

In the steps:
reseed_counter is the number of pseudo-random number had been
produced.
additional_input is a  string received from the consuming
application.
Key is the key will be used in HMAC.
V is the bit string will be hashed in HMAC.
requested_number_of bits is the number of bits of the
pseudo-random numberwill be produced.
requested_number_of_bits no bigger than 2%.
returned_bits is the produced pseudo-random number.
In the process of produce pseudo-random number, The values of V and
Key are the critical values. So it must prevent from reveal the values of V
and Key.

5.3.1.3 Security of Pseudo-random function based HMAC

In the Pseudo-random function based HMAC, the key and the
‘message’ data V is protected. If someone attack the system, he must
enough data that produced with same key, but in the Pseudo-random
function based HMAC, the max number of the bits that produced with
same key is 2%, and every time the max number of bits requested is 2" .
The max number of bits that produced with same Key is 2% =2, To



find collision of HMAC that constituted with Dynamic SHA?2, it need at
least 2'"(resp. 2", 2, 2°"?) different (message, MAC) that produced
with same key. So the attacker can not get enough (message, MAC) to
find collision of HMAC that constituted with Dynamic SHAZ2.

The attacker can test all (Key, V) to find the (Key, V) that is used,
but the bit-length of Key and V is hash value of hash function. Then the
bit-length of (Key, V) is 224+224=448 (resp. 256+256=512 ,
384+384=768, 512+512=1024).

5.3.2 Support of non-HMAC based Pseudo-random function
In section 10.1.1 of NIST SP 800-90[18], NIST has publish
“Hash_ DRBG”. It specify a construction of Pseudo-random function that
not base on HMAC.

Here 1 specify a construction of Pseudo-random function based on
the “Hash DRBG” of NIST SP 800-90[18].

5.3.2.1 Functions
Four function are used in the construction of non-HMAC based

Pseudo-random function

5.3.2.1.1 Function Hash_df (input_string, no_of bits_to_return)

Function Hash_df operate on three bit strings input_string and an integer
no_of bits to_return. And produce a string requested_bits.. Function
Hash_df as table 5.6 show:

1. temp = the Null string.
no_ of bit to return
outlen

3. counter =0x01

4. Fori=1tolendo

Comment : In step 4.1, no_of bits_to_return is used as a 32-bit string.
4.1 temp=temp||Hash(counter||no_of bits_to_return|| input_string).
4.2 counter = counter + 1.

5. requested_bits = Leftmost (no_of _bits_to_return) of temp.

6. Return requested_bits

2. len=

Table 5.6 Function Hash_df of non-HMAC based Pseudo-random function




The outlen in table 5.6 is the bit-length of the hash function.

53.2.1.2 Function Instantiate  (entropy _input,  nonce,
personalization_string)
Function Instantiate initialize some system parameters, when HMAC
based Pseudo-random function start.
Function Instantiate operate on three bit strings entropy_input, nonce,
personalization_string.
entropy_input is a string of bits obtained from the source of entropy
input.
nonce is a bit string. nonce is either:
a. An unpredictable value with at least 56 (resp. 128, 96,
256) bits of entropy.
b. A value that is expected to repeat no more often than a 56
(resp. 128, 96, 256)-bit random string would be expected to
repeat.
personalization_string is a string received from the consuming
application..
seedlen is a constant depend the hash function,
if Dynamic SHA2-224/256 seedlen =440
if Dynamic SHA2-384/512 seedlen = 888
Function Instantiate produce a key K , a string V and an integet
reseed_counter . Function Instantiate as table 5.7 show:

seed_material = entropy_input || nonce || personalization_string.
seed = Hash_df (seed_material, seedlen).

V = seed.

C = Hash_df ((0x00 || V), seedlen).

reseed_counter = 1.

Return V, C, and reseed_counter

AN S o e

Table 5.7 Function Instantiate of HMAC-based Pseudo-random function

5.3.2.1.3 Function Reseed (V, K, reseed counter, entropy_input,
additional_input)

If too many pseudo-random number were produced with same parameters,




someone will have enouhg data to attack the system. So after produce
some pseudo-random number, the system parameters must be reseted.
HMAC based Pseudo-random function will reset system parameters after
produce no more than 2* pseudo-random number.

The function of function Reseed is reset system parameters. Function
Reseed operate on four bit strings V, K, entropy_input, additional _input
and an integer reseed_counter. Prodece two bit strings V, K, and an new
integer reseed_counter. Function Reseed is as table 5.8 show:

1. seed_material = 0x01 || V || entropy_input || additional_input.

2. seed = Hash_df (seed_material, seedlen).

3. V=seed.

4, C = Hash df ((0x00 || V), seedlen). Comment: Preceed with a byte
of all zeros.

5. reseed_counter = 1.

6. Return V, C, and reseed_counter.

Table 5.8 Function Reseed of HMAC-based Pseudo-random function
The seedlen in table 5.8 is a constant depend the hash function,
if Dynamic SHA2-224/256 seedlen =440
if Dynamic SHA2-384/512 seedlen = 888

5.3.2.1.4 Function Hashgen (requested_number_of bits, V)

The function of function Hashgen operate on one bit strings V and an
integer requested_number_of bits. Prodece a bit strings returned_bits.
Function Hashgen is as table 5.9 show:

no_of bit to return
outlen '

1. m=

2. data=V.
3. W =the Null string.
4. Fori=1tom
4.1 wi = Hash (data).
42 W =W || wi.
4.3 data = (data + 1) mod 2% .
5. returned_bits = Leftmost (requested_no_of_bits) bits of W
6. Return returned_bits.

Table 5.9 Function Reseed of HMAC-based Pseudo-random function




The seedlen in table 5.9 is a constant depend the hash function,
if Dynamic SHA2-224/256 seedlen =440
if Dynamic SHA2-384/512 seedlen = 888
5.3.2.2 non-HMAC based Pseudo-random function
When non-HMAC based Pseudo-random function start, system will call
tunction Instantiate to initialize some system parameters. And then
pseudo-random number will be produced as follow steps:
1. If reseed_counter > 2* then return an indication that a reseed
is required.
2. If requested_number_of bits> 2", then return an signal that
the requested_number_of _bits is error.
3.If additional_inpu#Null, then do
3.1 w=Hash (0x02 || V || additional_input).
32V=(V+w)mod 2" .
4. (returned_bits) = Hashgen (requested_number_of bits, V).
5. H=Hash (0x03 || V).
6. V=(V+H+C+reseed counter) mod 2% .
7. reseed_counter = reseed_counter + 1.
8. Return returned_bits, the new value of V, C, and reseed_counter

In the steps:

reseed_counter is the number of pseudo-random number had been
produced.

additional_input is a string received from the consuming
application.

C is seedlen bits that is updated during each call to the
Pseudo-random function

V  is seedlen bits that depends on the seed.

requested_number_of bits is the number of bits of the
pseudo-random numberwill be produced.

returned_bits is the produced pseudo-random number.

In the process of produce pseudo-random number, The values of V and C
are the critical values. So it must prevent from reveal the values of V and



C.

5.3.2.3 Security of non-HMAC based Pseudo-random function
In the non-HMAC based Pseudo-random function, the string C and the
‘message’ V is protected.

If someone attack the system, he need know the the string C and the
‘message’ V. The attacker can find the (C,V) that will produce the same
Pseudo-random number he has. To do this, he need two successive
(V1,V2), then he can calculate out the C, and test (C, V1), if the (C,V1)
do not produce the same Pseudo-random number, the attacker had to find
other (V1,V2) again. So the attacker must find Preimages of Dynamic
SHA2 at first. The probability of random guess of finding
512(resp.1024)-bit preimages of is 27" (resp. 27, 27%, 27"). The
bie-length of Vis 2*(resp. 2**), even someone has an algorithm to find
all messages that have same hash value of Dynamic SHA2, he had to find
the V from 2*'°(resp. 2", 2*°, 2%°) messages.

6 Security of Dynamic SHA2 with length extension attack and
multicollision attack

6.1 Security of Dynamic SHA2 with length extension attack
length extension attack can be used to attack keyed-hash function. It
make attacker can attacker keyed-hash function without the key.

If there exist keyed-hash function H(K, M), where K is key, M is
messahe, and h(hv0. m) is hash function of H(.), and Initial Hash Value of
h(hv0. m) is hv0, message of h(hv0. m) is m. The length extension attack
is as follow:

Let pad(m) is pad ‘1’ , ‘0’ and the bit-length of message m as section
2.3.1.

If attacker have a pair (hv, M), Then attacker can find collision as
follow step:

1. Find a any bit string w,.
2. Constitute new message M’=M||pad(M)||w.
3. Calculate h(H(K,M),w).



If attacker can find the w that make H(K,M)=h(H(K,M),w), he will
find a collision that make H(K,M)= H(K,M”) without know the key K.

In the attack step, we can find that attacker must find preimages of
Dynamic SHA2. And the probability of random guess of finding

preimages of is 2_224(resp. 2_256, 2_384, 2_512).

6.2 Security of Dynamic SHA2 with multicollision attack

Joux [19] has developed an algorithm to find a 2" -way collision
for a classical iterated hash function. If the probability of finding
collision of a hash function is &. The probability of finding a 2" -way
collision for the hash function is &' .

The probability of finding collision of Dynamic SHA2 is 27" (resp.
271 2792 26) Then the probability of finding 2" -way collision of
Dynamic SHA2 is 27" (resp. 277°%", 27" 272%")  And the
complexity of find a 2" -way collision of Dynamic SHA2 is O(rx2"?)
(resp. O(rx2"*), O(rx2"%), O(rx2>%)).

7 Conclusions

Ronald L Rivest[14] had designed RC5, RC5 include data-depend
function, it make it hard to analyse RC5. And William Stallings[15] has
mentioned that data-depend function will make cipher system nonlinear,
and composite function of Boolean functions and Arithmetic functions
also make cipher system nonlinear. Dynamic SHA?2 carries out the two
suggestions.

Function G, R and data-depend ROTR operations divided the
message space into many parts, in different part, the calculation is
different.

And based on components from the family SHA-2, I have
introduced the principle in the design of Dynamic SHA2: When message
Is changed, the calculation will be different. And I bring in data depend
function G, R and data-depend ROTR operations, and use bits in message
as parameters of function G, R and and data-depend ROTR operations.
These steps realize the principle. The principle enabled us to build a

compression function of Dynamic SHA2 that has not new variable, the



iterative part include three iterative parts, it is more robust and resistant
against generic multi-block collision attacks, and it is resistant against

generic length extension attacks.

References

1. E. Biham and R. Chen, “Near-collisions of SHA-0,” Cryptology ePrint
Archive, Report 2004/146, 2004. http://eprint.iacr.org/2004/146

2. B. den Boer, and A. Bosselaers: “An attack on the last two rounds of
MD4”, CRYPTO 1991, LNCS, 576, pp. 194-203, 1992.

3. B. den Boer, and A. Bosselaers: “Collisions for the compression
function of MD5”, EUROCRYPT 1993, LNCS 765, pp. 293-304, 1994.
4. F. Chabaud and A. Joux, “Differential collisions in SHA-0,” Advances
in Cryptology, Crypto98, LNCS, vol.1462, pp.56-71, 1998.

5. H. Dobbertin: “Cryptanalysis of MD4”, J. Cryptology 11, pp. 253-271,
1998.

6. NIST, Secure Hash Signature Standard (SHS) (FIPS PUB 180-2),
United States of American, Federal Information Processing Standard
(FIPS) 180-2, 2002 August 1.

7. NIST Tentative Timeline for the Development of New Hash Functions,
http://csrc.nist.gov/groups/ST/hash/timeline.html

8. S. Vaudenay, “On the need for multipermutations: Cryptanalysis of
MD4 and SAFER”, Fast Software Encryption- FSE95, LNCS 1008, pp.
286-297, 1995.

9. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, “Cryptanalysis of the
Hash Functions MD4 and RIPEMD”, EUROCRYPT 2005, LNCS 3494,
pp. 1-18, 2005.

10. X. Wang and H. Yu , “How to Break MD5 and Other Hash
Functions”, EUROCRYPT 2005, LNCS 3494, pp. 19-35, 2005.

11. X. Wang, H. Yu, Y. L. Yin “Effcient Collision Search Attacks on
SHA-0”, CRYPTO 2005, LNCS 3621, pp. 1-16, 2005.

12. X. Wang, Y. L. Yin, H. Yu, “Collision Search Attacks on SHA-1",
CRYPTO 2005, LNCS 3621, pp. 17-36, 2005.

13. Gupta and Sarkar “Computing Walsh Transform from the Algebraic
Normal Form of a Boolean Function”



Hhttp://citeseer.ist.psu.edu/574240.htmlH
14 Ronald L Rivest “The RC Encryption Algorithm”
http://people.csail.mit.edu/rivest/Rivest-rc5.pdf

15. William Stallings “Cryptography and Network Security Principles
and Practices, Third Edition”, ISBN 7-5053-9395-2

16. Xu ZiJie “Dynamic SHA2” http://eprint.iacr.org/2008/146

17. Draft NIST SP 800-106 “Randomized Hashing for Digital
Signatures”

http://csrc.nist.gov/publications/drafts/800-106/2nd-Draft_ SP800-106_Ju
1y2008.pdf

18. NIST SP 800-90 “Recommendation for Random Number Generation
Using Deterministic Random Bit Generators”™
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised March
2007.pdf

19. A. Joux. Multicollision on Iterated Hash Function. Advances in
Cryptology, CRYPTO 2004, Lecture Notes in Computer Science 3152.

[BELL96a] Bellare, M., Canetti, R., and Krawczyk, H. “Keying Hash
Functions for MessageAuthentication.” Proceedings, CRYPTO ’96,
August 1996; New York: Springer-Verlag. An expanded version is

available at http://www.cse.ucsd. edu/users/mihir.


http://citeseer.ist.psu.edu/574240.html
http://eprint.iacr.org/2008/146
http://csrc.nist.gov/publications/drafts/800-106/2nd-Draft_SP800-106_July2008.pdf
http://csrc.nist.gov/publications/drafts/800-106/2nd-Draft_SP800-106_July2008.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf

Appendix 1: Constitute Boolean functions to represent function.

We can use Algebraic Normal Form (ANF) to represent function. Gupta
and Sarkar[13] have studied it.

Let n>r>1 be integers and let F:{0,}" — {0,}" be a vector valued
Boolean function. The vector valued function F can be represented as
an r-tuple of Boolean functions F=(F",F® . ,F") , where
F®:{0,1}" > {0,1}(s =1,2,...,r), and the value of F®(x,x,,..,x ) equals the
value of the s-th component of F(x,X,,....x,). The Boolean functions
F®(x,X,,.,%,) can be expressed in the Algebraic Normal Form (ANF)
as polynomials with n variables x,x,,..,x, of kind a ®ax ®..®a x, ®
Da XX .08, XX, .08, X.,X.....X,, where a, €{0,1}. Each ANF has

n—1,n"*n—1n

up to 2" monomials, depending of the values of the coefficientsa, .

Function R
Function R operates on six words x1,x2,x3,x4,x5,x6,x7,x8 and an integer
t and produces a word y as output, where O<t<W. So we have
R: {O,l}ngmogv —){O,I}W, It is easy to know that one-bit different in
words x1,x2,x3,x4,x5,x6,x7,x8. Because the parameter of the rotate right
operation is depend on message. With different message, different rotate
right operation will be done. So the bit in output maybe changed.

So the ANFs to represent function R have up to 2" xw monomials,
where w is bit length of the word.

Function G
Function G operates on six words x1,x2,x3 and an integer t and produces
a word y as output, where 0<t<4.So we have R:{0.1};>""” —{0,}".

If function G is not data depend function, the integer t is constant.
When i-th bit in words x1,x2,x3 change, i-th bit in output maybe change.
Then the ANFs to represent function R have up to 2° monomials.

If function G is not data depend function, the integer t is variable. It is
easy to know that one-bit different in integer t, different logical will be
called, every bit in output maybe change. One-bit different in words
x1,x2,x3, a bit in output maybe change. Then the ANFs to represent



function R have up to 2°** =2° monomials.

Function R1

Function R1 operates on eight words x1, x2, x3, x4, x5, x6, x7 and x8
and produces a word y as output. So we have R:{0,1}*" — {0,1}", It is easy
to know that one-bit different in words x1, x2, x3, x4, x5, x6, x7 will
make the different rotate right operation be done. So the bit in output
maybe changed. And when one-bit different in word x8, the bit in output
maybe changed. So the ANFs to represent function R1 has up to 2%

monomials, where w is bit length of the word.



Appendix 2: Constitute Arithmetic functions to represent
function.

Gupta and Sarkar [13] had studied how to use Algebraic Normal Form
(ANF) to represent function. In this way, all function will be represented
as polynomials.

In appendix 2, the following operations are used:
1.abs(x) 1is absolute value of x

2.]¥ is round-off instruction on x

3. “+” 1is arithmetic addition.

. 1s arithmetic subtraction.

5. “x” 1s arithmetic multiplication.

1. Constitute Arithmetic functions to represent Boolean
function:
In Boolean function, 1 is True, 0 is False.

1. one bit word.

The Boolean function can represented with arithmetic functions as

follow:
operand | function arithmetic
function
X,y Z=XDYy Z=X+Yy—-2xXXYy
X,y Z=XAY Z=XxYy
X,y Z=XVvYy Z=X+Yy—-XxYy
X Z=—X z=1-X

Tables B.1 represent Boolean function with arithmetic function
To Boolean polynomial, it can replace every calculation of polynomial
base on table B.1.

2. n-bit word.

If there are three n-bit words X, vy, z. if there exist z= f(x,y) where f is
Boolean function that in table B.1.

X, Y, Z are n-bit words. Let



where x,y;,z 1is i-th bit of word X, y, z. There exists z, = f(x,,y,), wWhere
0<i<n-l1.

To Boolean polynomial, it can replace every calculation base on table B.1
for every bit of variables.

3. If function F includes a series functions f,,..., f._, as follow:
fO(Xa y) k = O

Z(X, ¥,k)=x+...
ft—l(xay) k=t-1

Then it can represent function F as follow:

2abs (k-1)

2(x,y. k)= 3 (20 -

x 2)x (f(X,y))

Base on above-mentioned three ways, it can represent Boolean function
with arithmetic functions. And there exists:
Theorem 2. In GF(2), there exists x*=x k>0.
Proof. In GF(2), xe{0,1}.
If x=0, x*=0"=0=x
Ifx=1, x*=1"=1=x O

2. Constitute Arithmetic functions to represent function with
ANF

Functions F : {0,1}" — {0,1}" can be expressed in the ANF as polynomials
with n variables X, Xy peees X, of kind
a, ®ax @..0a x, ®a,xx, ®..Da, , X% X .04, X.X, where aeQl. If replace
every calculation in the ANF base on table B.1 and simplified by theorem
2, it can constitute Arithmetic functions to represent ANF. The Arithmetic
functions will be polynomials with n wvariables x,x.,..% of kind
B+ XX ., XX, 4 06 xx .4, xx.xx, , where b, are integer. The

Arithmetic functions have up to 2" monomials. The degree of



Arithmetic functions is up to n. And there exists f :Z: FOX, XX )X2
where f is r-bit word.

3. Constitute Arithmetic functions to represent SHR operation:
The shift right operation SHR*(x) can be represented as follow:

y = SHR*(x) = (1.0)

X
2%

If operation y=SHR“(x) is not data-depend operation, the k in
equation (1.0) is constant, and equation (1.0) is linear equation. The
derivative function of linear equation is constant.

If operation y=SHR"(x) is data-depend operation, the k in equation
(1.0) is variable. And equation (1.0) will be exponential function with
round-off instruction. It is hard to represent exponential function with

linear equation.

4. Constitute Arithmetic functions to represent data-depend
function R:

There are two ways to constitute Arithmetic functions to represent
data-depend function R:

1. Constitute ANFs that represent function R. And replace the Boolean
function base on table B.1. In this way, it will constitute huge Arithmetic
function. The ANFs represents function R has up to 2°'(resp. 2°'%)
monomials. By theorem 2 and the input has 261(resp. 518) bits, so the
highest degree monomial of the Arithmetic function is lefsx, (resp.
HZZ X, ), where x 1is i-th input bit. The degree of the Arithmetic function
represents function R is up to 261(resp. 518). There exists:

d”(y) _
d(Xy)-...d(X)...d(X,,;)

where c is constant, x is i-th input bit of function R, bn is bit number of

input, and bn equal 261(resp. 518).

2. At first, there exist rotate right (circular right shift) operation
ROTR*(x), where x is n-bit word, and 0<k<n. It can represent
y = ROTR*(x) as follow:



y = ROTR*(x)
X

X ne

:2—k+(x—?x2k)x2 X (1.1)
n- X n

:XX2 k—?X(Z —1)

If function y=ROTR*(x) is not data-depend function, the k in
equation (1.1) is constant, and equation (1.1) is linear equation. The
derivative function of linear equation is constant. This means the
difference of function value depend on the difference of input, and the
difference of function value dose not depend on the input. In SHA-2, the
ROTR operation is not data-depend function, it can constitute linear
equation to represent the ROTR operation in SHA2.

If function y=ROTR*(x) is data-depend function, the k in equation
(1.1) is variable. And equation (1.1) will be exponential function with
round-off instruction. It is hard to represent exponential function with
linear equation. The derivative function of exponential function is
exponential function. This means the difference of function value depend
the difference of input and input. When the input changes, the different of
function value maybe change. In Dynamic SHA2, function R is
data-depend function. And if use equation (1.1) represents function R, the
equation (1.1) will be complex exponential function. After several rounds,
equation (1.1) will be iteration function with equation (1.1), it will be
very huge and complex, and there exists no mathematical theory that
reduces the size of equation (1.1). It is hard to analyses Dynamic SHA2
that includes function R.

5. Constitute Arithmetic functions to represent data-depend
function G:

By Theorem 2 and table B.1, function G,(x1,x2,x3) can be represented as
follow:



Z;,H(Xli +X2; +X3, —2x X1, xX2, —2x X1, xX3, — =0
H02x X2, X3, +4x X1, xX2, xX3,) %2 -
1 i
Q(XLXZ)G)Z 2;(X3i+X1iXX2i —2><Xli><X2i><X3i)><2 t=1 (12)
D (=Xl =33, 2%, 303 XL X2 —2xx 32 03 x2 =2

D (132 =3, +2x02 X33, X1, 508, =2xx, X2 xx3)x2 t=3

x1;,x2;,x3; 1s i-th bit of x1, x2, x3. In system (1.2), it is known that G,
are cubic equations. The degree of the Arithmetic function that represent
function G(x1,x2,x3) is 3. And there are 7(resp. 5, 6) monomials in the

Arithmetic function.

If function G is not data-depend function. It can look the equation
(1.2) as cubic equations. It is hard to represented equation (1.2) with
linear function. And there exists:

d*(y) _
d(x1,)d(x2,)d(x3;)

And c is constant.

If function G is data-depend function, the function G will be represented

with Arithmetic function as follow:

0<t<3,let t=(t,t,).

G(x1,x2,x3,t) =

wor (X1 + X2, + X3, =2x X1; x X2, = 2x X1, x X3, =2 x X2, x X3, +

(I=t)x(1-t)xD i
+4x X1, x X2, x X3;)x 2

+(1=1) 3ty x D (XL X X2, + X3, = 2% X, x X2, X X3;) x 2

+1, x(l—to)xz:’:)l(l—xli — X3, +2x X1, x X3, + XI,; x X2, —2x X1, x X2, x X3,) x 2'

+t,><t0xz::(l—x2i — X3, +2x X2, x X3, + X1, x X3, =2 x XI, x X2, x X3,) x 2'

(XL, + X2, + X3; +1, = 2x XI; x X2, =2x X]; x X3; =2x X2; x X3; = XI; xt, —
=2x Xy}t =2 x X2, xt) — X2; xt, —=2x X3; xt, +4xX]; x X2; x X3; +
= 3 30X X2, X b + 3x KT X X2, Xt + 2% X1 x X3, x by + 4 x KT, X X3, Xt +
+2x X2y x X3, xt, + 2x X1 xt) xt; =6 x XI; x X2; x X3; xt, —6x XI; x X2; x X3; xt, —
—Ax X1, x X2, xt, xt, —3x X1, x X3, xt, xt, + 6x X1, x X2, x X3, xt, xt,)x 2’ (1.3)



t,t, is i-th bit of t. It is easy to known that the degree of the Arithmetic
function that represent function G(x1,x2,x3,t) is 5. And there are 24

monomials in the Arithmetic function. And there exists:

d’(y) —6x D
d(x1)d (x2))d(x3;)d (t,)d(t,)

Compare equation (1.2) and equation (1.3), if function G is data-depend
function, the degree of the Arithmetic function will be higher, and ther
are more monomials in the Arithmetic function. This make it is harder to
analyses Dynamic SHA2.

6. Constitute Arithmetic functions to represent function R:

There are two ways to constitute Arithmetic functions to represent
data-depend function R:

1. Constitute ANFs that represent function R. And replace the Boolean
function base on table B.1. In this way, it will constitute huge Arithmetic
function. The ANFs represents function R has up to 2%°(resp. 2°?)
monomials. By theorem 2 and the input has 261(resp. 518) bits, so the
degree of the Arithmetic function represents function R is up to 256(resp.
512), and has up to 2*°(resp. 2°"*) monomials. There exiset:

d”(y) _
d(Xy)-...d(X)...d (X, ;)

where c is constant, x is i-th input bit of function R, bn is bit number of
input, and bn equal 256(resp. 512).

2. At first, there exist rotate right (circular right shift) operation
ROTR*(x), where x is n-bit word, and 0<k<n. It can represent
y = ROTR*(x) as follow:



y = ROTR*(x)

X X e

:?+(X—?x2k)x2 X (1.4)
n- X n

:sz k—?X(z —1)

If function y=ROTR"(x) is data-depend function, the k in equation
(1.4) is variable, and equation (1.4) is exponential function. And equation
(1.4) will be exponential function with round-off instruction. It is hard to
represent exponential function with linear equation. The derivative
function of exponential function is exponential function. This means the
difference of function value depend the difference of input and input.
When the input changes, the different of function value maybe change. In
Dynamic SHA2, function R1 is data-depend function. And if use
equation (1.4) represents function R1, the k is function of working
variables a,b,c, d, e, f, g, and k=K(a,b,c.d,e, f,g,h) as table B.2, the
equation (1.4) will be complex exponential function. After several rounds,
equation (1.4) will be iteration function with equation (1.4), it will be
very huge and complex, and there exists no mathematical theory that
reduces the size of equation (1.4). It is hard to analyses Dynamic SHA2
that includes function R1.
0=(((a+b)®c)+d)De)+ f)® g
Dynamic tl = (SHR " (10) @ t0) A (2" -1)

SHA2-224/256 | 2= (SHR (t) @ t1) A 2" -1)
k = (SHR5(£2) ® ©2) A 31

0=((((a+b)®c)+d)@®e)+ )@ g
t1 = (SHR * (10) ® t0) A 2% -1)

2 = (SHR " (t1) ® t1) A 2" -1)
SHA2-384/512 | 3 = (SHR 2(12) @ 2) A (2" -1)

k = (SHR °(13) @ t3) A 63

Dynamic

Table B.2. function K for Dynamic SHA2
Compare the Arithmetic function that represent SHA2, The Arithmetic
function that represent functions in Dynamic SHA2 include exponential
function. Or the Arithmetic function that represents functions in Dynamic
SHA?2 has higher degree than the Arithmetic function that represents
functions in SHA2. This make it is harder to analyses Dynamic SHA2.



Appendix 3: Function G and Function R and Function R1
Let p(x) is probability of X

1, Function G:

Function y=G(x1, x2, x3, t) operates on tree words x1,x2,x3 and an
integer t, 0<t<3. Function G use the integer t select a logical function
from fo f f, T Andy, x1, x2, x3 are w-bit word. So the bit-length
of (x1,x2,x3,t) is 3xw+2, the bit-length of y is w.

To a given value y’=G(x1,x2,x3,t), there is 2**** 4-tuple (y’,x1,x2,t). To
a given 4-tuple (y’,x1°,x2°, t’). There is the relation:

XI'®x2'@y' t=0
. [ (x'Ax2) @ y! t=1
- (=(x1'vy") v (XI'n(x2'@ y")) t=2
(= (XI'v(Xx2'@ y"))) v (XI'aA= y") t=3

To given 4-tuple (y’,x1°,x2°,t’), it can compute the value for x3°. So there
are 2" 4-tuple (x1,x2,x3,t) have the same value y’. x1, x2, X3, t are
random and uncorrelated variable, there is:

p(x1) = p(x2) = p(x3)=2"" and p(t)=2""°

PO= D oo > YL (X, X215, X3,5,8, )% POXL ) X P(X2;,) X PG5 % P(t,)
P(Y) = PXL, )X POX2;,) % POG)X P )X D > > " p(y| (XL, X2, 33,5, 8,))
p(y) — 2—w % 2—w % 2—w % 2—2 % 22><W+2 — 2—W

If x1, x2, x3, t are random and uncorrelated, function G will produce

random word and p(y)=2"

2, Function R:

Function y=R(x1,x2,x3,x4,x5,x6,x7,x8,t) operates on eight words
x1,x2,x3,x4,x5,x6, x7, x8 and an integer t. To a given value
y’=R(x1,x2,x3,x4,x5,x6,x7,x8,t), there 18 27 xw O-tuple
(y’,x1’,x2°,x3°,x4°,x5°,x6’,x7°,t"). To a given 9-tuple (y’,x1°,x2°,x3",x4°,
x5’,x6°, x7°,t’). There is the relation:



X8 = (((XI'®X2") + x3") @ x4') + X5") ® X6') + X7') @ ROTR" " (y")

To given 9-tuple (y’,x1°,x2°,x3°,x4°,x5°,x6’,x7’,t’), it can compute the
value for X8, So there are 2" xw O-tuple
(y’,x1’,x2°,x3° x4’ x5°,x6’,x7°,t’) have the same value y’.
x1,x2,x3,x4,x5,x6,x7,x8,t are random and uncorrelated variable, there is:
p(x1) = p(x2) = p(x3) = p(x4) = p(x5) = p(X6) = p(x7) = p(x8) =2""

pt)=w"

p(y) = Z,IOZ,ZO S DY | (Kl X240 X815t )) X P(XI) ... P(XB) X P(L)
P(Y)=2""x2"x2™"x2™"x 2" x 2" x 2" x 2" xw ' x 2" xw=2"

If x1,x2,x3,x4,x5,x6,x7,x8, t are random and uncorrelated, function R
will produce random word and p(y)=2""

Function R1

Function y=R1(x1,x2,x3,x4,x5,x6,x7,x8) operates on eight words
x1,x2,x3,x4,x5,x6,x7 and x8, produce a word as output as table 2.3. x1,
x2, X3, x4, X5, x6, x7, x8 are w-bit words. If x1, x2, x3, x4, x5, x6, X7, x8
are random and uncorrelated.

There exists:

p(t0) =32 S S p(t0] (X1, ,X7.7))>< P(XI;) X ... x P(X7,;)
P(t0) = p(x1;;)x...x p(x7;;) % Z.l 02,2 o Z o PO | (XL;ysenes X71,))

To given value t0’, There is 2™ 7-tuple (x1°,x2°,x3’,x4’,x5’,x6’,X7’),
There is relation: X7 = (XL +X2) @ x3) + x4) ® X5) + x6) ®t0 . it can compute
the value for x7. and x1, x2, x3, x4, x5, x6, x7 are random and
uncorrelated variable. There exists:

P(XL;) = P(X2;,) = P(X3;5) = p(X4;,) = P(X5;5) = P(X6;5) = p(x7;;) =27"

P(t0") = p(XL;)x P(X25,) x P(X335) % P(Xd,) X P(X5;5) % P(X6;6)x P(XT;;)x 2" =27".
t0 1s w-bit word, let t is log,” -bit word, let: t0O=(t0,....,t0, ) and
=ty t )y 10T is i-th bit of t0 and t, and there is



t, =t0, ®t0, ®10,, ®0,, ®0,, ®10,, D0,
t, =10, ®t0, D0, ®10,, ®10,, D10,, D10,
Dynamic
SHAy_224/256 t, =t0, ®t0, ®t0,, Dt0,, t0,, D10,
t, =t0, ®t0, D10, Dt0,, ®10,, D10,,
t, =t0, ®t0, D10, D10, D10, D10,

t, =t0, D10, D0, B0, Dt0,, Dt0,, D10, Dt0,, D10, B0, D10,

t, =t0, D10, B0 , D10,, D10, D10, Bt0,, B0, 10,, D10, B0,
Dynamic t, =t0, D0, D10, D0, D10, 10, Bt0,, Dt0,, Bt0,, B0, Dt0,,

SHA-384/512 | |t, =t0, D10, 10, D10, ®t0,, D0, Dt0,, D10, D0, Dt0,, Bt0,,

t, =t0, ®0,, D10, D0,, D0, D10, Bt0,, D10, Dt0,, DO,

t, =t0, ©1t0,, ®t0,, D10, Dt0,, D10, B0, Dt0,, B0, Dt0,,

And there is relation:

t0, =t, ®t0, ®10,, ®0,, ®0,, ®10,, D0,
t0, =t, ®t0, D10, ®10,, ®10,, Dt0,, D10,
Dynamic
SH£224/256 t0, =t, ®t0, ®t0,, ®t0,, 10,, D10,
t0, =t, ®t0, D10,, Dt0,, ®10,, D10,,
t0, =t, ®t0, ®t0,, D10, D10, ®10,,

t0, =t, ®t0, D10, D0, D10,, Dt0,, B0, 10, D10,, D10, D10,

t0, =t, ®t0, D10,, B10,, 10, Bt0,, D10, B0,, Bt0,, Bt0,, D10,
Dynamic t0, =t, ®t0, D10, D0,, D10, 10, D10, Dt0,, Bt0,, B0,, 10,

SHA-384/512 | |t0, =t, ®t0, ®t0,, D10, ®t0,, D0, Bt0,, D10, B0, Dt0,, Bt0,,

t0, =t, ®t0,, B10,, D0,, D10, 10, B10,, D10, D10, DO,

t0, =t, ®10,, 10, Bt0,, Dt0,, D0, 10, Dt0,, Dt0,, D0,

To a gi log. — tuple t'=( t' t' i w-logy
given 10g, ple ©=(1 g s by, w_y ), there is 2

(W_logv)_tuple(tl(o)&wa---atow-l) . To a given (w-log})—tuple

W
t0' . ,..,t0" ), it can compute the log, —tuple for (t0,,...,t0 . And
log w-1 p 2 0

log¥' -1

there is

Pt =, PUEIt0)x t0) = 27 xpit0) =2+ X2 =27 =",

x1, x2, x3, x4, x5, x6, x7, x8 are random and uncorrelated words, and t 1s



produced from x1, x2, x3, x4, x5, x6, x7. To y=ROTR'(x8), there is
relation X8 = ROTR"7'(y). To a given value y’, there are w value t, to a
given t’, it can compute the value for x8. And there is:

P(Y) = 20D e POY (6, X8,0) % P() x P(X81) = wxw™ x 27 =27

If x1, x2, x3, x4, x5, x6, x7, x8 are random and uncorrelated words,
function R1 will produce random word and p(y)=2".



Appendix 4: Some thing about Dynamic SHA2
1. Why Dynamic SHAZ2 use function G, R and function R1

The reason Dynamic SHA?2 use function G, R and function R1 is:

1. When the variables are random and uncorrelated, function G , R
and R1 will produce random output. This makes the last hash
values has close probability.

2. Function G, R and R1 are data-depend function, it is hard to
describe data-depend function with linear function, and it is hard
to analyze data-depend function with differential analysis. The

arithmetic function that describe function G, R and R1 is up to 5,

261(resp. 518), 256(resp.512). And the ANFs that describe
function G, R and Rl has up to 32, 2%"Wee2 =~ 2%

monomials.

2. It is hard analysis Dynamic SHA2 with linear function and
differential analysis

To analyze the relationship between message and hash value, it need
the unchangeable formulas that represent hash function. And when
message is changed, the calculation will be different.

The ANFs that describe function R, R1 has up to

monomials.

The degree of the arithmetic function that describe function R, R1 is
up to 261(resp.518), 256(resp.512). Or it needs construction exponential
function to describe function R, R1 and G.

So it is hard analysis Dynamic SHA2 with linear function and

28xW+log§V 28><W

differential analysis.

3. Avalanche of Dynamic SHA2.

After the first iterative part, all bits in message have been mixed. The
second iterative part includes function R1. It is easy to know that one bit
different in working variables a, b, ¢, d, e, f, g will lead to different
ROTR operation been done. And after the second iterative part, every bit
in working variables that before the second iterative part will affect all

bits in working variables that after the second iterative part.



Appendix 5: Spreading of Dynamic SHA
To simplification, Let:
1L.MWI1=(W(0),W(1),W(2),W(3),W(4),W(5),W(6),W(7)),
MW2=(W(8),W(9),W(10),W(11),W(12),W(13),W(14),W(15))
W(j) is the message word.

2. hv(i)=(a(i), b(i), c(i), d(i),e(i), f(i), g(i), h(i)). where a(i), b(i), c(i),
d(i),e(1), f(i), g(i), h(i) are working variables at i-th function
COMP called.

3. H,(hv(-1), MW1, MW2) =hv(i) 1<i<15

4. Message word and working variables are b-bit words.

From the definition of Dynamic SHAZ2, it is easy know that function
COMP had been called sixteen times, when function COMP is called,
MW1 or MW2 will be mixed. So it can describe Dynamic SHA2 as
follow:

hv(-1 hv(0 A hv(1

The second »hv(1a)
iterative part

The third

MW2 . Mw2
iterative part hv(2) — > hv(15)

MW1

Table E.1 data processing of Dynamic SHA2
At first there are two theorems:

Theorem 3:

To function COMP(a,b,c,d,e, f,g,h,w0,wl,w2,w3,w4,w5,wé6,w7,t) there is:
1.MW=(WO0,W1,W2 W3,W4,W5W6,W7), where WO,...,W7 are words that
mixed.

2. hva=(a0, b0, Oc, d0, €0, 0f, g0, h0). Where a0, b0, c0, d0,e0, f0, g0, hO
are working variables that before call function COMP.

3. hvb=(al, bl, c1, d1, el, f1, g1, hl). Where al, bl, c1, dl,el, f1, g1, hl
are working variables that after call function COMP.



working variables are b-bit word. hva, MW are random and
uncorrelated.

Then there exist:
L)pvb)= 27
@).p(hvbjMw)= 2 ~**°
3).p(hvbjhva)= 2 *°

Proof.

The integer t in function COMP is decided by which round function
COMP be. So the integer t can be look as constant. And we can use
function hvb = F(hva,MW ) describe function COMP. And we
have F : {0,1}'°*®* —» {0,1}**® . hva, MW are random and uncorrelated. So
there exist p(hva)= P and p(MW)= 2 b

b . .
There are 2’ MW. To a given MW’, there exist:
To a given hva’, from the definition of F, there is only a hvb

that make hvb= F(hva‘, MW') .
And to a given hvb’, it can backward function F, and there is
only a hva that make hvb'= F (hva, MW ") . So there exist:

p(hvb ) = Zizlb:‘olz Izzbz‘; p(hvb | (hva (i), MW (i2))) x p(hva (i1)) x p(MW (i2))

p(hvb) = p(hva)x p(MW )x > 'S ° ~"p(hvb | (hva (i1), MW (i2)))
p(hvb ) — 2*8><b % 2*8><b % 28><b — 2*8><b

p(hvb | MW ) = Zflb:’olp((hvb MW ) | hva (i1)) x p(hva (i1))

p(hvbo | MW )= p(hva )folb:‘o‘p((hvb MW )| hva (il))
p(hvb | MW )= 2%



Dynamic
SHA2-224/256

w0 = cl—a0
w5 = d1-G(bl,a0,b0,t A 3)

w7 = hl - ROTR 32-(SHRWOM3I (£ g

w2 = ROTR 32 (SHR¥WOA3L a1y _ G (a0, b0, c0, SHR *°w0)
wl = bl -R(a0,b0,c0,d0,e0, f0,g0,h0,w0 A 31)

d'= ROTR 32—(SHR ®w0)A31 (el)

e'=fl-wé6

f'=e0+w3

g'= ROTR 32—((SHR>W0)A31) ()

w4 = al—R(bl,a0,b0,d",e', f',g",g0,(SHR"> (W0)) A 31)

Dynamic
SHA?2-384/512

w0 =cl-a0
a'— ROTR64—((SHR54W0)/\63)b1

o= ROTR64—((SHR24WO)/\63)bO
w5 =d1-G(a',a0,c',t A3)
W6 = f1— ROTRI287((SHR42W0)/\63)7((SHRIXWO)/\63) (d0)

W7 = h1 - ROTRO+(SHR™WOIAG3 £ (3

W3 = ROTRl28—((SHR36W0)A63)—((SHRIZWO)/\63) (gl)—e0

w2 = ROTR#-SHR™WOA3L a1y G20, b0, c0, SHRE2W0)

wl = ROTRO-(SHR™WOA3L 1y R (20, b0,¢0,d0, €0, f 0, g0, h0, w0 A 63)
d'= ROTR64—(SHR48W0)/\63 (el)

e'— ROTR647(SHR18W0)/\63 (d0)

fro ROTR64—(SHR36W0)/\63 (g1)

g'= ROTR64—((SHR6WO)/\63) (f0)

w4 =al-R(a',a0,c',d".e', f',g', g0, (SHR (W0)) A31)

€)

Table E.2. Relationship of hva, hvb

To given hva’, there exist:

To a given hvb’, there is the relationship as table E.2, It is easy to
compute the value for MW that make hvb'= F(hva',MW) . So there exist:




p(hvb | hva) = Zio’l p((hvb | hva) | MW (i) x p(MW (i)) = 275® = 27%® O

By theorem 3, to function COMP, it is easy to know that:

To a given hva’, mix different message words MW, the hvb will be
different.

Mix given message words MW’, if the hva is different, the hvb will
be different.

Theorem 4. In Dynamic SHAZ2, there exist:
@) pv())= 27*°
2).pv()IMwL)= 275°
@).p(hv()Mw2)= 27%°

j=1,..15

Proof.

hv(-1), MW1 and MW?2 are random and uncorrelated, so there exist:
p(hv(-1))=27""
p(MW1) =275
p(MW2) =25

To simplification, Let F(hv(i-1),MW)=hv(i), MW is mixed words MW1
or MW2.

To a given hv(i)y i=1,..,15 , there are 2'®"
(MW1,MW2).

To a given 2-tuple(hv(i)’,MW1°), there are 2 %*® MW2. To a
given 2-tuple (hv(i)’, MW2’), there are 2 **° MWI.

To a given 3-tuple(hv(i)’,MW1’ . MW2’), It is easy to backward
iterative steps, and it is easy to compute the value for hv(-1), and the
hv(-1) make H,(hv(-1), MW1' ,MW2") = hv(1)'

So there exist:

2-tuple



V() = Y2 1SS i | (=1 MWL, MW21))x pURV(= D)0, MW, MW2,)
p(hv(@) = P, MWL MW2)x 3> 3™ 5™ p(hv(i) | (W(~1);0, MW, MW2;, )
p(hV(l)) — 278><b ><278><b % 278><b « 28><b % 28><b _ 278><b

p(hv(i) | MWID) = 352" () | MW | (=10 MW2; )% p(V(~T)0, MW,

p(hv() | MWI) = p(hv(~1),MW2)x > ™ " Ip((hu(i) | MWI) | (h(~1);0, MW2,,))

p(hv(i) | MWI) = 2780 5 2780 5 80 = 5780

(i) | MW2) = 3> S ) | MW2) | (=D, MW, ) CV(=T)0, MWL)

p(hV(E) | MW2) = p(v(=1), MWD x 32152 (i) | MW2) | (10, MW, ))
p(hV(l) | MWZ) — 278><b ><278><b ><28><b _ 278><b

Theorem 5. In Dynamic SHA2, to a given hv(-1), there exist:
p(hv(2)| (hv(-1),MW1))=2"®

Proof. To simplification, Let F(hv(i-1),MW)=hv(i), MW is mixed words
MW1 or MW2. Let F2(hv(1))=hv(1a) is the second iterative part.

Let F1(hv(1))=hv(1a).

To a given 3-tuple (hv(2)’,hv(-1)’, MW1’). By theorem 3, there exist
a 2-tuple (hv(0),hv(la)) that make F(hv(-1)’,MW1’)=hv(0) and
F(hv(1a),MW1’)=hv(2)’.

To a given hv(la)’, frome the definition of the second iterative

part , there exist a hv(1) that make F2(hv(1))=hv(1a)’.

To a given 2-tuple (hv(0)’,hv(1)’) . By theorem 3, there exist a MW?2
that make F(hv(0)’, MW2)=hv(1)’.

So there exist:
p(hv(2) | (hv(-1), MW1)) = Zi: p(hv(D) | (hv(=1), MW 1)) | MW 2;) x p(MW 2;)

p(hv(2) | (hv(=1), MW 1)) = p(MW 2)x ZZO "p((hv(D) [ (hv(=1), MW 1)) | MW 2,)
p(hv(2) | (hv(=1), MW 1)) =275 x] = 27%®



By theorem 4 and 5, it is to know that:
1. When hv(-1) is random variable, the probability of hash
value 1s 2_8Xb,
2. To a given hv(-1), the probability of different hash value
maybe different.

After first the second iterative part, the bits in message have been mixed,
the mixed bits and working variables value are not uncorrelated, it is hard
to analyze the probability of hash value. To get better property of
spreading, Dynamic SHA?2 adopt ways as follow:

1. When the variable of function COMP is random value. Function

COMP will produce random value.



