
Dynamic SHA2

Zijie Xu
E-mail: Hxuzijiewz@gmail.comH

Abstract. In this paper I describe the construction of Dynamic SHA2
family of cryptographic hash functions. They are built with design
components from the SHA-2 family, but I use the bits in message as
parameters of function G, R and ROTR operation in the new hash
function. It enabled us to achieve a novel design principle: When
message is changed, the calculation will be different. It makes the system
can resistant against all extant attacks. Dynamic SHA2 is posted[16]

Key words: Cryptographic hash function, SHA, Dynamic SHA2

1 Introduction
The SHA-2 family of hash functions was designed by NSA and adopted
by NIST in 2000 as a standard that is intended to replace SHA-1 in 2010
[6]. Since MD5, SHA-0 and SHA-1 was brought out, people have not
stopped attacking them, and they succeed. Such as: den Boer and
Bosselaers [2,3] in 1991 and 1993, Vaudenay [8] in 1995, Dobbertin [5]
in 1996 and 1998, Chabaud and Joux [4] in 1998, Biham and Chen [1] in
2004, and Wang et al. [9–12] in 2005. Most well known cryptographic
hash functions such as: MD4, MD5, HAVAL, RIPEMD, SHA-0 and
SHA-1, have succumbed to those attacks.

Since the developments in the field of cryptographic hash functions,
NIST decided to run a 4 year hash competition for selection of a new
cryptographic hash standard [7]. And the new cryptographic hash
standard will provide message digests of 224, 256, 384 and 512-bits.

In those attacks, we can find that when different message inputted,
the operation in the hash function is no change. If message space is
divided many parts, in different part, the calculation is different, the
attacker will not know the relationship between message and hash value.
The hash function will be secure. To achieve the purpose, Dynamic

mailto:xuzijiewz@gmail.com

SHA2 use bits in message as parameter of function G, R and ROTR
operation to realize the principle.

My Work: By introducing a novel design principle in the design of hash
functions, and by using components from the SHA-2 family, I describe
the design of a new family of cryptographic hash functions called
Dynamic SHA2. The principle is:

When message is changed, the calculation will be different.

The principle combined with the already robust design principles present
in SHA-2 enabled us to build a compression function of Dynamic SHA2
that has the following properties:

1. There is not message expansion part.
2. The iterative part includes three parts.
3. The first part includes one round. Mix message words once.
4. The second part includes 9 rounds. Mix no message word.
5. The third part includes 7 rounds. Mix message words 7 times.

2 Preliminaries and notation
In this paper I will use the same notation as that of NIST: FIPS 180-2
description of SHA-2 [6].

The following operations are applied to 32-bit or 64-bit words in
Dynamic SHA2:

1. Bitwise logical word operations:‘∧’–AND ,‘∨’–OR,‘⊕’–XOR and
‘ ’–Negation. ¬

2. Addition ‘+’ modulo or modulo . 322 642

3. The shift right operation, , where x is a 32-bit or 64-bit word
and n is an integer with 0≤n<32 (resp. 0≤n<64).

)(xSHR n

4.The shift left operation, , where x is a 32-bit or 64-bit word and
n is an integer with 0≤n<32 (resp. 0≤n<64).

)(xSHLn

5. The rotate right (circular right shift) operation, , where x is a
32-bit or 64-bit word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n <

)(xROTRn

64).
6. The rotate left (circular left shift) operation, , where x is a
32-bit or 64-bit word and n is an integer with 0 ≤ n < 32 (resp. 0 ≤ n <
64).

)(xROTLn

Depending on the context I will sometimes refer to the hash function as
Dynamic SHA2, and sometimes as Dynamic SHA2-224/256 or Dynamic
SHA2-384/512.

2.1 Functions
Dynamic SHA2 includes four functions. The functions are used in
compression function.

2.1.1 Function G(x1, x2, x3, t)
Function G operates on three words x1, x2, x3 and an integer t, produces
a word y as output. And function G as follow:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

¬∧∨⊕∨¬
⊕∧∨∨¬

⊕∧
⊕⊕

==

)x3(x1)))32(1((
x3))x2((x1))31((

3)21(
321

)3,2,1(

xxx
xx

xxx
xxx

xxxGy t

3
2
1
0

=
=
=
=

t
t
t
t

Table 2.1. function G for Dynamic SHA2

2.1.2 Function R(x1,x2,x3,x4,x5,x6,x7,x8,t)
Function R operates on eight words x1, x2, x3, x4, x5, x6, x7, x8 and an
integer t. produces one word y as output. Function R as follow:

)8)7)6)5)4)3)21(((((((xxxxxxxxROTRy t ⊕+⊕+⊕+⊕=

2.1.3 Function R1(x1,x2,x3,x4,x5,x6,x7,x8)
Function R1 operates on eight words x1, x2, x3, x4, x5, x6, x7, x8.
produces one word y as output. Function R1 as table 2.3 show:

2.1.4 Function COMP(hv1,hv2, …,hv8,w(0),w(1),…,w(7),t)
Function COMP operates on sixteen words hv1,hv2, …,hv8, w(0),
w(1),…,w(7) and an integer t. Function COMP is defined as table 2.4.

x1 x2 x3 f1 f2 f3 f4
0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 0 1 0
0 1 1 0 1 0 1
1 0 0 1 0 0 1
1 0 1 0 1 1 0
1 1 0 0 1 1 1
1 1 1 1 0 0 0

Table 2.2 Truth table for logical functions

Dynamic
SHA2-224/256

)8(
31t2)t2)((t

1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

7)6)5)4)3)2x1(((((t0

5

1010

1717

xROTRy
SHR

SHR
SHR

xxxxxx

t=

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

Dynamic
SHA2-384/512

)8(
63t3)t3)((t

1)-(2t2)t2)((t3
1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

7)6)5)4)3)2x1(((((t0

6

1212

1818

3636

xROTRy
SHR

SHR
SHR
SHR

xxxxxx

t=

∧⊕=

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

Table 2.3. function R1 for Dynamic SHA2

2.2 Dynamic SHA2 Constants
Dynamic SHA2 does not use any constants.

2.3 Preprocessing
Preprocessing in Dynamic SHA2 is exactly the same as that of SHA-2.
That means that these three steps: padding the message M, parsing the
padded message into message blocks, and setting the initial hash value,

0H are the same as in SHA2. Thus in the parsing step the message is
parsed into N blocks of 512 bits (resp. 1024 bits), and the i-th block of
512 bits (resp. 1024 bits) is a concatenation of sixteen 32-bit (resp. 64-bit)
words denoted as .)(

15
)(

1
)(

0 ,.....,, iii MMM
Dynamic SHA2 may be used to hash a message, M, having a length of l

Dynamic

SHA2-224/256

7)4)w((tThv1
hv1hv2

w(t)hv2hv3
7)5)w((t3)thv3,hv2,G(hv1,hv4

(hv4)ROTRhv5

7)6)w((thv5hv6
(hv6)ROTRhv7

7)7)w((thv7hv8
31)(w(t)))(SHRhv8,hv7,hv6,hv5,hv4,hv3,hv2,R(hv1,T

7)1)w((tThv1
hv1hv2
hv2hv3

7)2)w((t(w(t)))SHRhv3,hv2,G(hv1,hv4
(hv4)ROTRhv5

7)3)w((thv5hv6
(hv6)ROTRhv7

hv7hv8
31)w(t)hv8,hv7,hv6,hv5,hv4,hv3,hv2,R(hv1,T

31w(t))(SHR

31w(t))(SHR

15

30

31(w(t)))(SHR

31(w(t)))(SHR

25

20

10

5

∧++=
=

+=
∧++∧=

=

∧++=
=

∧++=
∧=

∧++=
=
=

∧++=

=

∧++=
=

=
∧=

∧

∧

∧

∧

Dynamic

SHA2-384/512

7)4)w((tThv1
(hv1)ROTRhv2

w(t)hv2hv3
7)5)w((t3)(w(t)))(SHRhv3,hv2,G(hv1,hv4

(hv4)ROTRhv5

7)6)w((t(hv5)ROTRhv6

(hv6)ROTRhv7

7)7)w((thv7hv8
63)(w(t)))(SHRhv8,hv7,hv6,hv5,hv4,hv3,hv2,R(hv1,T

7)1)w((tThv1
hv1hv2

(hv2)ROTRhv3

7)2)w((t(w(t)))SHRhv3,hv2,G(hv1,hv4
(hv4)ROTRhv5

7)3)w((t(hv5)ROTRhv6

(hv6)ROTRhv7

hv7hv8
63)w(t)hv8,hv7,hv6,hv5,hv4,hv3,hv2,R(hv1,T

63(w(t)))(SHR

60

63(w(t)))(SHR

63(w(t)))(SHR

63(w(t)))(SHR

30

63(w(t)))(SHR

62

63(w(t)))(SHR

63(w(t)))(SHR

63(w(t)))(SHR

54

48

42

36

24

18

12

6

∧++=
=

+=
∧++∧=

=

∧++=

=

∧++=
∧=

∧++=
=
=

∧++=

=

∧++=

=

=
∧=

∧

∧

∧

∧

∧

∧

∧

∧

Table 2.4 function COMP for Dynamic SHA2

bits, where 0≤ < . l 642

2.3.1 padding
2.3.1.1 Dynamic SHA-224/256
Suppose that the length of the message M is L bits. Append the bit “1” to
the end of the message, followed by k zero bits, where k is the smallest,
non-negative solution to the equation L+1+k ≡ 448 mod 512. Then
append the 64-bit block that is equal to the number L expressed using a
binary representation.

Dynamic
SHA2-224

Dynamic
SHA2-256

Dynamic SHA2-384 Dynamic SHA2-512

,fabefaH

,fafH

,H

,bffcH

,efH

,ddH

,cdH

,edcH

)(

)(

)(

)(

)(

)(

)(

)(

44

79864

68581511

3100

593970

173070

507367

81059

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

=

=

=

=

=

=

=

=

5be0cd19,

1f83d9ab,

9b05688c,

510e527f,

a54ff53a,

3c6ef372,

,bb67ae85

,6a09e667

)0(
7

)0(
6

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

)0(
0

=

=

=

=

=

=

=

=

H

H

H

H

H

H

H

H

fa4fa4,47b5481dbe

f98fa7,db0c2e0d64

581511,8eb44a8768

c00b31,67332667ff

0e5939,152fecd8f7
70dd17,9159015a30

,7cd507629a292a36

,059ed8cbbb9d5dc1

)0(
7

)0(
6

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

)0(
0

=

=

=

=

=

=

=

=

H

H

H

H

H
H

H

H

7e2179,5be0cd1913

41bd6b,1f83d9abfb

3e6c1f,9b05688c2b

e682d1,510e527fad

1d36f1,a54ff53a5f

94f82b,3c6ef372fe

,caa73bbb67ae8584

,bcc9086a09e667f3

)0(
7

)0(
6

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

)0(
0

=

=

=

=

=

=

=

=

H

H

H

H

H

H

H

H

Table 2.5 The initial hash value, 0H for Dynamic SHA

2.3.1.2 Dynamic SHA-384/512
Suppose that the length of the message M is L bits. Append the bit “1” to
the end of the message, followed by k zero bits, where k is the smallest,
non-negative solution to the equation L+1+k ≡ 896 mod 1024. Then
append the 128-bit block that is equal to the number L expressed using a
binary representation.

2.4 Initial Hash Value 0H
The initial hash value, 0H for Dynamic SHA is the same as that of
SHA-2 (given in Table 2.5).

For i = 1 to N:
{
1.Initialize eight working variables a, b, c, d, e, f, g and h with the
hash value:

thi)1(−

)1(
0
−= iHa , , , ,

)1(
1
−= iHb)1(

2
−= iHc)1(

3
−= iHd

)1(
4
−= iHe , , ,

)1(
5
−= iHf)1(

6
−= iHg)1(

7
−= iHh

2. Iterative part
2.1 The first iterative part

)0,,,,,,,,,,,,,,,,(
)0,,,,,,,,,,,,,,,,(

15141312111098

76543210

wwwwwwwwhgfedcbaCOMP
wwwwwwwwhgfedcbaCOMP

2.2 The second iterative part
For t=0 to 8
{

),,,,,,,(1 hgfedcbaRT =
gh =
fg =
ef =

de =
cd =
bc =
ab =
Ta =

}
2.3 The third iterative part
For t=1 to 7
{

),,,,,,,,,,,,,,,,(
),,,,,,,,,,,,,,,,(

15141312111098

76543210

twwwwwwwwhgfedcbaCOMP
twwwwwwwwhgfedcbaCOMP

}

3.Compute the intermediate hash value thi)(iH :

)1(
0

)(
0

−+= ii HaH , , , ,)1(
1

)(
1

−+= ii HbH)1(
2

)(
2

−+= ii HcH)1(
3

)(
3

−+= ii HdH
)1(

4
)(

4
−+= ii HeH , , ,)1(

5
)(

5
−+= ii HfH)1(

6
)(

6
−+= ii HgH)1(

7
)(

7
−+= ii HhH

}
Table 2.6 Algorithmic description of Dynamic SHA2 hash function.

2.5 Dynamic SHA2 Hash Computation
The Dynamic SHA2 hash computation uses functions and initial

values defined in previous subsections. So, after the preprocessing is
completed, each message block, , is processed in
order, using the steps described algorithmically in Table 2.6.

)()1()0(,.....,, NMMM

The algorithm uses 1) a message schedule of sixteen 32-bit (resp.

64-bit) words, 2) eight working variables of 32 bits (resp. 64 bits) , and 3)
a hash value of eight 32-bit (resp. 64-bit) words. The final result of
Dynamic SHA2-256 is a 256-bit message digest and of Dynamic
SHA2-512 is a 512-bit message digest. The final result of Dynamic
SHA2-224 and Dynamic SHA2-384 are also 256 and 512 bits, but the
output is then truncated as 224 (resp. 384) bits. The words of the message
schedule are labeled . The eight working variables are
labeled and and sometimes they are called “state
register”. The words of the hash value are labeled , which
will hold the initial hash value,

1510 ,...,, WWW

gfedcba ,,,,,, h
)(

7
)(

1
)(

0 ,...,, iii HHH
)0(H , replaced by each successive

intermediate hash value (after each message block is processed),)(iH ,
and ending with the final hash value,)(NH .

Dynamic SHA2 also uses one temporary words T.

3 Security of Dynamic SHA2
In this section I will make an initial analysis of how strongly collision
resistant, preimage resistant and second preimage resistant Dynamic
SHA2 is. I will start by describing our design rationale, then I will
discuss the strength of the function against known attacks for finding
different types of collisions.

3.0 Cryptographic Hash Functions
After preprocess message, there are some message blocks that include
512(resp.1024) bits.
Let there exist message blocks M(1),M(2),…,M(n). Let f(h,Mi) is
compression function, it is as table 2.6. The operation of the iterated hash
function is as follows. First, an b-bit value h(0)=IV is fixed. Then the

message blocks are hashed in order. There exist f(h(i-1),M(i))=h(i) i =
1,2,...,n. As table 3.1

f f f…

M1 MnM2

IV F(x) f

Mj

…

 Table 3.1 The iterated construction of compression function f

When someone find collisions, he can randomly guess message blocks
except for one block M(j) ,where 0≤j≤n. Then he can calculate out h(j-1)
with function f and message blocks M(1),…,M(j-1) , and he can
backward function f with message blocks M(j+1),…,M(n) to calculate
out h(j). At last he can just find suitable M(j) that mak f(h(j-1),M(j))=h(j)
to complete findding collisions. So I will discuss the security of Dynamic
SHA2 in one block.

3.1 Properties of iterative part
The iterative part includes three parts.

3.1.1 Properties of iterative part one
In iterative part one, all message bits have been mixed. And function
COMP is called twice. All bits in message words have been used
as parameters of function G, R and ROTR operation.

80 ,WW

3.1.2 Properties of iterative part two
It is relatively easy to prove the following Theorem:

Theorem 1: The iterative part two of Dynamic SHA2 is a bijection

. working variables are w-bit words. ww ×× → 88 }1,0{}1,0{:ξ

Proof. Let hv=(a, b, c, d,e, f, g, h). where a, b, c, d,e, f, g, h are working
variables before iterative part two. And hv1= (a1, b1, c1, d1,e1, f1, g1,

h1), where a1, b1, c1, d1,e1, f1, g1, h1 are working variables after
iterative part two.

The working variables are b-bit words. Then we have the function
F(hv)=hv’ and . wwF ×× → 88 }1,0{}1,0{:

It is enough to known that, to a given hv’, there is a hv1 make
F(hv’)=hv1.

To a given hv1’, it is easy to backward the iterative part two and
compute the unique value for hv1. So to a given hv1’, there is a hv1
make F(hv1)=hv1’.

So the iterative part two of Dynamic SHA2 is a bijection
 □ ww ×× → 88 }1,0{}1,0{:ξ

After iterative part one, all bits in message have been mixed. From the
definition of function R1, it is enough to known that all bits in working
variables a,b,c,d,e,f,g will affect all bits in temporary words T. After call
function R1 9 times, all bits in working variables that before iterative part
two will affect all bits in working variables that after iterative part two.
So all message bits will affect all bits in last hash value.

3.1.3 Properties of iterative part three
In iterative part three, all message bits will be mixed seven times. And
function COMP is called fourteen times. All bits in message words

have been used as
parameters of function G, R and ROTR operation.

15141312111097654321 ,,,,,,,,,,,,, WWWWWWWWWWWWWW

In iterative part one and three, all bits in message have been used as
parameters of function G, R and ROTR operation. This will divide
message space into (resp.) parts. 5122 10242

3.2 Design rationale

The reasons for principle: When message is changed, the
calculation will be different.

From the definition of function G, R and ROTR operations, it is easy
to know all bits in message have been used as parameters of function G,

R and ROTR operation. One bit different in message, different logical
function or different ROTR operation will be done, and it will make the
calculation different. Different message will lead to different calculation,
these different calculations divide message space into (resp.)
parts. In a part, there is

5122 10242

12 512512 =− (resp. 12 10241024 =−) message value.

Why Dynamic SHA2 does not have constants?
The reasons why I decided not to use any constants is that Dynamic
SHA2 is secure enough.

Controlling the differentials is hard in Dynamic SHA2:

In Dynamic SHA2, it is known that when message is changed, the
calculation will be different. To analyze Dynamic SHA2, it need the
unchangeable formulas that represent function describe function G, R and
data-depend ROTR operation. There are three ways to analyze Dynamic
SHA2:

1. Guess the parameters of function G, R and ROTR operation. The
parameters of function G, R and ROTR operation divide message
space into (resp.) parts. In this way, someone select a part
in the message value space. And there is only one message value in
a part. He can not find collisions in the same part.

5122 10242

2. Someone can use Algebraic Normal Form (ANF) to represent
Dynamic SHA2, but the ANFs that represent function R, R1 has up
to , (resp. ,) monomials. If constitute the
Arithmetic function based on ANF, the degree of the Arithmetic
function represents function R, R1 and G is 261, 256, 5 (resp. 518,
512, 5), there are up to , (resp. ,) monomials in
Arithmetic function represents function R, R1.

2612 2562 5182 5122

2612 2562 5182 5122

3. Someone can constitute Arithmetic functions to represent Dynamic
SHA2 as in Appendix 2. But the Arithmetic function that represents
function R and data-depend ROTR operation is complex
exponential function with round-off instruction. After iterative parts,
the Arithmetic function that represents function R and data-depend
ROTR operation will be very huge.

3.3 Finding Preimages of Dynamic SHA2
To a hash function f(·), it need satisfy:

Given hash value H=f(M), it is hard to find message M that meet
H=f(M).

There are two ways to find preimages of a hash function:

1,From the definition of Dynamic SHA2, it follows that from a given
hash digest it is possible to perform backward iterative steps by guessing
values that represent some relations between working variables of the
message part.

To do this, it needs the parameter of the ROTR operation and
function G, R in Dynamic SHA2. But in Dynamic SHA2, when message
changed, the parameter of the ROTR operation and function G, R will
change. So attacker had to guess the parameter that will be used in
Dynamic SHA2. From the definition of Dynamic SHA2, it is know that
all bits in message are used as the parameter of the ROTR operation and
function G, R. When attacker completes guessing parameters, he has
guessed all bits in message.

2, The probability of random guess of finding preimages is
(resp. , ,). 2242− 2562− 3842− 5122−

3.4 Finding Second Preimages of Dynamic SHA2
To a hash function f(·), it need satisfy:

Given M, it is hard to find M’≠ M s.t. f(M) = f(M’).

There are five ways to find second preimages of a hash function:
1, Get hash value H=f(M) of message M, and find different message

M’≠ M that has hash value H= f(M’). In section 3.3, it is known
that it is hard to calculate out the message M’ from given hash value
H.

2, Given M, and find out the relationship between the difference △M
and the difference △H=f(M+△M)-f(M). And find out △M≠0 that

make △H=0. To do this, someone will set up some system of
equations obtained from the definition of the hash function, then
trace forward and backward some initial bit differences that will
result in fine tuning and annulling of those differences and finally
obtain second preimages. It need know the unchangeable formulas
that represent hash function f. In Dynamic SHA2, when message is
changed, the calculation is different. To get unchangeable formulas
that represent hash function f, it need get ANFs for Dynamic SHA2.
And the ANFs that represent function R, R1 has up to ,
(resp. ,) monomials.

2612 2562
5182 5122

3. To get unchangeable formulas that represent hash function f. It can
constitute Arithmetic functions to represent Dynamic SHA2. And
the Arithmetic functions that represent function R, R1 and G are
exponential functions. Or someone had to constitute 261,256-degree
(resp. 518, 512-degree) Arithmetic function to represent function R,
R1 , and there are up to , (resp. ,) monomials in
the Arithmetic function.

2612 2562 5182 5122

4. Guess the parameters of function G, R and ROTR operation. In this
way, a part in the message value space is selected. And there is only
one message value in a part. It can not find second preimages in the
same part.

5. The probability of random guess of finding second preimages is
(resp. , ,). 2242− 2562− 3842− 5122−

3.5 Finding Collisions in Dynamic SHA2
To a hash function f(·), it need satisfy:

It is hard to find different M and M’ s.t. f(M) = f (M’).

There are five ways to find collisions of a hash function:

1, Fix message M, and find different message M’ that has hash value
H=f(M). then the problem become finding Second Preimages of the
hash function.

2. Find out the relationship between the (M, M’) and the difference
△H=f(M)-f(M’). And find out (M,M’) that make △H=0. To do this,

someone will set up some system of equations obtained from the
definition of the hash function, then trace forward and backward
some initial bit differences that will result in fine tuning and
annulling of those differences and finally obtain collisions. It need
know the unchangeable formulas that represent hash function f. In
Dynamic SHA2, when message is changed, the calculation is
different. To get unchangeable formulas that represent hash function
f, it need get ANFs for Dynamic SHA2. And the ANFs that
represent function R,R1 has up to , (resp. ,)
monomials.

2612 2562 5182 5122

3. To get unchangeable formulas that represent hash function f. It can
constitute Arithmetic functions to represent Dynamic SHA2. And
the Arithmetic functions that represent function R, R1 and G are
exponential functions. Or someone had to constitute 261, 256 -
degree (resp. 518, 512-degree) Arithmetic function to represent
function R , and there are up to , (resp. ,)
monomials in the Arithmetic function..

2612 2562 5182 5122

4. Guess the parameters of function G, R and ROTR operation. This
way is select a part in the message value space. And there is only
one message value in a part. It can not find collisions in the same
part.

5. The attack base on the birthday paradox. the workload for birthday
attack is of O() (resp. O() O() O()). 1122 1282 1922 2562

3.6 Finding collisions in the reduced compression function of
Dynamic SHA2
If the message bits are mixed less twice. The system will be weak,
someone can backward Dynamic SHA2 as table E.2 show.

If the message bits are mixed at least twice, message word
are used as the parameter of the ROTR operation and function G, R. It
can backward iterative part as follow:

8710 ,,, wwww

1. At first, there exist function COMPA and R1A:
1.1 Function COMPA operates on sixteen words hv1, hv2,…,hv8,
x0,x1,x1, x2, x3, x4, x5, x6, x7 and an integer t. Function COMPA

as table 3.2, 3.3, 3.4 show.
1.2. Function R1A operates on eight words x1,x1, x2, x3, x4, x5, x6,
x7, x8. produces one word y as output. Function R1 as table 3.2 and
table 3.3.

Thvhvhvhvhvhvhvhv
TROTRT

hvhv
hvROTRhv

xhvhv
hvROTRhv

xSHRxhvhvhvGhv

hvhv
hvhv

xhvT
Thvhvhvhvhvhvhvhv

TROTRT

xhvhv
hvROTRhv

xhvhv
hvROTRhv

txhvhvhvGhv
xhvhv

hvhv
xhvT

⊕+⊕+⊕+⊕=
=

=
=

−=
=

−=

=
=

−=
⊕+⊕+⊕+⊕=

=

−=
=

−=
=

∧−=
−=

=
−=

−−−−−−−

∧

−

∧
−

−

∧
−

−−

−

−

∧

∧

∧

)7)6)5)4)3)21((((((8
)(

87
)7(6

365
)5(4

))0(),24(,2,(3

32
21

11
)7)6)5)4)3)21((((((8

)(

787
)7(6

665
)5(4

)3),54(,2,(3
032

2
41

11101111

01

01

01

01

30
011

01

01

0

00000000

10

0

10

0

100

10

1

31)(x0-32

31)x0)((SHR-32

31)x0)((SHR-32

1-

31)x0)((SHR-32

1
31)x0)((SHR-32

1
31)x0)((SHR-32

0

0

1

5

10

15

20

25

1

1

1

Table 3.2 function COMPA for Dynamic SHA2-224/256

Thvhvhvhvhvhvhvhv
TROTRT

hvhv
hvROTRhv

xhvROTRhv

hvROTRhv

xSHRxhvhvhvGhv

hvROTRhv

hvhv
xhvT

Thvhvhvhvhvhvhvhv
TROTRT

xhvhv
hvROTRhv

xhvROTRhv

hvROTRhv

xSHRxhvhvhvGhv

xhvhv
hvROTRhv

xhvT

⊕+⊕+⊕+⊕=
=

=
=

−=

=

−=

=

=
−=

⊕+⊕+⊕+⊕=
=

−=
=

−=

=

∧−=

−=
=

−=

−−−−−−−

∧

−

∧
−

∧
−

∧
−

−−

∧
−

−

∧

∧

∧

∧

∧

)7)6)5)4)3)21((((((8
)(

87
)7(6

)36(5

)5(4

))0(),24(,2,(3

)3(2

21
11

)7)6)5)4)3)21((((((8
)(

787
)7(6

)66(5

)5(4

)3)0(),54(,2,(3

032
2

41

11101111

3
01

0
3

1

0
3

1

0
3

1

62
011

0
3

1

01

0

00000000

3

10

3
0

1
3

0

3
0

60
100

10

1
3

)6(x0-64

)6x0)((SHR-64

)6x0)((SHR-64

)6x0)((SHR-64

1-

)6x0)((SHR-64

)6x0)((SHR-64

1
)6x0)((SHR-64

)6x0)((SHR-64

1
)6x0)((SHR-64

0

)6x0)((SHR-64
0

1

6

12

18

24

30

36

42

48

54

1

1

1

Table 3.3 function COMPA for Dynamic SHA2-384/512

 Dynamic
SHA2-224/256

)8(
31t2)t2)((t

1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

7)6)5)4)3)2x1(((((t0

32

5

1010

1717

xROTRy
SHR

SHR
SHR

xxxxxx

t−=

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

Dynamic
SHA2-384/512

)8(
63t3)t3)((t

1)-(2t2)t2)((t3
1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

7)6)5)4)3)2x1(((((t0

64

6

1212

1818

3636

xROTRy
SHR

SHR
SHR
SHR

xxxxxx

t−=

∧⊕=

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

Table 3.4. function R1A for Dynamic SHA2

2. Base on function COMPA and R1A, we can backword the iterative
steps as follow:
2.1 Initialize eight last variables , ,..., , eight first
variables , ,..., and eight message words

, ,..., .

16a 16b 16h
1−a 1−b 1−h

0w 1w 7w
2.2 Input (, ,..., , , ,..., ,0) into function
COMP, then we have , ,..., .

1−a 1−b 1−h 0w 1w 7w
1a 1b 1h

2.3 Guess , ,..., . and input (, ,...,
 , , ,..., ,1) into function COMPA, then we have
, ,..., .

8w 9w 15w 16a 16b
16h 8w 9w 15w
14a 14b 14h

2.4 Input (, ,..., , , ,..., ,1) into function
COMPA, then we have , ,..., .

14a 14b 14h 0w 1w 7w
12a 12b 12h

2.5 From , ,..., , it can backword as follow: 12a 12b 12h
For t=8 to 0
{

),,,,,,,(1 3333333 TgfedcbaARh
hg
gf
fe
ed
dc
cb
ba

aT

ttttttt ++++++++

++

++

++

++

++

++

++

+

=
=
=
=
=
=
=
=

=

3t

4t3t

4t3t

4t3t

4t3t

4t3t

4t3t

4t3t

4t

}
Then we have , ,..., . 3a 3b 3h
2.6 Operate on , ,..., and , ,..., as table E.2 that

in Appendix 5. then we have , ,..., .
3a 3b 3h 1a 1b 1h

'8w '9w '15w
2.7 Compare , ,..., and , ,..., . If

(, ,...,)= (, ,...,), then we find a
collision. If (, ,...,)

'8w '9w '15w 8w 9w 15w
'8w '9w '15w 8w 9w 15w

'8w '9w '15w ≠ (, ,...,), we had
to guess (, ,...,) again. The size of the space of
(, ,..., , , ,...,) is (resp.

8w 9w 15w
8w 9w 15w

'8w '9w '15w 8w 9w 15w 5123216 22 =×

10246416 22 =×) and the size of the space of (, ,...,) is
(resp.). So the probability of (, ,...,)=

(, ,...,) is (resp.).

8w 9w 15w
2562 5122 '8w '9w '15w

8w 9w 15w 2562− 5122−

So if the message bits are mixed at least twice, the probability of
find the collision is less than (resp.). 1282− 2562−

3.7 Security of message digest truncations
3.7.1 Security of message digest truncations of Dynamic
SHA2-224
The final result of Dynamic SHA2-224 include eight working variables
a,b,c,d,e,f,g,h, it iclude 256 bits. The output of Dynamic SHA2-224
include seven working variables a,b,c,d,e,f,g, it iclude 224 bits.

So the length of the final result of Dynamic SHA2-224 is 256, and
the length of the output of Dynamic SHA2-224 are 224. The size of the
space of final result of Dynamic SHA2-224 is , The size of the space
of output of Dynamic SHA2-224 is . To given output 7-tuple(a’, b’,
c’, d’, e’, f’, g’), there exist working variables value h that make
8-tuple (a’, b’, c’, d’, e’, f’, g’, h) has same output 7-tuple(a’, b’, c’, d’, e’,
f’, g’).

2562
2242

322

To a given output of Dynamic SHA2-224, there are final result
that has the given output. And the probability of find out a message that
has the given final result is . So the probability of find out a
message that has the given given output is

322

2562−

22432256 222 −− =× .

3.7.2 Security of message digest truncations of Dynamic
SHA2-384
The final result of Dynamic SHA2-384 include eight working variables
a,b,c,d,e,f,g,h, it iclude 512 bits. The output of Dynamic SHA2-384
include six working variables a,b,c,d,e,f, it iclude 384 bits.

So the length of the final result of Dynamic SHA2-384 is 512, and
the length of the output of Dynamic SHA2-384 are 384. The size of the
space of final result of Dynamic SHA2-384 is , The size of the space
of output of Dynamic SHA2-384 is . To given output 6-tuple(a’, b’,
c’, d’, e’, f’), there exist

5122
3842

128642 22 =× 2-tuple (g,h) that make 8-tuple (a’, b’,

c’, d’, e’, f’, g, h) has same output 6-tuple(a’, b’, c’, d’, e’, f’).
To a given output of Dynamic SHA2-384, there are final result

that has the given output. And the probability of find out a message that
has the given final result is . So the probability of find out a
message that has the given given output is

1282

5122−

384128512 222 =×− .

4 Improvements
There are some improvements for Dynamic SHA2:

1. There is no any constant in Dynamic SHA2. Use constants will
increase system security.

2. In Keyed Hash function, the initial hash value is random variable to
attacker. If Dynamic SHA2 is used in Keyed Hash function, by theorem 4,
it is easy know that the probability of hash value is (resp.

).

2242−

2562− 3842− 5122−

There are some ways that we can adopt to get random initial hash
value, for example: cIVIV ii += −1 , is i-th initial hash value, c is
constant and c is odd number. To do this, it need new communication
protocol.

iIV

3. If some algorithms that based on Arithmetic functions are developed to
break Dynamic SHA2. The message expansions will increase the degree
of the Arithmetic function that represents Dynamic SHA2. If the message
expansions is data depend function, the degree of the Arithmetic function
that represents the message expansions maybe be up to 512(resp.1024). It
will increase the ability that resists differential analysis

The message expansion maybe makes some hash values have more
probability than other hash value. With improvement 2, all hash value
will have same probability.

An examlep as follow:
Use a data-depend function as message expansion and the iterative

part include four parts. The message expansion and the fourth iterative
part as follow:

Dynamic
SHA2-224/256

15i0w

)(2t

15i8(15)1)()(p
7i0(15)0)()(p

16)15)14x13))12)11)109((((((t1
8x7))6)5)4)3)2x1((((((t0

2)(15

15

0

)8(4

4

≤≤⊕=

=

≤≤∧=

≤≤∧=

+⊕+⊕+⊕+=
+⊕+⊕+⊕+=

⊕+

=

−×

×

∑
tipii

i

i

i

ww

ip

tSHRi
tSHRi

xxxxxxx
xxxxxx

Dynamic
SHA2-384/512

15i0w

)(1t

15i0(15)0)()(p
16)15)14x13))12)11)10)9)8

x7))6)5)4)3)2x1((((((((((((((t0

1)(15

15

0

4

≤≤⊕=

=

≤≤∧=

+⊕+⊕+⊕+⊕+
+⊕+⊕+⊕+=

⊕+

=

×

∑
tipii

i

i

ww

ip

tSHRi
xxxxxxxx

xxxxx

Table 4.1. message expansion for Dynamic SHA
150 ≤≤ iwi are message words and 3116 ≤≤ iwi are message

expansion words,, and the iterative part will include four part, the fourth
iterative part as follow:

2.4 The fourth iterative part
For t=0 to 7
{

),,,,,,,,,,,,,,,,(
),,,,,,,,,,,,,,,,(

3130292827262524

2322212019181716

twwwwwwwwhgfedcbaCOMP
twwwwwwwwhgfedcbaCOMP

}
Table 4.2. the fourth iterative part for Dynamic SHA2

There are up to monomials in the ANFs and
Arithmetic functions that represent message expansion. The degree of
Arithmetic functions that represent message expansion is up to
512(resp.1024).

)2.(2 1024512 resp

5. Support of HMAC, randomized hashing function and
Pseudo-random function
Dynamic SHA2 can be used in different situation, such as: HMAC,
randomized hashing function and Pseudo-random function.

5.1 Support of HMAC
5.1.1 Constitute HMAC with Dynamic SHA2

If there is a hash function H(.), the size of message block is b. The
definition of HMAC is:

))||)((||)(()(MipadKHopadKHMHMAC ⊕⊕= ++

Where:
ipad = 00110110... repeat 0x36 64(resp.128) times.
opad = 01011100… repeat 0x5c 64(resp.128) times.
K = user key.

+K = pad (b-len(K)) ‘0’ to user key K. len(K) is length of
user key K.

M = message that input HMAC.
|| = connection operation.

From the definition of HMAC, it is known that it can use Dynamic
SHA2-224/256/384/512 to constitute HMAC that produce 224(resp. 256,
384, 512)-bit message authentication code.

If the size of message block of hash function H is b, and the
bit-length of hash value is n. The steps as follow:

1. pad ‘0’ to the key K, and get the +K that include b bits.
2. let and +⊕= KipadSi

+⊕= KopadSo

3. get h1=H(||M). M is message. iS

4. get HMAC=H(||h1) oS

5.1.2 Security of HMAC

Bellare, Canetti, R. and Krawczyk[BELL96a] had define
(ε ,t,q,L)-weakly collision-resistant as follow:

Definition 5.1: We say that a family of keyed hash functions f is
(ε ,t,q,L)-weakly collision-resistant if any adversary that is not given
the key k, is limited to spend total time t, and sees the values of the
function Fk computed on q messages m1,m2,...,mq of its choice, each of
length at most L, cannot find messages m and m’ for which Fk(m) =
Fk(m’) with probability better than ε .

Bellare, Canetti, R. and Krawczyk[BELL96a] had proved the
theorem as follow:

Theorem 5.1 If the keyed compression function f is an
fε ,q,t,b)-secure MAC on messages of lengthbbits, and the keyed

iterated hash F is (Fε ,q,t,L)-weakly collision-resistant then the NMAC
function is an (Ff+ε ,q,t,L)-secure MAC.

Because the attacker need at least (resp. , ,)

different message to find collision of Dynamic SHA2. By theorem 5.1, it
is known that if someone want to find collision of HMAC that
constituted with Dynamic SHA2, he need (resp. , ,)
different (message, MAC) that produced with same key. And the
attacker has not the key, he can not produce these (message, MAC)
off-line. On a 1 Gbit/sec communication link, one would need more than

 seconds to process all the data required by such an attack.

1122 1282 1922 5122

1122 1282 1922 5122

812

5.2 Support of randomized hashing function
5.2.1 randomized hashing function

In Draft NIST SP 800-106[17], Randomized Hashing function RF
is as follow:

RF(rv,m)=))(||M||F(r rvPLRvv ⊕

Where:
RF = Randomized Hashing function
rv = a random bit string that bit-length<1025
m = input message
F = hash function.
M = pad ‘1’ and some ‘0’ to m.

1.if m longer than (|rv|-2), just pad ’1’.
2. if m shorter than (|rv|-1), just pad ’1’ and
some ‘0’ to make length M equal |rv|.

Rv =repeat rv some times, and truncated as |M|
PL(rv) = 16-bit binary string that describe the bit-length of rv
|x| = bit-length of x.
|| = connection operation.

1. rv is a random bit string that bit-length<1025, m is message.

2. let rlen=|rv|

3. if (|m|>(rlen-2)) then M1=m||’1’

4. if (|m|>(rlen-2)) then M1=m||’1’

5. if (|m|<(rlen-1)) then M1=m||’1’||’0’||…||’0’
rlen-|m|-1

6. let Rv1= rv||…||rv

|M|/rlen+1

7. let Rv= Rv1 truncated as |M1|

8. let M=rv||(M1⊕ Rv) ||16bitlen(rv)

9. return M

Table 5.1 function PM for Randomized Hashing function

1. A = n. Comment: A is an integer.
2. For (integer i = 15 down to 0)

2.1 B = A mod 2. Comment: B is an integer,
2.2 If (B = 0), then

bi = “0”. Comment: bi is a single “0” bit.
Else

bi = “1” . Comment bi is a single “1” bit.
 2.3 A = ⎣ ⎦2/A

3. 16bit=b0||b1||…||b15;
4. return 16bit;

Table 5.2 function PL for Randomized Hashing function

There exist two function PM anf PL as table 5.1 and 5.2 show.
Function PM operate on a message m and a random bit string rv,

produce a new message M.
Function PL operate on an integer, produce a 16-bit bit string.
From the definition of Randomized Hashing function, it is easy

known that Dynamic SHA2 can be used function F in the definition.
Dynamic SHA2 are used in Randomized Hashing function as follow:

RF(rv,m)=F(PM(rv,m)), where F is Dynamic SHA2.

5.2.2 Security of randomized hashing function

If the randomized hashing function is constituted with hash function F.

Then if someone have a message m1 and a random bit string rv1,
then he can find (rv2,m2) that make RF(rv1,m1)= RF(rv2,m2) as table
5.3 show(the bit order is started from 1.):

1. set m2len is the length of the message m2 and r2len the length of
the random bit string rv2. where r2len<1025.

2. if m2len>r2len-2,
2.1 find a (r2len+m2len+1) bit-length message m3 that make

RF(rv1,m1)=F(m3||PL(r2len)). And the (r2len+m2len+1)-th
bit of m3 b1 and the (((m2len+1) mod r2len)+1)-th bit of m3
b2 satisfy the follow requirement: b1⊕b2=1.

2.2 the first r2len bits is random bit string rv2.

|m3|/r2len+2

2.3. let Rv2= rv2||…||rv2

2.4 let Rv= Rv2 truncated as (m2len+r2len)
2.5 let m3’= m3 Rv ⊕

2.6 from the (r2len+1)-th bit to(m2len+r2len)-th bit of m3’ is
m2.

2.7 return m2 and rv2
3. if m2len<r2len-1

3.1 find a (r2len+r2len) bit-length message m3 that make
RF(rv1,m1)=F(m3||PL(r2len)). And m3 satisfy the follow
two requirement:

3.1.A: the (r2len+m2len+1)-th bit of m3 b1 and the
(m2len+1)-th bit of m3 b2 satisfy the follow
requirement: b1⊕b2=1.

3.1.B: if m3=(), then lenrbbb 2*221 ,...,,

()=() lenrlenm bb 222 ,...,+ lenrlenrlenm bb 2*2222 ,...,++

3.2 the first r2len bit is random bit string rv
3.3. let Rv= rv2||rv2
3.4 let m3’= m3 Rv ⊕

3.5 from the (r2len+1)-th bit to(m2len+r2len)-th bit of m3’ is
m2.

3.6 return m2 and rv2
4. if not find message m3 that make RF(rv1,m1)=F(m3||PL(r2len)).

Set the length of the message m2 and the length of the random bit string
rv2. goto step 2.

In this way to find a message m2 and a random bit string rv2

(rv2,m2)≠(rv1,m1) that make RF(rv1,m1)= RF(rv2,m2), it need find the
Preimages of hash function F or Second Preimages of hash function F. it
is hard find Preimages or Second Preimages of Dynamic SHA2. The
probability of finding Preimages or second preimages is (resp.

, ,).

2242−

2562− 3842− 5122−

5.3 Support of Pseudo-random function

In section 10 of NIST SP 800-90[18], NIST has publish “Deterministic
Rrandom Bit Generator(DRBG) Mechanisms Based on Hash Functions.”

5.3.1 Support of HMAC based Pseudo-random function
In section 10.1.2 of NIST SP 800-90[18], NIST has publish
“HMAC_DRBG.”. It specify a construction of Pseudo-random function
that base on HMAC.

Here I specify a construction of Pseudo-random function based on
the “HMAC_DRBG.” of NIST SP 800-90[18]. And the HMAC
specified in setction 5.1 will de used in the construction of Pseudo-
random function.

5.3.1.1 Functions
Three function are used in the construction of HMAC based
Pseudo-random function.

5.3.1.1.1 Function Updata(provided_data, K, V)
Function Updata operate on three bit strings provided_data, K, V. and

produce a new key K and a new string V. Function Updata as table 5.3
show:

1. K=HMAC(K, V||0x00|| provided_data)
2. V=HMAC(K, V).
3. If (provided_data=NULL), then Return K, V
4. K=HMAC(K,V||0x01|| provided_data)
5. V= HMAC(K, V)
6. Return K, V

Table 5.3 Function Updata of HMAC-based Pseudo-random function

5.3.1.1.2 Function Instantiate (entropy_input, nonce,
personalization_string)

Function Instantiate initialize some system parameters, when HMAC
based Pseudo-random function start.

Function Instantiate operate on three bit strings entropy_input, nonce,
personalization_string.

entropy_input is a string of bits obtained from the source of entropy
input.

nonce is a bit string.
a. An unpredictable value with at least 56 (resp. 128, 96,
256) bits of entropy.
b. A value that is expected to repeat no more often than a 56
(resp. 128, 96, 256)-bit random string would be expected to
repeat.

personalization_string is a string received from the consuming
application..
Function Instantiate produce a key K , a string V and an integet
reseed_counter . Function Instantiate as table 5.4 show:

1. seed_material = entropy_input || nonce || personalization_string.
2. K = 0x00 00...00. Comment: outlen bits.
3. V = 0x01 01...01. Comment: outlen bits.

Comment: Update Key and V.
4. (K, V) = Update (seed_material, K, V).
5. reseed_counter = 1.
6. Return K, V, reseed_counter

Table 5.4 Function Instantiate of HMAC-based Pseudo-random function

5.3.1.1.3 Function Reseed (V, K, reseed_counter, entropy_input,
additional_input)

If too many pseudo-random number were produced with same parameters,
someone will have enouhg data to attack the system. So after produce
some pseudo-random number, the system parameters must be reseted.
HMAC based Pseudo-random function will reset system parameters after
produce no more than pseudo-random number. 482

The function of function Reseed is reset system parameters. Function
Reseed operate on four bit strings V, K, entropy_input, additional_input
and an integer reseed_counter.. Produce two new bit strings V, K, and an
new integer reseed_counter. Function Reseed is as table 5.5 show:
1. seed_material = entropy_input || additional_input.
2. (K, V) = Update (seed_material, K, V).
3. reseed_counter = 1.
4. Return V, K, reseed_counter

Table 5.5 Function Reseed of HMAC-based Pseudo-random function

5.3.1.2 HMAC based Pseudo-random function
When HMAC based Pseudo-random function start, system will call
tunction Instantiate to initialize some system parameters. And then
pseudo-random number will be produced as follow steps:

1. If reseed_counter > , then return an indication that a reseed
is required.

482

2. If requested_number_of_bits> , then return an signal that
the requested_number_of_bits is error.

192

3. If additional_input≠ Null, then (Key, V) = Update
(additional_input, Key, V).

4. temp = Null.
5. While (len (temp) < requested_number_of_bits) do:

5.1 V = HMAC (Key, V).
5.2 temp = temp || V.

6. returned_bits = Leftmost requested_number_of_bits of temp.
7. (Key, V) = Update (additional_input, Key, V).
8. reseed_counter = reseed_counter + 1.
9. Return returned_bits, and the new values of Key, V and

reseed_counter.

In the steps:

reseed_counter is the number of pseudo-random number had been
produced.

additional_input is a string received from the consuming
application.

Key is the key will be used in HMAC.
V is the bit string will be hashed in HMAC.
requested_number_of_bits is the number of bits of the

pseudo-random numberwill be produced.
requested_number_of_bits no bigger than . 352

returned_bits is the produced pseudo-random number.
In the process of produce pseudo-random number, The values of V and
Key are the critical values. So it must prevent from reveal the values of V
and Key.

5.3.1.3 Security of Pseudo-random function based HMAC

In the Pseudo-random function based HMAC, the key and the
‘message’ data V is protected. If someone attack the system, he must
enough data that produced with same key, but in the Pseudo-random
function based HMAC, the max number of the bits that produced with
same key is , and every time the max number of bits requested is .
The max number of bits that produced with same Key is . To

352 192
541935 22 =+

find collision of HMAC that constituted with Dynamic SHA2, it need at
least (resp. , ,) different (message, MAC) that produced
with same key. So the attacker can not get enough (message, MAC) to
find collision of HMAC that constituted with Dynamic SHA2.

1122 1282 1922 5122

The attacker can test all (Key, V) to find the (Key, V) that is used,
but the bit-length of Key and V is hash value of hash function. Then the
bit-length of (Key, V) is 448224224 =+ (resp. ,

,).
512256256 =+

768384384 =+ 1024512512 =+

5.3.2 Support of non-HMAC based Pseudo-random function
In section 10.1.1 of NIST SP 800-90[18], NIST has publish
“Hash_DRBG”. It specify a construction of Pseudo-random function that
not base on HMAC.

Here I specify a construction of Pseudo-random function based on
the “Hash_DRBG” of NIST SP 800-90[18].

5.3.2.1 Functions
Four function are used in the construction of non-HMAC based
Pseudo-random function

5.3.2.1.1 Function Hash_df (input_string, no_of_bits_to_return)
Function Hash_df operate on three bit strings input_string and an integer

no_of_bits_to_return. And produce a string requested_bits.. Function
Hash_df as table 5.6 show:

1. temp = the Null string.
2. len=

outlen
returntobitofno ____ .

3. counter = 0x01
4. For i = 1 to len do
Comment : In step 4.1, no_of_bits_to_return is used as a 32-bit string.

4.1 temp=temp||Hash(counter||no_of_bits_to_return|| input_string).
4.2 counter = counter + 1.

5. requested_bits = Leftmost (no_of_bits_to_return) of temp.
6. Return requested_bits

Table 5.6 Function Hash_df of non-HMAC based Pseudo-random function

The outlen in table 5.6 is the bit-length of the hash function.

5.3.2.1.2 Function Instantiate (entropy_input, nonce,
personalization_string)

Function Instantiate initialize some system parameters, when HMAC
based Pseudo-random function start.

Function Instantiate operate on three bit strings entropy_input, nonce,
personalization_string.

entropy_input is a string of bits obtained from the source of entropy
input.

nonce is a bit string. nonce is either:
a. An unpredictable value with at least 56 (resp. 128, 96,
256) bits of entropy.
b. A value that is expected to repeat no more often than a 56
(resp. 128, 96, 256)-bit random string would be expected to
repeat.

personalization_string is a string received from the consuming
application..

seedlen is a constant depend the hash function,
if Dynamic SHA2-224/256 seedlen = 440
if Dynamic SHA2-384/512 seedlen = 888

Function Instantiate produce a key K , a string V and an integet
reseed_counter . Function Instantiate as table 5.7 show:
1. seed_material = entropy_input || nonce || personalization_string.
2. seed = Hash_df (seed_material, seedlen).
3. V = seed.
4. C = Hash_df ((0x00 || V), seedlen).
5. reseed_counter = 1.
6. Return V, C, and reseed_counter

Table 5.7 Function Instantiate of HMAC-based Pseudo-random function

5.3.2.1.3 Function Reseed (V, K, reseed_counter, entropy_input,
additional_input)

If too many pseudo-random number were produced with same parameters,

someone will have enouhg data to attack the system. So after produce
some pseudo-random number, the system parameters must be reseted.
HMAC based Pseudo-random function will reset system parameters after
produce no more than pseudo-random number. 482

The function of function Reseed is reset system parameters. Function
Reseed operate on four bit strings V, K, entropy_input, additional_input
and an integer reseed_counter. Prodece two bit strings V, K, and an new
integer reseed_counter. Function Reseed is as table 5.8 show:
1. seed_material = 0x01 || V || entropy_input || additional_input.
2. seed = Hash_df (seed_material, seedlen).
3. V = seed.
4. C = Hash_df ((0x00 || V), seedlen). Comment: Preceed with a byte
of all zeros.
5. reseed_counter = 1.
6. Return V, C, and reseed_counter.

Table 5.8 Function Reseed of HMAC-based Pseudo-random function

The seedlen in table 5.8 is a constant depend the hash function,
if Dynamic SHA2-224/256 seedlen = 440
if Dynamic SHA2-384/512 seedlen = 888

5.3.2.1.4 Function Hashgen (requested_number_of_bits, V)
The function of function Hashgen operate on one bit strings V and an
integer requested_number_of_bits. Prodece a bit strings returned_bits.
Function Hashgen is as table 5.9 show:

1. m =
outlen

returntobitofno ____ .

2. data = V.
3. W = the Null string.
4. For i = 1 to m

4.1 wi = Hash (data).
4.2 W = W || wi.
4.3 data = (data + 1) mod . seedlen2

5. returned_bits = Leftmost (requested_no_of_bits) bits of W
6. Return returned_bits.

Table 5.9 Function Reseed of HMAC-based Pseudo-random function

The seedlen in table 5.9 is a constant depend the hash function,
if Dynamic SHA2-224/256 seedlen = 440
if Dynamic SHA2-384/512 seedlen = 888

5.3.2.2 non-HMAC based Pseudo-random function
When non-HMAC based Pseudo-random function start, system will call
tunction Instantiate to initialize some system parameters. And then
pseudo-random number will be produced as follow steps:

1. If reseed_counter > , then return an indication that a reseed
is required.

482

2. If requested_number_of_bits> , then return an signal that
the requested_number_of_bits is error.

192

3.If additional_inpu≠Null, then do
3.1 w = Hash (0x02 || V || additional_input).
3.2 V = (V + w) mod . seedlen2

4. (returned_bits) = Hashgen (requested_number_of_bits, V).
5. H = Hash (0x03 || V).
6. V = (V + H + C + reseed_counter) mod . seedlen2

7. reseed_counter = reseed_counter + 1.
8. Return returned_bits, the new value of V, C, and reseed_counter

In the steps:

reseed_counter is the number of pseudo-random number had been
produced.

additional_input is a string received from the consuming
application.

C is seedlen bits that is updated during each call to the
Pseudo-random function

V is seedlen bits that depends on the seed.
requested_number_of_bits is the number of bits of the

pseudo-random numberwill be produced.
returned_bits is the produced pseudo-random number.

In the process of produce pseudo-random number, The values of V and C
are the critical values. So it must prevent from reveal the values of V and

C.

5.3.2.3 Security of non-HMAC based Pseudo-random function
In the non-HMAC based Pseudo-random function, the string C and the
‘message’ V is protected.

If someone attack the system, he need know the the string C and the
‘message’ V. The attacker can find the (C,V) that will produce the same
Pseudo-random number he has. To do this, he need two successive
(V1,V2), then he can calculate out the C, and test (C, V1), if the (C,V1)
do not produce the same Pseudo-random number, the attacker had to find
other (V1,V2) again. So the attacker must find Preimages of Dynamic
SHA2 at first. The probability of random guess of finding
512(resp.1024)-bit preimages of is (resp. , ,). The
bie-length of V is (resp.), even someone has an algorithm to find
all messages that have same hash value of Dynamic SHA2, he had to find
the V from (resp. , ,) messages.

2242− 2562− 3842− 5122−

4402 8882

2162 1842 4962 3762

6 Security of Dynamic SHA2 with length extension attack and
multicollision attack

6.1 Security of Dynamic SHA2 with length extension attack

length extension attack can be used to attack keyed-hash function. It
make attacker can attacker keyed-hash function without the key.

If there exist keyed-hash function H(K, M), where K is key, M is
messahe, and h(hv0. m) is hash function of H(.), and Initial Hash Value of
h(hv0. m) is hv0, message of h(hv0. m) is m. The length extension attack
is as follow:

Let pad(m) is pad ‘1’ , ‘0’ and the bit-length of message m as section
2.3.1.

If attacker have a pair (hv, M), Then attacker can find collision as
follow step:

1. Find a any bit string w,.
2. Constitute new message M’=M||pad(M)||w.
3. Calculate h(H(K,M),w).

If attacker can find the w that make H(K,M)=h(H(K,M),w), he will
find a collision that make H(K,M)= H(K,M’) without know the key K.

In the attack step, we can find that attacker must find preimages of
Dynamic SHA2. And the probability of random guess of finding
preimages of is (resp. , ,). 2242− 2562− 3842− 5122−

6.2 Security of Dynamic SHA2 with multicollision attack

Joux [19] has developed an algorithm to find a -way collision
for a classical iterated hash function. If the probability of finding
collision of a hash function is

r2

ε . The probability of finding a -way
collision for the hash function is .

r2
rε

The probability of finding collision of Dynamic SHA2 is (resp.
, ,). Then the probability of finding -way collision of

Dynamic SHA2 is (resp. , ,). And the
complexity of find a -way collision of Dynamic SHA2 is O(

1122−

1282− 1922− 2562− r2
r×−1122 r×−1282 r×−1922 r×−2562

r2 1122×r)
(resp. O(1282×r), O(1922×r), O(2562×r)).

7 Conclusions

Ronald L Rivest[14] had designed RC5, RC5 include data-depend
function, it make it hard to analyse RC5. And William Stallings[15] has
mentioned that data-depend function will make cipher system nonlinear,
and composite function of Boolean functions and Arithmetic functions
also make cipher system nonlinear. Dynamic SHA2 carries out the two
suggestions.

Function G, R and data-depend ROTR operations divided the
message space into many parts, in different part, the calculation is
different.

And based on components from the family SHA-2, I have
introduced the principle in the design of Dynamic SHA2: When message
is changed, the calculation will be different. And I bring in data depend
function G, R and data-depend ROTR operations, and use bits in message
as parameters of function G, R and and data-depend ROTR operations.
These steps realize the principle. The principle enabled us to build a
compression function of Dynamic SHA2 that has not new variable, the

iterative part include three iterative parts, it is more robust and resistant
against generic multi-block collision attacks, and it is resistant against
generic length extension attacks.

References
1. E. Biham and R. Chen, “Near-collisions of SHA-0,” Cryptology ePrint
Archive, Report 2004/146, 2004. http://eprint.iacr.org/2004/146
2. B. den Boer, and A. Bosselaers: “An attack on the last two rounds of
MD4”, CRYPTO 1991, LNCS, 576, pp. 194-203, 1992.
3. B. den Boer, and A. Bosselaers: “Collisions for the compression
function of MD5”, EUROCRYPT 1993, LNCS 765, pp. 293-304, 1994.
4. F. Chabaud and A. Joux, “Differential collisions in SHA-0,” Advances
in Cryptology, Crypto98, LNCS, vol.1462, pp.56-71, 1998.
5. H. Dobbertin: “Cryptanalysis of MD4”, J. Cryptology 11, pp. 253-271,
1998.
6. NIST, Secure Hash Signature Standard (SHS) (FIPS PUB 180-2),
United States of American, Federal Information Processing Standard
(FIPS) 180-2, 2002 August 1.
7. NIST Tentative Timeline for the Development of New Hash Functions,
http://csrc.nist.gov/groups/ST/hash/timeline.html
8. S. Vaudenay, “On the need for multipermutations: Cryptanalysis of
MD4 and SAFER”, Fast Software Encryption- FSE95, LNCS 1008, pp.
286–297, 1995.
9. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, “Cryptanalysis of the
Hash Functions MD4 and RIPEMD”, EUROCRYPT 2005, LNCS 3494,
pp. 1–18, 2005.
10. X. Wang and H. Yu , “How to Break MD5 and Other Hash
Functions”, EUROCRYPT 2005, LNCS 3494, pp. 19–35, 2005.
11. X. Wang, H. Yu, Y. L. Yin “Effcient Collision Search Attacks on
SHA-0”, CRYPTO 2005, LNCS 3621, pp. 1–16, 2005.
12. X. Wang, Y. L. Yin, H. Yu, “Collision Search Attacks on SHA-1”,
CRYPTO 2005, LNCS 3621, pp. 17–36, 2005.
13. Gupta and Sarkar “Computing Walsh Transform from the Algebraic
Normal Form of a Boolean Function”

HHhttp://citeseer.ist.psu.edu/574240.htmlH
14 Ronald L Rivest “The RC Encryption Algorithm”
 http://people.csail.mit.edu/rivest/Rivest-rc5.pdf
15. William Stallings “Cryptography and Network Security Principles
and Practices, Third Edition”, ISBN 7-5053-9395-2
16. Xu ZiJie “Dynamic SHA2” http://eprint.iacr.org/2008/146
17. Draft NIST SP 800-106 “Randomized Hashing for Digital
Signatures”
http://csrc.nist.gov/publications/drafts/800-106/2nd-Draft_SP800-106_Ju
ly2008.pdf
18. NIST SP 800-90 “Recommendation for Random Number Generation
Using Deterministic Random Bit Generators”
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March
2007.pdf
19. A. Joux. Multicollision on Iterated Hash Function. Advances in
Cryptology, CRYPTO 2004, Lecture Notes in Computer Science 3152.

[BELL96a] Bellare, M., Canetti, R., and Krawczyk, H. “Keying Hash
Functions for MessageAuthentication.” Proceedings, CRYPTO ’96,
August 1996; New York: Springer-Verlag. An expanded version is
available at http://www.cse.ucsd. edu/users/mihir.

http://citeseer.ist.psu.edu/574240.html
http://eprint.iacr.org/2008/146
http://csrc.nist.gov/publications/drafts/800-106/2nd-Draft_SP800-106_July2008.pdf
http://csrc.nist.gov/publications/drafts/800-106/2nd-Draft_SP800-106_July2008.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf

Appendix 1: Constitute Boolean functions to represent function.
We can use Algebraic Normal Form (ANF) to represent function. Gupta
and Sarkar[13] have studied it.
Let n≥r≥1 be integers and let be a vector valued
Boolean function. The vector valued function can be represented as
an r-tuple of Boolean functions , where

, and the value of equals the
value of the s-th component of . The Boolean functions

 can be expressed in the Algebraic Normal Form (ANF)
as polynomials with n variables of kind

rnF }1,0{}1,0{: →

F

),...,,()()2()1(rFFFF =

),...,2,1}(1,0{}1,0{:)(rsF ns =→),...,,(21
)(

n
s xxxF

),...,,(21 nxxxF

),...,,(21
)(

n
s xxxF

nxxx ,...,, 21 ⊕⊕⊕⊕ nnxaxaa ...110
, where nnnnnn xxxaxxaxxa ,...,,...... 21,...,2,11,1212,1 ⊕⊕⊕⊕⊕ −− }1,0{∈λa . Each ANF has

up to monomials, depending of the values of the coefficients . n2 λa

Function R
Function R operates on six words x1,x2,x3,x4,x5,x6,x7,x8 and an integer
t and produces a word y as output, where wt <≤0 . So we have

, It is easy to know that one-bit different in
words x1,x2,x3,x4,x5,x6,x7,x8. Because the parameter of the rotate right
operation is depend on message. With different message, different rotate
right operation will be done. So the bit in output maybe changed.

ww w

R }1,0{}1,0{: 2log8 →+×

So the ANFs to represent function R have up to monomials,
where is bit length of the word.

ww ××82

w

Function G
Function G operates on six words x1,x2,x3 and an integer t and produces
a word y as output, where 40 <≤ t . So we have . wwR }1,0{}1,0{: 23 →+×

If function G is not data depend function, the integer t is constant.
When i-th bit in words x1,x2,x3 change, i-th bit in output maybe change.
Then the ANFs to represent function R have up to monomials. 32

If function G is not data depend function, the integer t is variable. It is
easy to know that one-bit different in integer t, different logical will be
called, every bit in output maybe change. One-bit different in words
x1,x2,x3, a bit in output maybe change. Then the ANFs to represent

function R have up to monomials. 523 22 =+

Function R1
Function R1 operates on eight words x1, x2, x3, x4, x5, x6, x7 and x8
and produces a word y as output. So we have , It is easy
to know that one-bit different in words x1, x2, x3, x4, x5, x6, x7 will
make the different rotate right operation be done. So the bit in output
maybe changed. And when one-bit different in word x8, the bit in output
maybe changed. So the ANFs to represent function R1 has up to
monomials, where w is bit length of the word.

wwR }1,0{}1,0{: 8 →×

w×82

Appendix 2: Constitute Arithmetic functions to represent
function.
Gupta and Sarkar [13] had studied how to use Algebraic Normal Form
(ANF) to represent function. In this way, all function will be represented
as polynomials.

In appendix 2, the following operations are used:
1. is absolute value of)(xabs x
2. x is round-off instruction on x
3. “+” is arithmetic addition.
4. “-” is arithmetic subtraction.
5. “×” is arithmetic multiplication.

1. Constitute Arithmetic functions to represent Boolean
function:
In Boolean function, 1 is True, 0 is False.

1. one bit word.
The Boolean function can represented with arithmetic functions as
follow:

operand function arithmetic
function

x,y yxz ⊕= yxyxz ××−+= 2

x,y yxz ∧= yxz ×=
x,y yxz ∨= yxyxz ×−+=
x xz ¬= xz −=1

Tables B.1 represent Boolean function with arithmetic function
To Boolean polynomial, it can replace every calculation of polynomial
base on table B.1.

2. n-bit word.
If there are three n-bit words x, y, z. if there exist),(yxfz = where f is
Boolean function that in table B.1.
x, y, z are n-bit words. Let

∑
∑
∑

−

=

−

=

−

=

×=

×=

×=

1

0

1

0

1

0

2

2

2

n

i
i

i

n

i
i

i

n

i
i

i

zz

yy

xx

where is i-th bit of word x, y, z. There exists iii zyx ,,),(iii yxfz = , where
. 10 −≤≤ ni

To Boolean polynomial, it can replace every calculation base on table B.1
for every bit of variables.

3. If function F includes a series functions as follow: 10,..., −tff

⎪
⎩

⎪
⎨

⎧

−=

=
=

− 1),(
...

0),(
),,(

1

0

tkyxf

kyxf
kyxz

t

Then it can represent function F as follow:

)),(()2
2

22(),,(1

0

)(
)(yxfkyxz i

t

i

ikabs
kiabs ××−= ∑ −

=

−
−

Base on above-mentioned three ways, it can represent Boolean function
with arithmetic functions. And there exists:
Theorem 2. In GF(2), there exists . 0>= kxxk

Proof. In GF(2), . }1,0{∈x

If x=0, xx kk === 00

If x=1, □ xx kk === 11

2. Constitute Arithmetic functions to represent function with
ANF
Functions can be expressed in the ANF as polynomials
with n variables of kind

rnF }1,0{}1,0{: →

nxxx ,...,, 21

nnnnnnnn xxaxxaxxaxaxaa 1,...,2,11,1212,1110 ⊕⊕⊕⊕⊕⊕⊕⊕ −− , where }1,0{∈λa . If replace
every calculation in the ANF base on table B.1 and simplified by theorem
2, it can constitute Arithmetic functions to represent ANF. The Arithmetic
functions will be polynomials with n variables of kind nxxx ,...,, 21

nnnnnnnn xxbxxbxbxbb ××++××++×++×+ −− 1,...,2,11,1110 , where are integer. The
Arithmetic functions have up to monomials. The degree of

λb
n2

Arithmetic functions is up to n. And there exists ∑−

=
×=

1

0 21
)(2),...,,(r

i
i

n
s xxxFf ,

where f is r-bit word.

3. Constitute Arithmetic functions to represent SHR operation:
The shift right operation can be represented as follow:)(xSHRk

)0.1(
2

)(k
k xxSHRy ==

If operation is not data-depend operation, the k in
equation (1.0) is constant, and equation (1.0) is linear equation. The
derivative function of linear equation is constant.

)(xSHRy k=

If operation is data-depend operation, the k in equation
(1.0) is variable. And equation (1.0) will be exponential function with
round-off instruction. It is hard to represent exponential function with
linear equation.

)(xSHRy k=

4. Constitute Arithmetic functions to represent data-depend
function R:
There are two ways to constitute Arithmetic functions to represent
data-depend function R:
1. Constitute ANFs that represent function R. And replace the Boolean
function base on table B.1. In this way, it will constitute huge Arithmetic
function. The ANFs represents function R has up to (resp.)
monomials. By theorem 2 and the input has 261(resp. 518) bits, so the
highest degree monomial of the Arithmetic function is ∏ (resp.

), where is i-th input bit. The degree of the Arithmetic function
represents function R is up to 261(resp. 518). There exists:

2612 5182

=

260

0i ix

∏=

517

0i ix ix

c
xdxdxd

yd

bni

bn

=
−)()....()....(

)(

10

where c is constant, is i-th input bit of function R, bn is bit number of
input, and bn equal 261(resp. 518).

ix

2. At first, there exist rotate right (circular right shift) operation

, where x is n-bit word, and)(xROTRk nk <≤0 . It can represent
 as follow:)(xROTRy k=

)12(
2

2

)1.1(2)2
2

(
2

)(

−×−×=

××−+=

=

−

−

n
k

kn

knk
kk

k

xx

xxx
xROTRy

If function is not data-depend function, the k in
equation (1.1) is constant, and equation (1.1) is linear equation. The
derivative function of linear equation is constant. This means the
difference of function value depend on the difference of input, and the
difference of function value dose not depend on the input. In SHA-2, the
ROTR operation is not data-depend function, it can constitute linear
equation to represent the ROTR operation in SHA2.

)(xROTRy k=

If function is data-depend function, the k in equation
(1.1) is variable. And equation (1.1) will be exponential function with
round-off instruction. It is hard to represent exponential function with
linear equation. The derivative function of exponential function is
exponential function. This means the difference of function value depend
the difference of input and input. When the input changes, the different of
function value maybe change. In Dynamic SHA2, function R is
data-depend function. And if use equation (1.1) represents function R, the
equation (1.1) will be complex exponential function. After several rounds,
equation (1.1) will be iteration function with equation (1.1), it will be
very huge and complex, and there exists no mathematical theory that
reduces the size of equation (1.1). It is hard to analyses Dynamic SHA2
that includes function R.

)(xROTRy k=

5. Constitute Arithmetic functions to represent data-depend
function G:
By Theorem 2 and table B.1, function can be represented as
follow:

)3,2,1(xxxGi

)2.1(

32)321231322321(

22)321221312311(

12)3212213(

0
2)3214322

312212321(

)3,2,1(

1

0

1

0

1

0

1

0

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=××××−×+××+−−

=××××−×+××+−−

=××××−×+

=
××××+××

−××−××−++

=

∑
∑
∑

∑

−

=

−

=

−

=

−

=

txxxxxxxxx

txxxxxxxxx

txxxxxx

t
xxxxx

xxxxxxx

xxxG

w

i
i

iiiiiiiii

w

i
i

iiiiiiiii

w

i
i

iiiiii

w

i i
iiiii

iiiiiii

t

iii xxx 3,2,1 is i-th bit of x1, x2, x3. In system (1.2), it is known that
are cubic equations. The degree of the Arithmetic function that represent
function is 3. And there are 7(resp. 5, 6) monomials in the
Arithmetic function.

iG

)3,2,1(xxxG

If function G is not data-depend function. It can look the equation

(1.2) as cubic equations. It is hard to represented equation (1.2) with
linear function. And there exists:

 c
xdxdxd

yd

iii

=
)3()2()1(

)(3

And c is constant.

If function G is data-depend function, the function G will be represented
with Arithmetic function as follow:

30 ≤≤ t , let t=(). 01, tt

∑

∑
∑
∑

∑

−

=

−

=

−

=

−

=

−

=

××××××+××××−××××−

−××××−××××−×××+×××+
+×××+×××+×××+×××+

+×××+××−×−××−××−
−×−××−××−××−+++

=

××××−×+××+−−××+

××××−×+××+−−×−×+

××××−+×××−+

××××+

+××−××−××−++
×−×−

=

1

0

101010

10101

1010

1101

01

1

001

1

001

1

001

1

001

)3.1(2)3216313214

3216321612322
314312213213

32143222212
1322312212321(

2)321231322321(

2)321221312311()1(

2)3212321()1(

2)3214

322312212321(
)1()1(

),3,2,1(

w

i

i
iiiiiii

iiiiiiiii

iiiiiiii

iiiiiii

iiiiiiiiii

w

i
i

iiiiiiiii

w

i
i

iiiiiiiii

w

i
i

iiiiii

w

i i
iii

iiiiiiiii

ttxxxttxxttxx

txxxtxxxttxtxx
txxtxxtxxtxx

xxxtxtxtxtx
txxxxxxxtxxx

xxxxxxxxxtt

xxxxxxxxxtt

xxxxxxtt

xxx

xxxxxxxxx
tt

txxxG

01, tt is i-th bit of t. It is easy to known that the degree of the Arithmetic

function that represent function is 5. And there are 24

monomials in the Arithmetic function. And there exists:

),3,2,1(txxxG

i

iii tdtdxdxdxd
yd 26

)()()3()2()1(
)(

10

5

×=

Compare equation (1.2) and equation (1.3), if function G is data-depend
function, the degree of the Arithmetic function will be higher, and ther
are more monomials in the Arithmetic function. This make it is harder to
analyses Dynamic SHA2.

6. Constitute Arithmetic functions to represent function R:
There are two ways to constitute Arithmetic functions to represent
data-depend function R:
1. Constitute ANFs that represent function R. And replace the Boolean
function base on table B.1. In this way, it will constitute huge Arithmetic
function. The ANFs represents function R has up to (resp.)
monomials. By theorem 2 and the input has 261(resp. 518) bits, so the
degree of the Arithmetic function represents function R is up to 256(resp.
512), and has up to (resp.) monomials. There exiset:

2562 5122

2562 5122

c
xdxdxd

yd

bni

bn

=
−)()....()....(

)(

10

where c is constant, is i-th input bit of function R, bn is bit number of
input, and bn equal 256(resp. 512).

ix

2. At first, there exist rotate right (circular right shift) operation
, where x is n-bit word, and)(xROTRk nk <≤0 . It can represent

 as follow:)(xROTRy k=

)12(
2

2

)4.1(2)2
2

(
2

)(

−×−×=

××−+=

=

−

−

n
k

kn

knk
kk

k

xx

xxx
xROTRy

If function is data-depend function, the k in equation
(1.4) is variable, and equation (1.4) is exponential function. And equation
(1.4) will be exponential function with round-off instruction. It is hard to
represent exponential function with linear equation. The derivative
function of exponential function is exponential function. This means the
difference of function value depend the difference of input and input.
When the input changes, the different of function value maybe change. In
Dynamic SHA2, function R1 is data-depend function. And if use
equation (1.4) represents function R1, the k is function of working
variables a,b,c, d, e, f, g, and

)(xROTRy k=

),,,,,,,(hgfedcbaKk = as table B.2, the
equation (1.4) will be complex exponential function. After several rounds,
equation (1.4) will be iteration function with equation (1.4), it will be
very huge and complex, and there exists no mathematical theory that
reduces the size of equation (1.4). It is hard to analyses Dynamic SHA2
that includes function R1.

Dynamic

SHA2-224/256
31t2)t2)((k

1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

)))))a(((((t0

5

1010

1717

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

SHR
SHR
SHR

gfedcb

Dynamic

SHA2-384/512

63t3)t3)((k
1)-(2t2)t2)((t3
1)-(2t1)t1)((t2
1)-(2t0)t0)((t1

)))))a(((((t0

6

1212

1818

3636

∧⊕=

∧⊕=

∧⊕=

∧⊕=

⊕+⊕+⊕+=

SHR
SHR
SHR
SHR

gfedcb

Table B.2. function K for Dynamic SHA2

Compare the Arithmetic function that represent SHA2, The Arithmetic
function that represent functions in Dynamic SHA2 include exponential
function. Or the Arithmetic function that represents functions in Dynamic
SHA2 has higher degree than the Arithmetic function that represents
functions in SHA2. This make it is harder to analyses Dynamic SHA2.

Appendix 3: Function G and Function R and Function R1

Let is probability of)(xp x .

1, Function G:
Function y=G(x1, x2, x3, t) operates on tree words x1,x2,x3 and an
integer t, 30 ≤≤t . Function G use the integer t select a logical function
from , , , . And y, x1, x2, x3 are w-bit word. So the bit-length
of (x1,x2,x3,t) is

0f 1f 2f 3f

23 +×w , the bit-length of y is w.

To a given value y’=G(x1,x2,x3,t), there is 4-tuple (y’,x1,x2,t). To
a given 4-tuple (y’,x1’,x2’, t’). There is the relation:

222 +×w

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∧¬∨⊕∨¬
⊕∧∨∨¬

⊕∧
⊕⊕

=

)''1()))''2('1((
))''2('1())''1((

')'2'1(
''2'1

'4

yxyxx
yxxyx

yxx
yxx

x

3
2
1
0

=
=
=
=

t
t
t
t

To given 4-tuple (y’,x1’,x2’,t’), it can compute the value for x3’. So there
are 4-tuple (x1,x2,x3,t) have the same value y’. x1, x2, x3, t are
random and uncorrelated variable, there is:

222 +×w

wxpxpxp −=== 2)3()2()1(and 22)(−=tp

wwwww
i i i i iiiiiiii

i i i i iiiiiiii

yp

txxxyptpxpxpxpyp

tpxpxpxptxxxypyp
w w w

w w w

−+×−−−−

−

=

−

=

−

= =

−

=

−

=

−

= =

=××××=

××××=

××××=

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

222222)(

)),3,2,1(|()()3()2()1()(

)()3()2()1()),3,2,1(|()(

222

12

01

12

02

12

03

3

04 43214321

12

01

12

02

12

03

3

04 43214321

If x1, x2, x3, t are random and uncorrelated, function G will produce

random word and wyp −=2)(

2, Function R:
Function y=R(x1,x2,x3,x4,x5,x6,x7,x8,t) operates on eight words
x1,x2,x3,x4,x5,x6, x7, x8 and an integer t. To a given value
y’=R(x1,x2,x3,x4,x5,x6,x7,x8,t), there is 9-tuple
(y’,x1’,x2’,x3’,x4’,x5’,x6’,x7’,t’). To a given 9-tuple (y’,x1’,x2’,x3’,x4’,
x5’, x6’, x7’,t’). There is the relation:

ww××72

)'()'7)'6)'5)'4)'3)'2'1((((((8 ' yROTRxxxxxxxx tw−⊕+⊕+⊕+⊕=

To given 9-tuple (y’,x1’,x2’,x3’,x4’,x5’,x6’,x7’,t’), it can compute the
value for x8, So there are 9-tuple
(y’,x1’,x2’,x3’,x4’,x5’,x6’,x7’,t’) have the same value y’.
x1,x2,x3,x4,x5,x6,x7,x8,t are random and uncorrelated variable, there is:

ww××72

1)(
2)8()7()6()5()4()3()2()1(

−

−

=

========

wtp
xpxpxpxpxpxpxpxp w

wwwwwwwwww
i i i

w

i iiii

wwyp

tpxpxptxxxypyp
w w w

−×−−−−−−−−−

−

=

−

=

−

=

−

=

=××××××××××=

××××=∑ ∑ ∑ ∑
2222222222)(

)()8(...)1()),8,...,2,1(|(...)(
71

12

01

12

02

12

08

1

09 9821

If x1,x2,x3,x4,x5,x6,x7,x8, t are random and uncorrelated, function R
will produce random word and wyp −=2)(

Function R1
Function y=R1(x1,x2,x3,x4,x5,x6,x7,x8) operates on eight words
x1,x2,x3,x4,x5,x6,x7 and x8, produce a word as output as table 2.3. x1,
x2, x3, x4, x5, x6, x7, x8 are w-bit words. If x1, x2, x3, x4, x5, x6, x7, x8
are random and uncorrelated.
There exists:

∑ ∑ ∑
∑ ∑ ∑

−

=

−

=

−

=

−

=

−

=

−

=

×××=

×××=
12

01

12

02

12

07 7171

12

01

12

02

12

07 7171

))7,...,1(|0(...)7(...)1()0(

)7(...)1())7,...,1(|0(...)0(
w w w

w w w

i i i iiii

i i i iiii

xxtpxpxptp

xpxpxxtptp

To given value t0’, There is 7-tuple (x1’,x2’,x3’,x4’,x5’,x6’,x7’),
There is relation:

w×72

0)6)5)4)3)21(((((7 txxxxxxx ⊕+⊕+⊕+= . it can compute
the value for x7. and x1, x2, x3, x4, x5, x6, x7 are random and
uncorrelated variable. There exists:

w
iiiiiii xpxpxpxpxpxpxp −======= 2)7()6()5()4()3()2()1(7654321

ww
iiiiiii xpxpxpxpxpxpxptp −× =×××××××= 22)7()6()5()4()3()2()1()'0(6
7654321 .

t0 is w-bit word, let t is -bit word, let: t0=() and
t=(), is i-th bit of t0 and t, and there is

w
2log 10 0,...,0 −wtt

1log0
2

,...,
−wtt ii tt ,0

Dynamic
SHA-224/256

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=

31262114944

30252013833

29241912722

1628231811611

1527221710500

000000
000000
000000

0000000
0000000

ttttttt
ttttttt
ttttttt

tttttttt
tttttttt

Dynamic
SHA-384/512

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

59534741352923171155

58524640342822161044

635751453933272115933

625650443832262014822

615549433731251913711

605448423630241812600

0000000000
0000000000

00000000000
00000000000

00000000000
00000000000

ttttttttttt
ttttttttttt

tttttttttttt
tttttttttttt

tttttttttttt
tttttttttttt

And there is relation:

Dynamic
SHA-224/256

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=

31262114944

30252013833

29241912722

1628231811611

1527221710500

000000
000000
000000

0000000
0000000

ttttttt
ttttttt
ttttttt

tttttttt
tttttttt

Dynamic
SHA-384/512

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

59534741352923171155

58524640342822161044

635751453933272115933

625650443832262014822

615549433731251913711

605448423630241812600

0000000000
0000000000

00000000000
00000000000

00000000000
00000000000

ttttttttttt
ttttttttttt

tttttttttttt
tttttttttttt

tttttttttttt
tttttttttttt

To a given t’=(), there is

. To a given

(), it can compute the for (). And

there is

tuplelog
w

2 −
ww 2log2 −

2 2

1log0
2

',...,'
−wtt

)t0,...,tuple(t0)log(1-wlog2
2
w

ww −− tuplew w −−)log(2

1log
'0,...,'0 −wtt w

tuplelog
w

2 −
1log0 0,...,0
−wtt

=×=∑ −

=

12

0
)0())(0|'()'(

w

i
tpittptp 1logloglog 222 222)0(2 −−−−− ==×=× wtp

www www .

x1, x2, x3, x4, x5, x6, x7, x8 are random and uncorrelated words, and t is

produced from x1, x2, x3, x4, x5, x6, x7. To , there is
relation . To a given value y’, there are w value t, to a
given t’, it can compute the value for x8. And there is:

)8(xROTRy t=

)(8 yROTRx tw−=

www

i i iiii wwxptpxtypyp
w

−−−−

=

−

=
=××=××= ∑ ∑ 22)8()())8,(|()(11

0

12

08 88

If x1, x2, x3, x4, x5, x6, x7, x8 are random and uncorrelated words,
function R1 will produce random word and . wyp −=2)(

Appendix 4: Some thing about Dynamic SHA2
1. Why Dynamic SHA2 use function G , R and function R1

The reason Dynamic SHA2 use function G, R and function R1 is:
1. When the variables are random and uncorrelated, function G , R

and R1 will produce random output. This makes the last hash
values has close probability.

2. Function G, R and R1 are data-depend function, it is hard to
describe data-depend function with linear function, and it is hard
to analyze data-depend function with differential analysis. The
arithmetic function that describe function G, R and R1 is up to 5,
261(resp. 518), 256(resp.512). And the ANFs that describe
function G, R and R1 has up to 32, ,
monomials.

ww 2log82 +× w×82

2. It is hard analysis Dynamic SHA2 with linear function and
differential analysis

To analyze the relationship between message and hash value, it need
the unchangeable formulas that represent hash function. And when
message is changed, the calculation will be different.

The ANFs that describe function R, R1 has up to
monomials.

ww 2log82 +× w×82

The degree of the arithmetic function that describe function R, R1 is
up to 261(resp.518), 256(resp.512). Or it needs construction exponential
function to describe function R, R1 and G.

So it is hard analysis Dynamic SHA2 with linear function and
differential analysis.

3. Avalanche of Dynamic SHA2.
After the first iterative part, all bits in message have been mixed. The
second iterative part includes function R1. It is easy to know that one bit
different in working variables a, b, c, d, e, f, g will lead to different
ROTR operation been done. And after the second iterative part, every bit
in working variables that before the second iterative part will affect all
bits in working variables that after the second iterative part.

Appendix 5: Spreading of Dynamic SHA
To simplification, Let:

1.MW1=(W(0),W(1),W(2),W(3),W(4),W(5),W(6),W(7)),
MW2=(W(8),W(9),W(10),W(11),W(12),W(13),W(14),W(15))
W(j) is the message word.

2. hv(i)=(a(i), b(i), c(i), d(i),e(i), f(i), g(i), h(i)). where a(i), b(i), c(i),
d(i),e(i), f(i), g(i), h(i) are working variables at i-th function
COMP called.

3. 15i1hv(i)MW2)MW1,(hv(-1),H i ≤≤=
4. Message word and working variables are b-bit words.

From the definition of Dynamic SHA2, it is easy know that function
COMP had been called sixteen times, when function COMP is called,
MW1 or MW2 will be mixed. So it can describe Dynamic SHA2 as
follow:

 MW2

MW2

MW1

MW1
hv(-1) hv(0)

hv(1a)

hv(2) hv(15)
MW2 ….

hv(1) The first
iterative part

The second
iterative part

The third
iterative part

Table E.1 data processing of Dynamic SHA2

At first there are two theorems:

Theorem 3:
To function , there is:),7,6,5,4,3,2,1,0,,,,,,,,(twwwwwwwwhgfedcbaCOMP

1.MW=(W0,W1,W2,W3,W4,W5,W6,W7), where W0,…,W7 are words that
mixed.
2. hva=(a0, b0, 0c, d0, e0, 0f, g0, h0). Where a0, b0, c0, d0,e0, f0, g0, h0
are working variables that before call function COMP.
3. hvb=(a1, b1, c1, d1, e1, f1, g1, h1). Where a1, b1, c1, d1,e1, f1, g1, h1
are working variables that after call function COMP.

working variables are b-bit word. hva, MW are random and
uncorrelated.

Then there exist:

(1),p(hvb)=
b×−82

(2),p(hvb|MW)=
b×−82

(3),p(hvb|hva)=
b×−82

Proof.

The integer t in function COMP is decided by which round function
COMP be. So the integer t can be look as constant. And we can use
function),(MWhvaFhvb = describe function COMP. And we
have . hva, MW are random and uncorrelated. So
there exist p(hva)= and p(MW)=

bbF ×× → 816 }1,0{}1,0{:
b×−82 b×−82

There are MW. To a given MW’, there exist: b×82

To a given hva’, from the definition of F, there is only a hvb
that make)','(MWhvaFhvb = .

And to a given hvb’, it can backward function F, and there is
only a hva that make)',(' MWhvaFhvb = . So there exist:

∑

∑ ∑
∑ ∑

−

=

×−××−×−

−

=

−

=

−

=

−

=

×=

=××=

××=

××=

12
01

8888

12
01

12
02

12
01

12
02

))1(())1(|)|(()|(

2222)(

)))2(),1((|()()()(

))2(())1(()))2(),1((|()(

b

b b

b b

i

bbbb
i i

i i

ihvapihvaMWhvbpMWhvbp

hvbp

iMWihvahvbpMWphvaphvbp

iMWpihvapiMWihvahvbphvbp

b
i

MWhvbp

ihvaMWhvbphvapMWhvbp
b

×−

−

=

=

×= ∑
8

12

01

2)|(

))1(|)|(()()|(

 Dynamic
SHA2-224/256

)31))0((,0,',',',',0,0,1(14

)('

30'
61'

)1('

)310,0,0,0,0,0,0,0,0(11
)0,0,0,0()1(2

0)1(3

)0(17

)0(16

)3,0,0,1(15
010

15

)31)0((32

31)0(32

3031)0(32

31)0(32

31)0(32

31)0(32

5

25

25

20

5

10

∧−=

=

+=
−=

=

∧−=
−=

−=

−=

−=

∧−=
−=

∧−

∧−

∧−

∧−

∧−

∧−

wSHRggfedbabRaw

eROTRg

wef
wfe

eROTRd

whgfedcbaRbw
wSHRcbaGeROTRw

egROTRw

fROTRhw

dROTRfw

tbabGdw
acw

wSHR

wSHR

wSHR

wSHR

wSHR

wSHR

Dynamic
SHA2-384/512

)31))0((,0,',',',',',0,'(14

)0('

)1('

)0('

)1('

)630,0,0,0,0,0,0,0,0()1(1

)0,0,0,0()1(2

0)1(3

)0(17

)0(16

)3,',0,'(15
0'

1'

010

15

)63)0((64

63)0(64

63)0(64

63)0(64

31)0(64

6231)0(64

)63)0(()63)0((128

63)0(64

)63)0(()63)0((128

)63)0((64

)63)0((64

6

36

18

48

54

48

1236

6

1842

24

54

∧−=

=

=

=

=

∧−=

−=

−=

−=

−=

∧−=
=

=

−=

∧−

∧−

∧−

∧−

∧−

∧−

∧−∧−

∧−

∧−∧−

∧−

∧−

wSHRggfedcaaRaw

fROTRg

gROTRf

dROTRe

eROTRd

whgfedcbaRbROTRw

wSHRcbaGeROTRw

egROTRw

fROTRhw

dROTRfw

tcaaGdw
bROTRc

bROTRa

acw

wSHR

wSHR

wSHR

wSHR

wSHR

wSHR

wSHRwSHR

wSHR

wSHRwSHR

wSHR

wSHR

Table E.2. Relationship of hva, hvb
(3)
To given hva’, there exist:
To a given hvb’, there is the relationship as table E.2, It is easy to

compute the value for MW that make),'(' MWhvaFhvb = . So there exist:

bb
i

b

iMWpiMWhvahvbphvahvbp ×−×−−

=
==×= ∑ 8812

0
22))(())(|)|(()|(□

By theorem 3, to function COMP, it is easy to know that:
To a given hva’, mix different message words MW, the hvb will be

different.
Mix given message words MW’, if the hva is different, the hvb will

be different.

Theorem 4. In Dynamic SHA2, there exist:
(1) p(hv(j))= b×−82
(2),p(hv(j)|MW1)=

b×−82
(3),p(hv(j)|MW2)=

b×−82
15,....,1=j

Proof.
hv(-1), MW1 and MW2 are random and uncorrelated, so there exist:

p(hv(-1)) = b×−82
p(MW1) = b×−82
p(MW2) = . b×−82

To simplification, Let F(hv(i-1),MW)=hv(i), MW is mixed words MW1
or MW2.

To a given hv(i)’ 15,....,1=i , there are 2-tuple
(MW1,MW2).

b×162

To a given 2-tuple(hv(i)’,MW1’), there are MW2. To a
given 2-tuple (hv(i)’,MW2’), there are MW1.

b×82
b×82

To a given 3-tuple(hv(i)’,MW1’,MW2’), It is easy to backward
iterative steps, and it is easy to compute the value for hv(-1), and the
hv(-1) make hv(i)')MW2',MW1'(hv(-1),H i = .

So there exist:

bbbb
i i ii

i i iiii

bbbb
i i ii

i i iiii

bbbbbb
i i i iii

i i i iiiiii

MWihvp

MWhvMWihvpMWhvpMWihvp

MWhvpMWhvMWihvpMWihvp

MWihvp

MWhvMWihvpMWhvpMWihvp

MWhvpMWhvMWihvpMWihvp

ihvp

MWMWhvihvpMWMWhvpihvp

MWMWhvpMWMWhvihvpihvp

b b

b b

b b

b b

b b b

b b b

×−××−×−

−

=

−

=

−

=

−

=

×−××−×−

−

=

−

=

−

=

−

=

×−×××−×−×−

−

=

−

=

−

=

−

=

−

=

−

=

=××=

−×−=

−×−=

=××=

−×−=

−×−=

=××××=

−×−=

−×−=

∑ ∑
∑ ∑

∑ ∑
∑ ∑

∑ ∑ ∑
∑ ∑ ∑

8888

12
00

12
01 10

12
00

12
01 1010

8888

12
00

12
01 10

12
00

12
01 1010

888888

12
00

12
01

12
02 210

12
00

12
01

12
02 210210

2222)2|)((

))1,)1((|)2|)((()1),1(()2|)((

)1,)1(())1,)1((|)2|)((()2|)((

2222)1|)((

))2,)1((|)1|)((()2),1(()1|)((

)2,)1(())2,)1((|)1|)((()1|)((

222222))((

))2,1,)1((|)(()2,1),1(())((

)2,1,)1(())2,1,)1((|)(())((

□

Theorem 5. In Dynamic SHA2, to a given hv(-1), there exist:

p(hv(2)| (hv(-1),MW1))=
b×−82

Proof. To simplification, Let F(hv(i-1),MW)=hv(i), MW is mixed words
MW1 or MW2. Let F2(hv(1))= hv(1a) is the second iterative part.

Let F1(hv(1))=hv(1a).
To a given 3-tuple (hv(2)’,hv(-1)’,MW1’). By theorem 3, there exist

a 2-tuple (hv(0),hv(1a)) that make F(hv(-1)’,MW1’)=hv(0) and
F(hv(1a),MW1’)=hv(2)’.

To a given hv(1a)’, frome the definition of the second iterative

part , there exist a hv(1) that make F2(hv(1))=hv(1a)’.

To a given 2-tuple (hv(0)’,hv(1)’) . By theorem 3, there exist a MW2
that make F(hv(0)’,MW2)=hv(1)’.

So there exist:

bb
i i

i ii

MWhvhvp

MWMWhvhvpMWpMWhvhvp

MWpMWMWhvhvpMWhvhvp
b

b

×−×−

−

=

−

=

=×=−

−×=−

×−=−

∑
∑

88

12

0

12

0

212))1),1((|)2((

)2|))1),1((|)1((()2())1),1((|)2((

)2()2|))1),1((|)1((())1),1((|)2((

□

By theorem 4 and 5, it is to know that:
1. When hv(-1) is random variable, the probability of hash

value is , b×−82
2. To a given hv(-1), the probability of different hash value

maybe different.

After first the second iterative part, the bits in message have been mixed,
the mixed bits and working variables value are not uncorrelated, it is hard
to analyze the probability of hash value. To get better property of
spreading, Dynamic SHA2 adopt ways as follow:

1. When the variable of function COMP is random value. Function
COMP will produce random value.

