SHA-3 Proposal: Lesamnta

Shoichi Hrose
University of Fukui
hrs shch@u-fukui.ac.jp

Hidenori Kuwakapo
Kobe University
kuwakado@kobe-u.ac.jp

Hirotaka YosHina
Systems Development Laboratory, Hitachi, Ltd.
hirotaka.yoshida.qv@hitachi.com

Document version 1.0, Date: 30 October 2008
1

The Hash Function Family: Lesamnta SHA-3 Proposal

Table of Contents

1 Introduction 5
2 Definitions 5
2.1 Glossary of Termsand ACronyms o i i it i 5
2.2 Algorithm Parametersand Symbols 6
2.3 Functions 7
3 Notation and Conventions 9
3.1 InputsandOutputs e 9
3.2 Byles . . . e 9
3.3 Arraysof Bytes 9
3.4 Endian e e 01
3.5 BIitStrings e 10
3.6 MessageBlock 11
3.7 SubState256 11
3.8 SubStateb512 12
4 Mathematical Preliminaries 12
4.1 AddItion 13
4.2 Multiplication e 13
5 Specification 14
51 RoundConstants e e 14
5.1.1 Lesamnta-22856 e e e e 14
5.1.2 Lesamnta-38812 e e 14
5.2 Preprocessing i e e e e e 15
5.2.1 PaddingtheMessage e 15
5.2.2 Parsingthe PaddedMessageu.. 16
5.2.3 Setting the Initial Hash Value 16
5.3 Lesamnta-256 Algorithm 18
5.3.1 Lesamnta-256 Preprocessing e e 18
5.3.2 Lesamnta-256 Computation 18
5.4 Lesamnta-224 Algorithm 26
5.5 Lesamnta-512 Algorithm 27
5.5.1 Lesamnta-512 Preprocessing o v i e 27
5.5.2 Lesamnta-512 Computation 27
5.6 Lesamnta-384 Algorithm e 35
5.7 LesamntaExamples 36
5.7.1 Lesamnta-256 Example 36
5.7.2 Lesamnta-512 Example oo 39
6 Performance Figures 44
6.1 Software Implementation e 44
6.1.1 8-bitProcessors. 44
6.1.2 32-bitProcessors 45
6.1.3 64-bitProcessor 48
6.2 Hardware e 94
6.2.1 ASICImplementation 49
7 Tunable Security Parameters 50

Document version 1.0, Date: 30 October 2008
2

The Hash Function Family: Lesamnta

SHA-3 Proposal

sign Rationale

Block-Cipher-Based Hash Functions
Domain Extension
Compression Function
8.3.1 PGV Mode
Output Function
Block Ciphers

tivation for Design Choices
PaddingMethod e
MMOMode e e e

Output Function
Block Cipher
9.4.1 Mixing Function

9.4.2 Key Scheduling Function . . .

9.4.3 Round Constants

10 Expected Strength and Security Goals

11 Security Reduction Proof

11.1 MMO Mode

11.2 MDO Domain Extension with MMO Functions

11.1.1 Collision Resistance
11.1.2 Preimage Resistance
11.1.3 Pseudorandom Function

11.2.1 Collision Resistance
11.2.2 HMAC

11.2.3 Indiferentiability from the Random Oracle

12 Preliminary Analysis

12.1 Length-Extension Attack
12.2 Multicollision Attack
12.3 Kelsey-Schneier Attack for Second-Preimage-Finding
12.4 Randomized Hashing Mode
12.5 Attacks for Collision-Finding, First (Second)-Preige-Finding

12.6 Attacks for Non-Randomness-Finding
12.6.1 Diterential and Linear Attacks

12.5.1 Collision Attacks Using the Message Modification

12.6.2 Interpolation Attack

12.6.3 Square Attack
12.6.4 Attacks Using the Known-Key Distinguisher

13 Extensions

13.1 Additional PRF Modes

13.2 Enhancement Against Second-preimage Attacks

13.1.1 Keyed-via-IV Mode
13.1.2 Key-Prefix Mode

13.2.1 Lesamnta-224e and Lesamnta-256e
13.2.2 Lesamnta-384e and Lesamnta-512e au. .

13.2.3 Selection of Polynomials

14 Advantages and Limitations

14.1 Advantages
14.2 Limitations

Document version 1.0, Date: 30 October 2008

3

50
50
51
51

The Hash Function Family: Lesamnta SHA-3 Proposal

15 Applications of Hash Functions 75

16 Trademarks 76

17 Acknowledgments 76

18 List of Annexes 80

A HMAC Using Lesamnta Is a PRF 80

Al Definitions. 80

A2 Analysis e e 81
A.2.1 ProofofLemma3 84

B Indifferentiability from Random Oracle 87

B.1 Definitions. 87
B.1.1 Indfferentiability 87

B.1.2 Ideal CipherModel 91

B.2 Analysis e 91

C PRF Modes Using Lesamnta 93

C.1 Pseudorandomness with Multi-Oracle 93

C.2 Security of Keyed-via-IVMode 95

C.3 Securityof Key-PrefixMode 97

Document version 1.0, Date: 30 October 2008
4

The Hash Function Family: Lesamnta SHA-3 Proposal

1 Introduction

This document specifies a family of hash functidnssamnta, which consists of four algorithms:
Lesamnta-224, Lesamnta-256, Lesamnta-384, and Les&tftaThe four algorithms éier in
terms of the sizes of the blocks and words of data that aredwg@&ty hashing. Figure 1 summarizes
the basic properties of all four Lesamnta algorithms.

Algorithm | Message length Block size| Word size| Message digest sizeSecurity
(bits) (bits) (bits) (bits) (bits)
Lesamnta-224 < 204 256 32 224 112
Lesamnta-256 < 264 256 32 256 128
Lesamnta-384 < 2128 512 64 384 192
Lesamnta-512 < 2128 512 64 512 256

Figure 1: Lesamnta algorithm properties

2 Definitions

2.1 Glossary of Terms and Acronyms

The following definitions are used throughout this spediitca

Bit A binary digit having a value of O or 1.
Byte A group of eight bits.
Block Cipher Key A cryptographic key used by the Key Expansiautine to generate a set

of Round Keys. .
Compression function A function mapping the<1)" hash valueH(-V and thei'" message
block M® to thei" hash valueH®.

Key Expansion A routine used to generate a series of Round ftem the Block Cipher
Key.

Output function A function mapping th&l(- 1)" hash valugHN-1 and theN™ message
block MM to the final hash valuel®™),

Round Key Values derived from the Block Cipher Key by the Keyp&nsion

routine; they are applied to the SubState256 and SubStatéth in
the Compression and Output functions.

State An intermediate hash value.

SubState256 A 64-bit unit of data used in Lesamnta-256; nt loa pictured as a
rectangular array of bytes with two rows and four columns.

lLesamnta is pronounced like "Lezanta”
2In this context, “security” refers to the fact that a birtly@dtack on a message digest of sigeroduces a collision
with a workfactor of approximately™®.

Document version 1.0, Date: 30 October 2008
5

The Hash Function Family: Lesamnta

SHA-3 Proposal

SubState512

S-box

Word

A 128-bit unit of data used in Lesamnta-512aiit foe pictured as a
rectangular array of bytes with four rows and four columns.
A non-linear substitution table used in several bytdsstution
transformations and in the Key Expansion routine to perfona-for-one
substitution of a byte value.
A group of either 32 bits (4 bytes) or 64 bits (8 bytespeteding on the
Lesamnta algorithm.

2.2 Algorithm Parameters and Symbols

The specification uses the following parameters and symbols

C(round)
HO

0
H;

K(round)

Nr_comp256
Nr_comp512
Nr_out256

Nr_out512

Theround™ round constant.
Thei" hash value. HO is theinitial hash valueH® is thefinal hash
value and is used to determine the message digest.
The j word of thei™ hash value, whersl{) is the leftmost word of hash
valuei.
Theround™ Round Key.
The length of the messadé in bits.
The number of bits in a message blddk).
The message to be hashed.
The message blodkwith a size ofm bits. _
The j* word of thei™ message block, whetd{ is the leftmost word of
message block
The number of blocks in the padded message.

The number of rounds for tlenpr essi on256() function. For this
documentNr_comp256 is 32.

The number of rounds for tenpr essi on512() function. For this
documentNr_comp512 is 32.

The number of rounds for theut put 256() function. For this
documentNr_out256 is 32.

The number of rounds for theut put 512() function. For this
documentNr_out512 is 32.
The number of bits in a word.
Thew-bit word of the State.

The exclusive OR operation.
The exclusive OR operation.
The OR operation.

Finite field multiplication.
Concatenation.

Document version 1.0, Date: 30 October 2008
6

The Hash Function Family: Lesamnta SHA-3 Proposal

2.3 Functions

The specification uses the following functions.

AddRoundKey256()

AddRoundKey512()

Byt eTr anspos256()
Byt eTranspos512()
Conpr essi on256()
Conpr essi on512()
EncComp256
EncCompsio
EncOutysg

EncOuts;»

I:256

F512

Fk

Fm

Key ExpConp256()
KeyExpConmp512()
KeyExpQut 256()
KeyExpQut 512()
KeyLi near 256()

KeyLi near512()

A transformation used i€onpr essi on256() andQut put 256(), in
which a Round Key is added to a SubState256 by using an XOR
operation. The length of the Round Key equals the size of the
SubState256.

A transformation used i€onpr essi on512() andQut put 512(), in
which a Round Key is added to a SubState512 by using an XOR
operation. The length of the Round Key equals the size of the
SubState512.

A function used in the Key Expansion routines, which takes8dyte
word and performs a bytewise transposition.

A function used in the Key Expansion routines, which take$yite
word and performs a bytewise transposition.

The Compression function of Lesamnta-256.

The Compression function of Lesamnta-512.

The encryption function of the block cipher used in the Caosspion
function of Lesamnta-256.

The encryption function of the block cipher used in the Casspion
function of Lesamnta-512.

The encryption function of the block cipher used in the Otfpaction

of Lesamnta-256.

The encryption function of the block cipher used in the Otfpaction

of Lesamnta-512.

A non-linear transformation used in a round, consisting of
AddRoundKey256(), SubBytes256(), ShiftRows256(), and

M xCol ums256() .

A non-linear transformation used in a round, consisting of
AddRoundKey512(), SubBytes512(), ShiftRows512(), and

M xCol ums512() .

The round function of the key scheduling function.

The round function of the mixing function.

The Key Expansion routine used EncComp,se.

The Key Expansion routine used EncComps;».

The Key Expansion routine used EncOut;sg.

The Key Expansion routine used EncOuts».

A linear function wused in the Key Expansion routine
KeyExpConmp256() .

A linear function used in the Key Expansion routine
KeyExpConmp512() .

Document version 1.0, Date: 30 October 2008
7

The Hash Function Family: Lesamnta SHA-3 Proposal

M xCol ums256()

M xCol ums512()

Qut put 256()
Qut put 512()
Shi f t Rows256()

Shi ft Rows512()

SubByt es256()

SubByt es512()

SubWbr ds256()

SubWor ds512()

Wor dRot at i on256()

Wor dRot ati on512()

A transformation used irConpressi on256() and Qut put 256(),
which takes all of the columns of a SubState256 and mixes taa
(independently of one another) to produce new columns.

A transformation used irConpressi on512() and Qut put 512(),
which takes all of the columns of a SubState512 and mixes tiaa
(independently of one another) to produce new columns.

The Output function used in Lesamnta-256.

The Output function used in Lesamnta-512.

A transformation used irConpressi on256() and Qut put 256(),
which processes a SubState256 by cyclically shifting tlverse row of
the SubState256 by one byte.

A transformation used irConpressi on512() and Qut put 512(),
which processes a SubState512 by cyclically shifting teettaree rows
of the SubState512 byfiierent dfsets.

A transformation used irConpressi on256() and Qut put 256(),
which processes a SubState256 by using a non-linear by#titstion
table (i.e., the S-box) that operates independently on edcthe
SubState256 bytes.

A transformation used irConpr essi on512() and Qut put 512(),
which processes a SubState512 by using a non-linear bystitstion
table (i.e., the S-box) that operates independently on exdcthe
SubState512 bytes.

A function used in the Key Expansion routin@syExpConp256()
andKeyExpQut 256() , which takes 8 bytes from two input words and
applies a non-linear byte substitution table (i.e., theo®}bo each of the
8 bytes to produce two output words.

A function used in the Key Expansion routingsy ExpConp512() and
KeyExpQut 512(), which takes 16 bytes from two input words and
applies a non-linear byte substitution table (i.e., theo®}to each of
the 16 bytes to produce two output words.

A function used inConpr essi on256(), Qut put 256(), and the Key
Expansion routines, which takes eight 32-bit words andjper$ a cyclic
permutation.

A function used inConpr essi on512(), Qut put 512(), and the Key
Expansion routines, which takes eight 64-bit words andjper$ a cyclic
permutation.

Document version 1.0, Date: 30 October 2008
8

The Hash Function Family: Lesamnta SHA-3 Proposal

3 Notation and Conventions

3.1 Inputs and Outputs

Lesamnta takes a message with less tlRabifs (for Lesamnta-224 and Lesamnta-256) B Bits
(for Lesamnta-384 and Lesamnta-512) and outputs a mesgpegt.dl'he message digest ranges in
length from 224 to 512 bits, depending on the algorithm.

3.2 Bytes

All byte values in the Lesamnta algorithm are presented amaatenation of the individual bit
values (0 or 1) between braces, in the ordgrb,, by, bs, b4, bs, bs, b;}. These bytes are interpreted
as finite field elements by using a polynomial representation

7
boX7 + b1X6 + bz)Cr’ + bg)(4 + b4X3 + b5X2 + b6X + b7 = Z b7_iXi.
i=0

For example{01100011} identifies the specific finite field elemexft+ x> + x + 1.
It is also convenient to denote byte values by hexadecintation, with each of two groups of
four bits being denoted by a single character, as illusdraté-ig. 2.

Bit pattern | Character Bit pattern | Character Bit pattern | Character Bit pattern | Character
0000 0 0100 4 1000 8 1100 c
0001 1 0101 5 1001 9 1101 d
0010 2 0110 6 1010 a 1110 e
0011 3 0111 7 1011 b 1111 £

Figure 2: Hexadecimal representations of bit patterns

Hence, the elemerip1100011} can be represented &3}, where the character denoting the
four-bit group containing the higher-numbered bits is t® lgft.

Some finite field operations involve one additional bit,] to the left of an 8-bit byte. Where
this extra bit is present, it appears &1}’ immediately preceding the 8-bit byte; for example, a
9-bit sequence is presented{as}{1ib}.

3.3 Arrays of Bytes

Arrays of bytes are represented in the following form:
do, A1, ..., ar.
The bytes and the bit ordering within bytes are derived fradd-dit input sequence

inputo, inputy, . . ., iNnputss,

Document version 1.0, Date: 30 October 2008
9

The Hash Function Family: Lesamnta SHA-3 Proposal

as follows:
a, = {inputy,inputy,...,inputs},
a; = {inputg,inputy,...,input;s},
a; = {inputsg, inputss, ..., iNputss).

The pattern can be extended to longer sequences (i.e., $ank®a-38/412), so that, in general,
an = {inputg,, iNputgn,1, . . ., INPUtgn, 7}.

Taking the notation of Secs. 3.2 and 3.3 together, Fig. 3 sHmw the bits within each byte are
numbered.

Inputbitsequence [o [1 [2]3[4][5 [6]7[[8]9[10][11]12][183[14] 15
Byte number 0 1

Bitnumberinbyte [0 | 1 |2 | 3[4 |5 |6 |7 O0]|1] 2 3 4 5 6 7
Bitnumberinword|[0 | 1 |2 |3 |4 |5 |6 |7 | 8|9 | 10| 11| 12| 13 | 14 | 15

Figure 3: Indices for bytes and bits

3.4 Endian

Throughout this document, the big-endian convention isfatd in expressing both 32- and 64-bit
words, so that within each word, the most significant bitased in the leftmost bit position.

3.5 BIit Strings

A word is aw-bit string that can be represented as a sequence of herzeor hex, digits. To
convert a word to hex digits, each 4-bit string is convertedd hex digit equivalent, as shown in
Fig. 2. For example, the 32-bit string

1010 0001 0000 0011 1111 1110 0010 0011
can be expressed a$03fe23, and the 64-bit string

1010 0001 0000 0011 1111 1110 0010 0011
0011 0010 1110 1111 0011 0000 0001 1010

can be expressed a$03fe2332ef301a.

Document version 1.0, Date: 30 October 2008
10

The Hash Function Family: Lesamnta SHA-3 Proposal

3.6 Message Block

For the Lesamnta algorithms, the size of thessage block mbits - depends on the algorithm.

1. For Lesamnta-224 and Lesamnta-256 each message block h&&6 bits which are
represented as a sequence of eRfhbit words.

2. For Lesamnta-384 and Lesamnta-512 each message block h&i2 bits which are
represented as a sequence of eifhbit words.

3.7 SubState256

For a 64-bit part of a state, the Lesamnta-224 and Lesanfi@aafjorithms’ operations are
performed on a two-dimensional array of bytes calleésudState256 The SubState256 consists
of two rows of bytes, each containing four bytes. In a Sule26 array, denoted by the symispl
each individual byte has two indices, with its row numbén the range (< r < 2 and its column
numberc in the range (< ¢ < 4. This allows an individual byte of the SubState256 to berrefl
to as eithers. ¢ or dr, c].

At the start of tha=,56 function in each round ofonpr essi on256() andQut put 256(), as
described in Sec. 5.3, the input - the array of bytgsin,, ..., in; - is copied into the SubState256
array, as illustrated in Fig. 4. Tl@gnpr essi on256() or Qut put 256() function is then executed
on this SubState256 array, after which the array’s final betloes is copied to the output: an array
of bytesouty, outy, . . ., out;.

Input bytes SubState256 Output bytes
ing | iny | ing | ing S0 | So1 | S02 | So3 Outp | outy | out, | outs
- -
ing | ing | ins | ing S0 | Su1 |Si2 | Si3 out; | outs | outs | out;

Figure 4: SubState256 array input and output

Hence, at the beginning of tHesg function, the input arrayn is copied to the SubState256
array, according to this scheme:

gr,c] =in[r+2c], for0<r<2andO0<c<4,

and at the end of th&,55 function, the SubState256 array is copied to the outputyaouh as
follows:
out[r + 2c] = gr,c], forO<r<2andO<c< 4.

Document version 1.0, Date: 30 October 2008
11

The Hash Function Family: Lesamnta SHA-3 Proposal

3.8 SubState512

For a 128-bit part of a state, the Lesamnta-384 and Lesabfitaalgorithms’ operations are
performed on a two-dimensional array of bytes calleésudState512 The SubState512 consists
of four rows of bytes, each containing four bytes. In a SuteStE2 array, denoted by the symispl
each individual byte has two indices, with its row numbén the range (< r < 4 and its column
numberc in the range (< ¢ < 4. This allows an individual byte of the SubState512 to berrefl
to as eithers. ¢ or dr, cJ.

At the start of the=5,, function in each round ofonpr essi on512() andQut put 512(), as
described in Sec. 5.5, the input - the array of bytgsin,, .. ., in;s - is copied into the SubState512
array, as illustrated in Fig. 5. Tl@npr essi on512() orQut put 512() function is then executed
on this SubState512 array, after which the array’s final betloes is copied to the output: an array
of bytesouty, out, . . ., Outs.

Input bytes SubSate512 Output bytes
ino in4 ing in12 S0 | So1 | S02 | So3 Outy | outy | outg |outso
ing | ins | ing |ingg S10 | S11 | S12 | S13 out; | outs | outg |Out;3

- -
in2 ine inlo in14 S0 |21 | 22| S23 out, | outg | OUt;o|OUL 4
ing | iny |ing | ings S0 | SB1 | B2 | S83 outs | out7 | outy;|outys

Figure 5. SubState512 array input and output

Hence, at the beginning of the&s;, function, the input arrayn is copied to the SubState512
array, according to this scheme:

gr,c] =in[r+4c], forO<r<4and0<c<4,

and at the end of th&s;, function, the SubState512 array is copied to the outputyasth as
follows:
out[r + 4c] = r,c], forO<r<4andO<c< 4

4 Mathematical Preliminaries

Lesamnta uses certain operations in the finite field §F(Buch a finite field has manyfirent
representations. We fix a characteristic polynomial andesgnt an element of GF{2by a
polynomial.
First, we define the finite field GF{Ras GF(8) = GF(2)[X]/(¢(X)), where the polynomiah(x)
is given as follows:
o(X) =8+ X+ X + x+ 1 ={01}{1b}.

Document version 1.0, Date: 30 October 2008
12

The Hash Function Family: Lesamnta SHA-3 Proposal

4.1 Addition

The sum of two polynomials over GF{Zs a polynomial whose cdicients are given by the sums
modulo 2 of the corresponding déieients. In other words, addition is calculated by a bitwise
XOR. For example, the sum ¢7} and{a3} is calculated as follows:

(57} +1{a3} = (C+X+X+x+1D+ X +xX+x+1)
= X +X+ X+ x+ %
{£4}.

4.2 Multiplication

Multiplication in GF(Z) (denoted bye) can be divided into two steps. First, we define the
multiplication of any element(x) = 3.7, a;_;x andx by usinge(x) as follows:

7
x-f(X) = Z a7_iX*1 mod¢(X).
i=0

For example, the multiplication ¢b2} and{87} is calculated as follows:

(02} (87} = X- (X' +X+x+1)
X+ + X%+ X

¢+ +X+ D+ X+ X+ X
= X+x+1

{15}.

Second, we calculaté - f(x) for anyi by iterative application of the above definition.

Document version 1.0, Date: 30 October 2008
13

The Hash Function Family: Lesamnta SHA-3 Proposal

5 Specification

This chapter describes the Lesamnta algorithms.

5.1 Round Constants
5.1.1 Lesamnta-22/#56

Lesamnta-224 and Lesamnta-256 use the same sequenNrecoimp256€Nr_out256) constant
64-bit words,C"d These words are defined by the following equation:

cround — 000000XYO00000ZW,

wherexy is 2« round + 1 in hex, andzw is 2« round in hex. The round constan®&?®,C®, ... CGD
are the following (from left to right, in hex):

0000000100000000, 0000000300000002, 0000000500000004, 0000000700000006,
0000000900000008, 0000000bO000000a, 0000000d0000000c, 0000000£0000000e,
0000001100000010, 0000001300000012, 0000001500000014, 0000001700000016,
0000001900000018, 0000001b0000001a, 0000001d0000001c, 0000001£0000001e,
0000002100000020, 0000002300000022, 0000002500000024, 0000002700000026,
0000002900000028, 0000002b0000002a, 0000002d0000002¢c, 0000002£0000002e,
0000003100000030, 0000003300000032, 0000003500000034, 0000003700000036,
0000003900000038, 0000003b0000003a, 0000003d0000003¢c, 0000003£0000003e

5.1.2 Lesamnta-38/b12

Lesamnta-384 and Lesamnta-512 use the same sequeNrecoimp512€Nr_out512) constant
128-bit words C*"¥ These words are defined by the following equation:

cround — 60000000000000XY00000000000000ZW,

wherexy is 2+ round + 1 in hex, andzw is 2+ round in hex. The round constan®?, C®, ... CGl
are the following (from left to right, in hex):

Document version 1.0, Date: 30 October 2008
14

The Hash Function Family: Lesamnta

5.2

00000000000000010000000000000000,
00000000000000050000000000000004,
00000000000000090000000000000008,
000000000000000d4000000000000000c¢,
00000000000000110000000000000010,
00000000000000150000000000000014,
00000000000000190000000000000018,
000000000000001d000000000000001c,
00000000000000210000000000000020,
00000000000000250000000000000024,
00000000000000290000000000000028,
000000000000002d000000000000002c¢,
00000000000000310000000000000030,
00000000000000350000000000000034,
00000000000000390000000000000038,
000000000000003d000000000000003c,

Preprocessing

00000000000000030000000000000002,
00000000000000070000000000000006,
000000000000000bO000000000000004,
000000000000000£000000000000000e,
00000000000000130000000000000012,
000000000000001700000000000000186,
000000000000001b000000000000001 4,
000000000000001£000000000000001e,
00000000000000230000000000000022,
00000000000000270000000000000026,
000000000000002b00000000000000243,
000000000000002£000000000000002e,
00000000000000330000000000000032,
00000000000000370000000000000036,
000000000000003b0O000000000000034,
000000000000003£000000000000003e.

SHA-3 Proposal

Preprocessing takes place before hash computation begms.preprocessing consists of three
steps: padding the messalye (Sec. 5.2.1), parsing the padded message into messages block
(Sec. 5.2.2), and setting the initial hash vaHf® (Sec. 5.2.3).

5.2.1 Padding the Message

The messagM is padded before hash computation begins. The purposesqfddding is to ensure
that the message consists of a multiple of 256 or 512 bitgmipg on the algorithm.

5.2.1.1 Lesamnta-22/56

Suppose that the length of messadgdes | bits. Append the bit “1” to the end of the message,
followed byk + 191 zero bits, wherk is the minimum non-negative integer such thatl + k +
191 = 192 (mod 256). Then, append a 64-bit block equal to the nuiméeexpressed in binary
representation. The length of the padded message shouldenavwnultiple of 256 bits.

............... 64
Tail of M 1|10 - ol |
Figure 6: Last two blocks of a padded message for Lesamm@22 (= 0 (mod 256))

..................... 64
Tailof M [1|0| --|0[O| - o |
Figure 7: Last two blocks of a padded message for Lesamm@22 (# 0 (mod 256))

Document version 1.0, Date: 30 October 2008
15

The Hash Function Family: Lesamnta SHA-3 Proposal

5.2.1.2 Lesamnta-38/4612

Suppose that the length of messadges | bits. Append the bit “1” to the end of the message,
followed byk + 383 zero bits, wherk is the minimum non-negative integer such thatl + k +
383= 384 (mod 512). Then, append a 128-bit block equal to the nuidmeexpressed in binary
representation. The length of the padded message shouldenavwnultiple of 512 bits.

383 128

Tail of M 1|0 - 0| |

Figure 8. Last two blocks of a padded message for Lesammt&B8(= 0 (mod 512))
K 383 128

Tailof M [1|0| --|0O[O| - of |
Figure 9: Last two blocks of a padded message for Lesammt&B8(# 0 (mod 512))

5.2.2 Parsing the Padded Message

After a message has been padded, it must be parsel mtbit blocks before the hash computation
can begin.

5.2.2.1 Lesamnta-22#56

For Lesamnta-224 and Lesamnta-256, the padded messagesed pato N 256-bit blocks:
M®, M@, . M™_ Since the 256 bits of the input block can be expressed as &ghit words,
the first 32 bits of message blodk® are denoted aM{); the next 32 bits, am{; and so on up to
MY

5.2.2.2 Lesamnta-38/4612

For Lesamnta-384 and Lesamnta-512, the padded messagesed patoN 512-bit blocks:
M®, M@, . M™_ Since the 512 bits of the input block can be expressed as @ghit words,
the first 64 bits of message blodk® are denoted aM); the next 64 bits, am{; and so on up to
V%%

5.2.3 Setting the Initial Hash Value

Before hash computation begins for each of the Lesamntaitiiges, the initial hash valuel©
must be set. The size of the wordsHff) depends on the message digest size.

Document version 1.0, Date: 30 October 2008
16

The Hash Function Family: Lesamnta SHA-3 Proposal

5.2.3.1 Lesamnta-224

For Lesamnta-224, the initial hash valdé’ consists of the following eight 32-bit words, in hex:

H® = 00000224,
HO® = 00000224,
H? = 00000224,
HY = 00000224,
H® = 00000224,
H® = 00000224,
H® = 00000224,
H® = 00000224.

5.2.3.2 Lesamnta-256

For Lesamnta-256, the initial hash valdé’ consists of the following eight 32-bit words, in hex:

H® = 00000256,
H® = 00000256,
H® = 00000256,
H® = 00000256,
H® = 00000256,
H® = 00000256,
H® = 00000256,
H® = 00000256.

5.2.3.3 Lesamnta-384

For Lesamnta-384, the initial hash vald€&’ consists of the following eight 64-bit words, in hex:

HO = 0000000000000384,
H&O) = 0000000000000384,

HY = 0000000000000384,
HY = 0000000000000384,
H® = 0000000000000384,

HO = 0000000000000384,
HO = 0000000000000384,
H® = 0000000000000384.

Document version 1.0, Date: 30 October 2008
17

The Hash Function Family: Lesamnta SHA-3 Proposal

5.2.3.4 Lesamnta-512
For Lesamnta-512, the initial hash valdé’ consists of the following eight 64-bit words, in hex:

H® = 0000000000000512,
H® = 0000000000000512,
HY = 0000000000000512,
HY = 0000000000000512,
H® = 0000000000000512,
H® = 0000000000000512,
HO® = 0000000000000512,
H® = 0000000000000512.

5.3 Lesamnta-256 Algorithm
Lesamnta-256 can be used to hash a messhbaving a length of bits, where 0< | < 2%, The
final result of Lesamnta-256 is a 256-bit message digest.
5.3.1 Lesamnta-256 Preprocessing
1. Pad the messad@é, according to Sec. 5.2.1.1.

2. Parse the padded message iNt@56-bit message blockd®, M@, ..., M™) according to
Sec.5.2.2.1.

3. Set the initial hash valud©, as specified in Sec. 5.2.3.2.

5.3.2 Lesamnta-256 Computation

The Lesamnta-256 hash computation uses the round condedimted in Sec. 5.1.1.
After preprocessing is completed, each message bk M@, ..., MM is processed in
order, as follows:

fori=1toN-1 '
Compression256(HY, MO)
end for

Output256(HN-D, MN)

Figure 10: Pseudocode for the Lesamnta-256 computation

The resulting 256-bit message digest of the message

H IR IHE IHS IHEVIHG Y IHEY 1HEY.

Document version 1.0, Date: 30 October 2008
18

The Hash Function Family: Lesamnta SHA-3 Proposal

The Compression functiotonpr essi on256() is shown in the following pseudocode:

Compression256(word chain[8], word mb[8])
begin

word K[Nr_comp25@ [2]

word x[8]

word substate256[2]

1. Prepare the key schedule of the block cipher EncCompyse:
KeyExpComp25§chain, K)
2. Compute the encryption function of the block cipher EncCompgse:

for j=0to7
x[j] = mb[j]
end for

for round = 0 to Nr_comp256 - 1
substate256[0] = x[4]
substate256[1] = x[5]

AddRoundKey256(substate256, K[round])

for iteration = 0 to 3
SubBytes256(substate256)
ShiftRows256(substate256)
MixColumns256(substate256)

end for

x[6]
x[7]

x[6] @ substate256[0]
x[7] @& substate256[1]

WordRotation256(x)
end for

3. Compute the intermediate hash value H®:

for j=0to7
chain[jl = x[j] & mbl[j]
end for
end

Figure 11: Pseudocode f@onpr essi on256()

At the end ofConpr essi on256() , H" is given bychain[0]||chain[1]]]...||chain[7].

Document version 1.0, Date: 30 October 2008
19

The Hash Function Family: Lesamnta SHA-3 Proposal

Figure 12 illustrates the round function of the block cipeacComp,sg.

(round)
Kl

(round) l Y
KO

32 | /

b
)
A\ %4

4
N
A >4

Figure 12: Round function iEncComp,sg

Document version 1.0, Date: 30 October 2008
20

The Hash Function Family: Lesamnta

SHA-3 Proposal

The Output functior@ut put 256() is shown in the following pseudocode:

Output256(word chain[8], word mb[8])
begin

word K[Nr_out256] [2]

word x[8]

word substate256[2]

1. Prepare the key schedule of the block cipher EncOutyss:
KeyExpOut256(chain, K)
2. Compute the encryption function of the block cipher EncOutyse:

for j=0to7
x[j] = mb[j]
end for

for round = 0 to Nr_out256 - 1
substate256[0] = x[4]
substate256[1] = x[5]

AddRoundKey256(substate256, K[round])

for iteration = 0 to 3
SubBytes256(substate256)
ShiftRows256(substate256)
MixColumns256(substate256)

end for

x[6]
x[7]

x[6] @ substate256[0]
x[7] @& substate256[1]

WordRotation256(x)
end for

3. Compute the final hash value HM:

for j=0to7
chain[jl = x[j] & mbl[j]
end for
end

Figure 13: Pseudocode faut put 256()

At the end ofaut put 256() , H™ is given bychain[0]||chain[1]]...||chain[7].
Note thatConpr essi on256() andQut put 256() work in a similar manner. The fierences

between two functions are shown in bold.

Document version 1.0, Date: 30 October 2008
21

The Hash Function Family: Lesamnta SHA-3 Proposal

5.3.2.1 SubByt es256() Transformation

The SubByt es256() transformation is a non-linear byte substitution that apes independently
on each byte of the SubState256 by using the substitutida &dbox, defined in Fig. 15. The
SubByt es256() transformation proceeds as follows:

Sc=S-boxE,), forO<r<2andO<c<A4.

Figure 14 illustrates thBubByt es256() transformation.

4| SubByt es256() |—
A

Soo | S | S02 | Sos So | Se| 2| %3

A

S10 | S11 | S12 | S13 %@ %4 %2 %3

Figure 14:SubByt es256() applies the S-box to each byte of the SubState256

The S-box used in th&ubByt es256() transformation is shown in hexadecimal form in
Fig. 15. For example, i§, o = {53}, then the substitution value is determined by the inteisecf
the row with index ‘5’ and the column with index ‘3" in Fig. 15his results ins ; having a value
of {ed]}.

y

0 1123|465 6 | 78| 9]a|6b c | d e | f
63 | 7c |77 | Tb | f2 | 6b | 6f | c5 | 30| 01 | 67| 2b | fe | d7 | ab | 76
ca |82 |c9|7d|fa |59 |47 | fO|ad | d4d | a2 | af |9c | ad | 72 | cO
b7 | £fd | 93 | 26 | 36 | 3f | f7 | cc | 34 | ab | e5 | f1 | 71 | d8 | 31 | 15
04 | c7 |23 | c3| 18|96 |05 |9a |07 | 12|80 | e2|eb |27 | b2 | 75
09|83 |2c|la|1b|6e|ba|a0 |52 |3 |d6| b3 |29 |e3 | 2f | 84
53 | dl |00 |ed| 20| fc | bl | 5b | 6a | cb | be | 39 | 4a | 4c | B8 | cf
dO | ef |aa | fb | 43 |4d | 33 |85 |45 | f9 | 02| 7f | 50 | 3c | 9f | a8
51 | a3 |40 | 8f | 92| 9d | 38 | f5 | bc | b6 | da | 21 | 10 | £f | £3 | d2
cd | Oc |13 |ec | 5f |97 |44 | 17 | c4 | a7 | T7e | 3d |64 |5d | 19 |73
60 | 81 | 4f [dc | 22| 2a |90 | 88 | 46 | ee | b8 | 14 | de | be | Ob | db
e0 [32| 3a|0a |49 | 06|24 | 5¢c|c2|d3 |ac |62 |91 |95 | ed |79
e7 | c8 |37 | 6d|8d|db | 4e | a9 | 6¢c | 56 | f4 | ea | 65 | Ta | ae | 08
ba |78 |25 | 2e | 1c | a6 | b4 | c6 | e8| dd |74 | 1f | 4b | bd | 8b | 8a
70 | 3e | b5 | 66 | 48 | 03 | f6 | 0e | 61 | 35 | B7 | b9 | 86 | c1 | 1d | 9e
el | £8 198 |11 | 69| d9 [8e |94 |9 | 1le | 87 | e9 | ce | b5 | 28 | df
8¢c | al |89 | 0d|bf |e6 |42 | 68|41 |99 | 2d | 0f | bO | 54 | bb | 16

Figure 15: S-box: substitution values for the bisg} (in hexadecimal format)

X
DA O|T|Y[OON| OO~ WN O

5.3.2.2 Shi ft Rows256() Transformation

In the Shi ft Rows256() transformation, the bytes in the second row of the SubSiéteze
cyclically shifted over dierent numbers of bytesffsets). The first row is not shifted. Specifically,

Document version 1.0, Date: 30 October 2008
22

The Hash Function Family: Lesamnta SHA-3 Proposal

the Shi f t Rows256() transformation proceeds as follows:
S’l,c = S1,(c+1) mods TfOr0<c<4

Figure 16 illustrates thehi f t Rows256() transformation.

—| Shi ft Rows256() l—

4

S10 | Su1 | S12 | Su3 Sio|Si1 | Sz | Sis
S s

S0 | So1| So2| So3 S0 | So1| S2| So3

Sio| S11| S12| S13 r@-l Si1| S12| S13| S0

Figure 16:Shi f t Rows256() cyclically shifts the second row in the SubState256

5.3.2.3 M xCol uims256() Transformation

The M xCol ums256() transformation uses multiplication over a finite field, adirded in
Sec. 4.2, in the following manner:

Soc || 02 01 || soc
Sc| [01 02]] s
As a result of this multiplication, the two bytes in a colunta eeplaced by the following:

S
Sie

Figure 17 illustrates th®l xCol utms256() transformation.

4| M xCol ums256() I—

S0 | Soc | So2 | Sos 56,0 SE),c %,2 %,3

, forO<c<4.

({02} ® sc) ® 31,
Soc @ ({02} L sl,c)-

A

S0 | Sic | S1.2 | S13 s,1,0 sll,c s,1,2 s,1,3

Figure 17:M xCol uims256() operates on the SubState256 column by column

5.3.2.4 AddRoundKey256() Transformation

In the AddRoundKey256() transformation, the two-word Round Kegford = K{ond) o)
from the key schedule, as described in Secs. 5.3.2.6 a2l B.& added to the SubState256 by a

Document version 1.0, Date: 30 October 2008
23

The Hash Function Family: Lesamnta SHA-3 Proposal

simple bitwise XOR operation. The two words are each addedire SubState256, such that

[S/QO’ 1o S g_l.l] = [0 S10, S01, S11] @ Kgound),
[%52’ g-l-,Z’ %,3’ g_l.,3:| = [%,2’ 31,2, %,3, 81,3] ©® K](-round).

5.3.2.5 WordRot ati on256()

Wor dRot at i on256() takes eight 32-bit wordg, X3, ..., X; as input and performs a cyclic
permutation. The function proceeds as follows:

/ _ . H
Xis2mods=Xj» for0<j<8.

5.3.2.6 KeyExpConp256()

During the process ofonpr essi on256(H-1 M®) | the EncComp,sg block cipher takes the
intermediate hash valud(Y as the Block Cipher Key and performs the Key Expansion reutin
KeyExpConp256() to generate a key schedule.

KeyExpConp256() generates a total of 2 Nr_comp256 words: the algorithm requires an
initial set of eight words, and each of tiN\r_comp256 rounds requires eight words of key data.
The resulting key schedule consists of a linear array of wiovdth i in the range of O< i <
2+ Nr_comp256. The round constant word ar@§P® = I} |cl*" is defined in Sec. 5.1.1.
Expansion of the input key into the key schedule proceedsrdit to the pseudocode shown in
Fig. 18.

SubWor ds256() is a function that takes 8-byte input words and applies thexs¢Fig. 15) to
each of the 8 bytes to produce output wondsr dRot at i on256() is defined in Sec. 5.3.2.5.

Each of the functiongeyLi near 256() andByt eTr anspos256() takes 8 bytesay, ay, ..., a;
as input and performs a bytewise permutatigeyLi near 256() is a bytewise operation given by
the following equation, where multiplication over GFY& defined in Sec. 4.2:

a 02 03 01 01][&
a, | |01 02 03 01 || & i_0.4
a,| |0t o1 02 03 ||lan|
a, 03 01 01 02 || a.s
ai, = ({02} L4 ai) @ ({03} L4 a1'+1) ® a2 @ ais3,
a,, = ao({02} ea,)® ({03} ®a) ®a.s,
., = &®Da,1 ({02} ea.,) ® ({03} eas),
ai/+3 = ({03} b al) D1 D20 ({02} ° ai+3).

Document version 1.0, Date: 30 October 2008
24

The Hash Function Family: Lesamnta SHA-3 Proposal

KeyExpComp256(word chain[8], word K[Nr_comp256] [2])
begin
word t[2] /* The structure is not a SubState256 */

for round = 0 to Nr_comp256 - 1
t[0] = chain[4] @ C[round] [0]
t[1] = chain[6] @ Clround] [1]

SubWords256(t)
KeyLinear256(t)
ByteTranspos256(t)

chain[6]
chain[7]

= chain[6] & t[0]
= chain[7] & t[1]
WordRotation256(chain)
K[round] [0] = chain[2]
K[round] [1] = chain[3]
end for
end

Figure 18: Pseudocode feeyExpConp256()

Byt eTr anspos256() performs bytewise transposition in the following manner:
a6 = ay, a;l. = as, a,2 = ay, aé = ag,
y=a, =&, =36 & =2ar

Figure 19 illustrates thByt eTr anspos256() transformation.

Q@ @ a& a3 a4 B QA A

a o & a d & & &
Figure 19:Byt eTr anspos256() transformation

5.3.2.7 KeyExpQut 256()

During the process @ut put 256(HN-1, M(N)) | theEncOut,se block cipher takes the intermediate
hash valueHN-Y as the Block Cipher Key and performs the Key Expansion reutin
KeyExpQut 256() to generate a key schedule.

KeyExpQut 256() generates a total of«Nr_out256 words: the algorithm requires an initial set
of eight words, and each of thidr _out256 rounds requires eight words of key data. The regultin
key schedule consists of a linear array of words, withthe range of (< i < 2« Nr_out256. The

Document version 1.0, Date: 30 October 2008
25

The Hash Function Family: Lesamnta SHA-3 Proposal

round constant word arrag('n® = cl*"d)clnd is defined in Sec. 5.1.1. Expansion of the input
key into the key schedule proceeds according to the pseddatwwn in Fig. 20.

The functions SubBytes256(), ShiftRows256(), M xColums256(), and
Wor dRot at i on256() are defined in Secs. 5.3.2.1, 5.3.2.2, 5.3.2.3, and 5.3e&pectively.

KeyExpOut256(word chain[8], word K[Nr_out256][2])
begin
word substate256[2]

for round = 0 to Nr_out256 - 1
substate256[0] chain[4] & Clround] [0]
substate256[1] chain[5] @ Clround][1]

for iteration = 0 to 3
SubBytes256(substate256)
ShiftRows256(substate256)
MixColumns256(substate256)

end for
chain[6] = chain[6] & substate256[0]
chain[7] = chain[7] & substate256[1]

WordRotation256(chain)
K[round] [0] = chain[2]
K[round] [1] = chain[3]
end for
end

Figure 20: Pseudocode feeyExpQut 256()

5.4 Lesamnta-224 Algorithm

Lesamnta-224 can be used to hash a messhpaving a length of bits, where 0< | < 264, The
algorithm is defined in exactly the same manner as for Lesa@b6 (Sec. 5.3), with the following
two exceptions:

1. The initial hash valuel© is set as specified in Sec. 5.2.3.1.

2. The 224-bit message digest is obtained by truncatingiaéliash valu¢i™ to its leftmost
224 bits:
Ho IHE IHZVIHE IHG IHG Y IHG®.

Document version 1.0, Date: 30 October 2008
26

The Hash Function Family: Lesamnta SHA-3 Proposal

5.5 Lesamnta-512 Algorithm

Lesamnta-512 can be used to hash a messhbaving a length of bits, where 0< | < 2'?8, The
final result of Lesamnta-512 is a 512-bit message digest.

5.5.1 Lesamnta-512 Preprocessing

1. Pad the messad@é, according to Sec. 5.2.1.2.

2. Parse the padded message MNt612-bit message blockd®, M@, ..., MM according to
Sec.5.2.2.2.

3. Set the initial hash valud©, as specified in Sec. 5.2.3.4.

5.5.2 Lesamnta-512 Computation

The Lesamnta-512 hash computation uses the round cond&dimed in Sec. 5.1.2.
After preprocessing is completed, each message bk M@, ..., MM is processed in
order, as follows:

fori=1toN-1 '
Compression512(HY, MO)
end for

Output512(HN-D, M®N)

Figure 21: Pseudocode for the Lesamnta-512 computation

The resulting 512-bit message digest of the message

N N N N N N N N
Ho IHIHZIHS IH G IH 7Y,

Document version 1.0, Date: 30 October 2008
27

The Hash Function Family: Lesamnta SHA-3 Proposal

The Compression functiotonpr essi on512() is shown in the following pseudocode:

Compressionbl2(word chain[8], word mb[8])
begin

word K[Nr_comp517 [2]

word x[8]

word substateb12[2]

1. Prepare the key schedule of the block cipher EncCompsiz:
KeyExpComp5124chain, K)
2. Compute the encryption function of the block cipher EncCompsiz:

for j=0to7
x[j] = mb[j]
end for

for round = 0 to Nr_comp512- 1
substate512[0] = x[4]
substateb12[1] = x[5]

AddRoundKey512(substate512, K[round])

for iteration = 0 to 3
SubBytes512(substate512)
ShiftRows512(substate512)
MixColumns512(substate512)

end for

x[6]
x[7]

x[6] @ substate512[0]
x[7] @& substateb12[1]

WordRotationb12(x)
end for

3. Compute the intermediate hash value H®:

for j=0to7
chain[jl = x[j] & mbl[j]
end for
end

Figure 22: Pseudocode f@onpr essi on512()

At the end ofConpr essi on512() , H® is given bychain[0]||chain[1]]]...||chain[7].

Document version 1.0, Date: 30 October 2008
28

The Hash Function Family: Lesamnta SHA-3 Proposal

Figure 23 illustrates the round function of the block cipeacComps,.

(round)
Kl

(round) l Y
KO

64 |)

b
)
A\ %4

4
N
A >4

Figure 23: Round function iEncComps;,

Document version 1.0, Date: 30 October 2008
29

The Hash Function Family: Lesamnta

SHA-3 Proposal

The Output functiorout put 512() is shown in the following pseudocode:

Output512(word chain[8], word mb[8])
begin

word K[Nr_out517] [2]

word x[8]

word substateb12[2]

1. Prepare the key schedule of the block cipher EncOuts,:
KeyExpOut512(chain, K)
2. Compute the encryption function of the block cipher EncOutsis:

for j=0to7
x[j] = mb[j]
end for

for round = 0 to Nr_out512 - 1
substate512[0] = x[4]
substateb12[1] = x[5]

AddRoundKey512(substate512, K[round])

for iteration = 0 to 3
SubBytes512(substate512)
ShiftRows512(substate512)
MixColumns512(substate512)

end for

x[6]
x[7]

x[6] @ substate512[0]
x[7] @& substateb12[1]

WordRotationb12(x)
end for

3. Compute the final hash value HM:

for j=0to7
chain[jl = x[j] & mbl[j]
end for
end

Figure 24: Pseudocode faut put 512()

At the end ofaut put 512() , H™ is given bychain[0]||chain[1]]]...||chain[7].
Note thatConpr essi on512() andQut put 512() work in a similar manner. The fierences

between the two functions are shown in bold.

Document version 1.0, Date: 30 October 2008
30

The Hash Function Family: Lesamnta SHA-3 Proposal

5.5.2.1 SubBytes512() Transformation

TheSubByt es512() transformation is a non-linear byte substitution that apes independently
on each byte of the SubState512 by using the substitutida @&dbox, defined in Fig. 15. The
SubByt es512() transformation proceeds as follows:

Sc=S-boxG), forO<r<4andO<c<4

Figure 25 illustrates thBubByt es512() transformation.

4| SubByt es512() |—
A,

A

00 | Sc | S02 | So3 So | Se | So2| S
S10 | S11 | S12 | 13 Sio| Si1| Si2 | Sis
S0 | 21 | S22 | 23 S0| S| D2 | Sa
$30 | S31 | S82 | Ss3 Si0| a1 | Ss2 | Sas

Figure 25:SubByt es512() applies the S-box to each byte of the SubState512

5.5.2.2 Shi ft Rows512() Transformation

In the Shi f t Rows512() transformation, the bytes in the last three rows of the SateS12 are
cyclically shifted over dierent numbers of bytesfftsets). The first row is not shifted. Specifically,
theshi f t Rows512() transformation proceeds as follows:

S;,C = Sr,(c+r) mod 4 fOI’ O <r< 4 and OS c< 4,

Figure 26 illustrates thghi f t Rows512() transformation.

—| Shi ft Rows512() l—

So|S1]S2]|Ss 5;,0 5;,1 5;,2 S;,s

S10 | S11 | S12 | S13 r@-l Si1 | S12 | S13 | S10
S0 | 21 | 2| S23 r@-l S22 | 23| S0 | S21
30| S31 | 82 | B3 @ $3 | S80 | S81 | S82

Figure 26:Shi f t Rows512() cyclically shifts the last three rows in the SubState512

Document version 1.0, Date: 30 October 2008
31

The Hash Function Family: Lesamnta SHA-3 Proposal

5.5.2.3 M xCol uims512() Transformation

The M xCol ums512() transformation uses multiplication over a finite field, adirded in
Sec. 4.2, in the following manner:

S 02 03 01 01][soc

Sie|_ |01 02 03 01| sic

g ||ot o1 02 03 || s | forO<c<4

Shc 03 01 01 02 || ssc

As a result of this multiplication, the two bytes in a colunra eeplaced by the following:

Sc = (102} @ S0c) ® ({03} @ S1¢) © S0 @ S
%’C = Soc® ({02} @ 510) ® ({03} ® Sp) @ Sggc,
gg,c = Soc® S1c® ({02} @ 55¢) @ ({03} @ S3),
Sic = ({03} @ S00) @ S1c© 9D ({02} @ S30).

Figure 27 illustrates th®l xCol ums512() transformation.

4| M xCol ums512() |_

A

S00 | Soc | So2 | So3 S0 | Soc | D02 | s
S10 | Ste | S12 | 13 Sio| Sic| S12 | Sis
S0 | S2c | 22| 23 S0 | Sc | S22 | 23
S0 | Sac | Sa2 | Ses S0 | Sic | Sz | Sas

Figure 27:M xCol ums512() operates on the SubState512 column by column

5.5.2.4 AddRoundKey512() Transformation

In the AddRoundKey512() transformation, the two-word Round Kegford = Koo

from the key schedule, as described in Secs. 5.5.2.6 a2l B.% added to the SubState512 by a

simple bitwise XOR operation. The two words are each addedire SubState512, such that
[0 S0 S0 S0 Sh1- S0 $1-Sh1] = [S00- S10- S20. Sa0- S01. S11. So.1, Sa1] @ K

[%,Za g‘[’Za g2’29 %,29 %,37 g‘[’ga g2’37 %’3] = [S),Za 81,25 82,25 S3,27 %,37 81,35 82,35 S3,3] @ K](_round)'

(round)
O 2

5.5.2.5 WordRot ati on512()

Wor dRot ati on512() takes eight 64-bit wordso, X,...,X; as input and performs a cyclic
permutation. The function proceeds as follows:

/ _ . H
Xis2mods= Xj» for0<j<8.

Document version 1.0, Date: 30 October 2008
32

The Hash Function Family: Lesamnta SHA-3 Proposal

5.5.2.6 KeyExpConp512()

During the process ofonpr essi on512(H-1 M®) | the EncComps:» block cipher takes the
intermediate hash valug? as the Block Cipher Key and performs the Key Expansion reutin
KeyExpConp512() to generate a key schedule.

KeyExpConp512() generates a total of 2 Nr_comp512 words: the algorithm requires an
initial set of eight words, and each of tiNy_comp512 rounds requires eight words of key data.
The resulting key schedule consists of a linear array of wjowdth i in the range of 0O< i <
2+ Nr_comp512. The round constant word ar@§P"® = I |cl*" is defined in Sec. 5.1.2.
Expansion of the input key into the key schedule proceedsrdot to the pseudocode shown in
Fig. 28.

SubWor ds512() is a function that takes 16-byte input words and applies the)S(Fig. 15)
to each of the 16 bytes to produce output wokts. dRot at i on512() is defined in Sec. 5.5.2.5.

KeyExpComp512(word chain[8], word K[Nr_comp512] [2])
begin
word t[2] /* The structure is not a SubStateb512 */

for round = 0 to Nr_comp512 - 1
t[0] = chain[4] ® C[round] [0]
t[1] = chain[5] @ Cl[round] [1]

SubWords512(t)
KeyLinear512(t)
ByteTranspos512(t)

chain([6]
chain([7]

= chain[6] & t[0]
= chain[7] & t[1]
WordRotation512(chain)
K[round] [0] = chain[2]
K[round] [1] = chain[3]
end for
end

Figure 28: Pseudocode fegey ExpConp512()

Each of the The function&eyLi near512() and Byt eTr anspos512() takes 16 bytes
ao, a1, ...,a15 as input and performs a bytewise permutatidfeyLi near 512() is a bytewise
operation given by the following equation, where multiption over GF(9) is defined in Sec. 4.2:

Document version 1.0, Date: 30 October 2008
33

The Hash Function Family: Lesamnta SHA-3 Proposal

& | [01 01 02 0a 09 08 01 04 |[&

a,, 04 01 01 02 0a 09 08 01 || a1

a,, 01 04 01 01 02 Oa 09 08 || &y

a{+3 _| 08 01 04 01 01 02 Oa 09 || a3 =08
a,, 09 08 01 04 01 01 02 Oa || &4

a,c 0a 09 08 01 04 01 01 02 || ass

a, . 02 0a 09 08 01 04 01 01 || ase

| &, | [01 02 0a 09 08 01 04 01 || a7 |

& = 2 a9 ({02} ea,2) @ ({0a} aj13) ® ({09} @ &14) ® ({08} @ &is5) ® 816 @ ({04} ® &i47),

a, = ({04} ea)® a1 @ a2 ® ({02} @ 8.3) ® ({02} @ 3j14) & ({09} @ &15) @ ({08} &is6) B 47,
a,, = a®({04)ea,1)®a2®a.,3 ({02} ea.,4)®({0a}ea5)® ({09} e ai6) ® ({08} ® &.7),
a,; = ((08}ea)@ai1® ({04} ea2)®ai.3®a.4® ({02} eas5)® ({0a} ® a.6) ® ({09} ® &,7),
a,, = ({09)ea)a ({08} ea1)®a2®({04)e8a,3)®a.s® a5 ({02} ®ae) ®({0a} ® a,7),
&5 = ({0a}ea)® ({09} eai1)® ({08} eai2) ®a3® ({04} ® &4) ® a5 ® a6 D ({02} ® &47),
a,s = ({02} ea)® ({02} e ai1) ® ({09} ® &12) ® ({08} @ 843) ® 8j+a ® ({04} ® 3i15) @ Ajv6 @ &4,

4

&,; = ({02} ea,1)® ({02} e a2) ® ({09} © gj,3) ® ({08} @ &j14) ® &45 ® ({04} @ &46) B Aj47.
Byt eTr anspos512() performs bytewise transposition in the following manner:
ay=a, & =a, & =ap a;=a, a =ay, a; = as, ag = a, a, = ay,
dg =28, =&, Ho=a & =38, A,=a Hz=a3 Hy=au Y5=as
Figure 29 illustrates thByt eTr anspos512() transformation.

d & ad a3 &4 a T A7 aAg A A A1 A A3 Ay Ais

8 & & a & a G & G @ Ay Ay A, Az Ay, Ag
Figure 29:Byt eTr anspos512() transformation

5.5.2.7 KeyExpQut512()

During the process @ut put 512(HN-1, M(N)) | theEncOuts;, block cipher takes the intermediate
hash valueHN-Y as the Block Cipher Key and performs the Key Expansion reutin
KeyExpQut 512() to generate a key schedule.

KeyExpQut 512() generates a total ofNr_out512 words: the algorithm requires an initial set
of eight words, and each of thidr _out512 rounds requires eight words of key data. The regultin
key schedule consists of a linear array of words, withthe range of < i < 2« Nr_out512. The
round constant word arregfn) = c{*")clen js defined in Sec. 5.1.2.

Document version 1.0, Date: 30 October 2008
34

The Hash Function Family: Lesamnta SHA-3 Proposal

Expansion of the input key into the key schedule proceedsrdi to the pseudocode shown
in Fig. 30.

The functions SubBytes512(), ShiftRows512(), M xColums512(), and
Wor dRot at i on512() are defined in Secs. 5.5.2.1, 5.5.2.2, 5.5.2.3, and 5.5e&pectively.

KeyExpOut512(word chain[8], word K[Nr_out512][2])
begin
word substateb512[2]

for round = 0 to Nr_outb512 - 1
substate512[0] chain[4] & Clround] [0]
substate512[1] chain[5] @ Clround][1]

for iteration = 0 to 3
SubBytes512(substate512)
ShiftRows512(substate512)
MixColumns512(substateb12)

end for
chain[6] = chain[6] & substate512[0]
chain[7] = chain[7] & substateb512[1]

WordRotation512(chain)
K[round] [0] = chain[2]
K[round] [1] = chain[3]
end for
end

Figure 30: Pseudocode feeyExpQut 512()

5.6 Lesamnta-384 Algorithm

Lesamnta-384 can be used to hash a messhpgaving a length of bits, where 0< | < 2?8, The
algorithm is defined in exactly the same manner as for Lesaf®h® (Sec. 5.5), with the following
two exceptions:

1. The initial hash valuel© is set as specified in Sec. 5.2.3.3.

2. The 384-bit message digest is obtained by truncatingriaéliash valu¢i™ to its leftmost

384 bits:
HMIHM IR HM RN RS

Document version 1.0, Date: 30 October 2008
35

The Hash Function Family: Lesamnta SHA-3 Proposal

5.7 Lesamnta Examples
5.7.1 Lesamnta-256 Example

Let the messag®!, be the 24-bitl(= 24) ASCII string ‘abc’, which is equivalent to the following
binary string:
01100001 01100010 01100011.
The message is padded by appending’abit, followed by 423 ‘0” bits, and ending with the

hex value00000000 00000018 (the two 32-bit word representation of length 24). Thus,fthal
padded message consists of two blodksH 2).

For Lesamnta-256, the initial hash vald® is

HL = 00000256,
H = 00000256,
H = 00000256,
H = 00000256,
H = 00000256,
H = 00000256,
H = 00000256,
H = 00000256.

The words of the padded message bldd#) are then assigned to the worss ..., x; of the
block cipherEncComp,sg:

Xo = 61626380,
X1 = 00000000,
X2 = 00000000,
X3 = 00000000,

= 00000000,
Xs = 00000000,

= 00000000,
X7 = 00000000.

The following schedule shows the hex values fgr..., x7, after roundr of the “forr = 0 to
31" loop described in Sec. 5.3.2, Figure 11, step 2.

Document version 1.0, Date: 30 October 2008
36

The Hash Function Family: Lesamnta SHA-3 Proposal

Xo X1 X2 X3 X4 X5 X6 X7
0 924bde4c 924bded4c 61626380 00000000 00000000 00000000 00000000 00000000
1 271b6be7 2b583bdb 924bded4c 924bded4c 61626380 00000000 00000000 00000000
2 9ab5f8551 08ebacca 271b6be7 2b583bdb 924bded4c 924bded4c 61626380 00000000
3: 318cebaf b7a8215b 9ab5f8551 08ebacca 271b6be7 2b583bdb 924bded4c 924bdedc
=4 : 15e5553b e26a5218 318cebaf b7a8215b 9ab5f8551 08ebacca 271b6be7 2b583bdb
5: a7932650 8835a31c 15e5553b e26a5218 318cebaf b7a8215b 9a5f8551 08ebacca
6 64926b7a 1af443fc a7932650 8835a31c 15e5553b e26a5218 318cebaf b7a8215b
7 £58103al1 c4a7b9f7 64926b7a 1afd443fc a7932650 8835a31c 15e5553b e26a5218
8 d6e2e3c3 befeObde £58103al c4a7b9f7 64926b7a 1afd443fc a7932650 8835a3lc

9

= =S =S = = =S = = = =
Il I

. e93fbfcc c44edebe db6e2e3c3 befeObde £58103al c4a7b9f7 64926b7a 1afd43fc
=10: 62e5737e a70lecd7 e93fb5fcc c44dedebe db6e2e3c3 b5efeObde f£58103al c4a7b9f7
=11: 7efb3e71 14433399 62e5737e aT70lecd?7 e93fbfcc cddedebe db6e2e3c3 b5SefelO5de
=12: 584202c0 871a2fd7 T7efb3e71 14433399 62e5737e a70lecd7 e93f5fcc cddedebe
=13: 09eb5d4b9 7£f476927 584202c0 871a2fd7 Tefb3e71 14433399 62e5737e a70lecd7?
=14: 3f75d6bl1 82df6e25 09e5d4b9 7f476927 584202c0 871a2fd7 T7efb3e71 14433399
=15: 167f4af9 36ecifdc 3f75d6bl 82df6e25 09e5d4b9 7f476927 584202c0 871a2fd7
=16: 0Ob6d0afl d8a4ed39 167f4af9 36eclfdc 3f75d6bl 82df6e25 09e5d4b9 7f476927
=17: bbc87f9b 33e64080 O0b6d0afl dB8a4ed39 167f4af9 36eclfdc 3f75d6bl 82df6e25
=18: 344a8de9 1122a932 bbc87f9b 33e64080 Ob6d0afl dB8aded39 167f4af9 36eclfdc
=19: 4cfba3a0 519dbe2b 344a8de9 1122a932 bbc87f9b 33e64080 Ob6d0afl d8aded39
=20: 40b51eb4 df911e26 4cfba3al0 519dbe2b 344a8de9 1122a932 bbc87f9b 33e64080

. e45b2b33 dfb34ce6 40b5leb4 df911e26 4cfba3al0 519dbe2b 344a8de9 1122a932
=22 . 859cdbba 080884eb e45b2b33 dfb34ce6 40b51e54 df911e26 4cfba3a0 519dbe2b
=23:. cafc90b6 ef086cdc 859cdbba 080884eb e45b2b33 dfb34ce6 40b51e54 df911e26
=24 4c31690a 3c726b86 cafc90b6 ef086cdc 859cdb5a 080884eb e45b2b33 dfb34ceb
=25: 340b67eb 7cb138bd 4c31690a 3c726b86 cafc90b6 ef086cdc 859cd55a 080884eb
=26: a3daclicl f7fa6162 340b67eb 7cb138bd 4c31690a 3c726b86 cafc90b6 ef086cdc
=27 . a8cfafa7 3d5d14bl a3daclcl £f7fa6162 340b67eb 7cbl138bd 4c31690a 3c726b86
=28: d3de8d3d 133083c0O aB8cfafa7 3d5d14bl a3daclcl f7fa6162 340b67eb 7cb138bd
=29: a8321805 e1b21118 d3de8d3d 133083cO a8cfafa7 3d5d14bl a3daclcl f7fa6162
=30: 0b9%elb3f 68db00ac a8321805 e1b21118 d3de8d3d 133083c0 a8cfafa7 3d5d14bil
=31: abfced96 897331ee 0b9%el1b3f 68db00ac a8321805 e1b21118 d3de8d3d 133083cO

_ S =N =9 =9 =9 =9 =9 =9 =9 =9 =9 =9 =9 =9 =9 = === = = =
11
N
=

That completes the processing of thirst message bloch®. The intermediate hash value
H® is calculated to be
HY = abfced96 ® 61626380 = c49e8e16,
H® = 897331ee ® 00000000 = 897331ee,
H{Y = Obge1b3f @ 00000000 = Ob9elb3f,
H{Y = 68db00ac ® 00000000 = 68db00ac,
HP = 28321805 @ 00000000 = 28321805,
HY = 61621118 ® 00000000 = e1b21118,
H = d3desd3d @

H{Y = 133083c0 ® 00000000 = 133083cO0.

00000000 = d3de8d3d,

Document version 1.0, Date: 30 October 2008
37

The Hash Function Family: Lesamnta SHA-3 Proposal

The words of thesecondpadded message blosk® are then assigned to the wors...., X; of
the block ciphelEncOutysg:

Xo = 00000000,
X1 = 00000000,
X2 = 00000000,
X3 = 00000000,
X4 = 00000000,
Xs = 00000000,
Xe = 00000000,
X7 = 00000018.

The following schedule shows the hex values fgr..., X7, after roundr of the “forr = 0 to
31" loop described in Sec. 5.3.2, Figure 13, step 2.

Xo X1 X2 X3 X4 Xs Xe X7

=0: 7db22819 7b84aff3 00000000 00000000 00000000 00000000 00000000 00000000
=1: 2cb35079 2f2327fe 7db22819 7b84aff3 00000000 00000000 00000000 00000000
=2: 0886491b bdf6a9bd 2cb35079 2f2327fe 7db22819 7b84aff3 00000000 00000000
=3: 21bfbf59 b854bc30 0886491b bdf6ad9bd 2cb35079 2f2327fe 7db22819 7b84aff3

o £1c77947 40b67b9%e 21bfbf59 b854bc30 0886491b bdf6a9bd 2cb35079 2£2327fe
=5: 23a05bc2 4c0b325e £f1c77947 40b67b%e 21bfbf59 b854bc30 0886491b bdf6a9bd
=6: 8a7c7c87 c8461974 23a05bc2 4c0b325e f1c77947 40b67b%e 21bfbf59 b854bc30
=7: 2e8e1d78 b05f0c02 8a7c7c87 ¢8461974 23a05bc2 4c0b325e f1c77947 40b67b9%e
=8: b391cbee aa7d210b 2e8e1d78 b05f0c02 8a7c7c87 ¢8461974 23a05bc2 4cOb325e
=9: 08b40481 ff1e4869 b391cbee aa7d210b 2e8el1d78 bO5f0c02 8a7c7c87 c8461974
=10: a420e8ec 80cil4ceb 08b40481 ff1e4869 Db391cbee aa7d210b 2e8e1d78 bO5f0c02
=11: 406ac0a0 8a0e1380 a420e8ec 80cl4ce5 08b40481 ff1ed869 b391cbee aa7d210b
=12: 5f625ef3 6a58a031 406ac0a0 8a0el380 ad420e8ec 80cldce5 08b40481 ff1ed869
=13: 634a9d62 9ef7610d 5f625ef3 6a58a031 406acO0a0 8a0el380 ad420e8ec 80cldceb
=14: 415dd8a0 35cidac8 634a9d62 9ef7610d 5f625ef3 6a58a031 406ac0a0 8a0el1380
=15: 27e6d188 7c2cbb8f 415dd8a0 35cldac8 634a9d62 9ef7610d 5f625ef3 6a58a031
=16: 86badfOb b654454a 27e6d188 7c2c5b8f 415dd8a0 35cldac8 634a9d62 9ef7610d4
=17 : bfa35647 a9015eb9 86badfOb b654454a 27e6d188 7c2c5b8f 415dd8a0 35cldac8
=18: 9c7c8895 1aef2bc9 bfa35647 a9015eb9 86badfOb b654454a 27e6d188 7c2chb8f
=19: 42c06cc6 8907bb96 9c7c8895 1laef2bc9 bfa35647 a9015eb9 86badfOb b654454a
. 45f14bf9 18051660 42c06cc6 8907bb96 9c7c8895 laef2bc9 bfa3b647 a9015eb9
=21: 1ce7ffb4 a9a9e70d 45f14bf9 18051660 42c06cc6 8907bb96 9c7c8895 1laef22bc9
=22: 8414fcd9 51b7246¢c 1ce7ffb4d a%9a%9e70d 45f14bf9 18051660 42c06cc6 8907bb96
=23: 75f94fc0O d2589717 8414fcd9 51b7246¢c 1ce7ffb4d aQa%e70d 45f14bf9 18051660
=24 : c8e89f1lb 8bf7ebf6 75f94fcO d2589717 8414fcd9 51b7246¢c 1ce7ffbd a9a9e70d
=25: ald7681le 3cbe9910 c8e89flb 8bf7ebf6 75f94fcO d2589717 8414fcd9 51b7246¢c
=26: 5fd41059 a4d991lee ald768le 3cbe9910 cB8e89f1lb 8bf7ebf6 75f94fcO0 d2589717
=27: 8373c6c6 8ba99026 5fd41059 a4d99lee ald768le 3cbe9910 c8e89flb 8bf7ebf6
=28: d366ecb7 4407852b 8373c6c6 8ba99026 5fd41059 add99lee ald768le 3cbe9910
=29: aebcf0c9 47d9aeff d366ech7 4407852b 8373c6¢c6 8ba99026 5fd41059 add991ee
=30: ca26c0c9 ac23a7af ae6cf0c9 47d9aeff d366ec57 4407852b 8373c6c6 8ba99026
=31: 36936338 78299c69 ca26c0c9 ac23a7af aebcfOc9 47d9aeff d366ec57 4407852b

= = =S =9 = == = = = =
1]
N

_ == S N =S =9 =9 9 =9 =9 =9 =9 =9 =9 = =9 = == = = = =
I
N
o

Document version 1.0, Date: 30 October 2008
38

The Hash Function Family: Lesamnta SHA-3 Proposal

That completes the processing of the second and final mebkageV®. The final hash value

H®@ is calculated to be

H? = 36936338 @
HP = 78299c69 @
ng) = ca26c0c9 @
Héz) = ac23a7af @
Hf) = ae6cfOc9 @
HP = 47d9aett @
H® = 4366ec57 @
H? = 44078520 @

The resulting 256-bit message digest is

00000000 = 36936338,
00000000 = 78299c69,
00000000 = ca26c0c9,
00000000 = ac23a7af,
00000000 = ae6cf0cH,
00000000 = 47d9aeff,
00000000 = d366ecb7,
00000018 = 44078533.

36936338 78299c69 ca26c0c9 ac23a7af aebcf0c9 47d9aeff d366ecb57 44078533.

5.7.2 Lesamnta-512 Example

Let the messag®l be the 24-bitl(= 24) ASCII string ‘abc’, which is equivalent to the following

binary string:

01100001 01100010 01100011.

The message is padded by appending’avit, followed by 871 ‘0” bits, and ending with the
hex valuet000000000000000 0000000000000018 (the two 64-bit word representation of length
24). Thus, the final padded message consists of two bldtksZ).

For Lesamnta-512, the initial hash vald& is

HO = 0000000000000512,
H® = 0000000000000512,
H® = 0000000000000512,
H® = 0000000000000512,
H? = 0000000000000512,
H® = 0000000000000512,
H® = 0000000000000512,
H® = 0000000000000512.

The words of the padded message bldt®) are then assigned to the worgs ..., x; of the

block cipherEncComps,:

Document version 1.0, Date: 30 October 2008

39

The Hash Function Family: Lesamnta

SHA-3 Proposal

The following schedule shows the hex values fgr..., x7, after roundr of the “forr = 0 to

Xo = 6162638000000000,
X3 = 0000000000000000,
Xo = 0000000000000000,
X3 = 0000000000000000,

= 0000000000000000,
Xs = 0000000000000000,

= 0000000000000000,
X7 = 0000000000000000.

31" loop described in Sec. 5.5.2, Figure 22, step 2.

r=0:
r=1:
r=2:
r=3:
r=4:
r=>5:
r=6:
r=7:
r==8:
r=9:
r=10:
r=11:
r=12:
r=13:
r=14:
r=15:

Xo/ X4
230d5e40851cb824
0000000000000000
bb27b99%ec31efd17
6162638000000000
6612e1d8b6e40600
230d5e40851cb824
fb75bbde6c95c571
bb27b99%ec31efd17
cbOcfe8fael6735e
6612e1d8b6e40600
6fcb2839c4c9a227
fb75bbde6c95c571
a4f0de3£f7d0c4336
cbOcfe8fael6735e
2d375a2eabablfb7
6fcb2839c4c9a227
91£43770e29ae13f
a4f0de3£f7d0c4336
6£78095ab7e7710a
2d375a2eabablfb7
b015b34805866ebc
91£43770e29ae13f
352afb43790c6555
6£78095ab7e7710a
73ed27ebfa7e3a85
b015b34805866ebc
c050eb54f26a2d76c
352afb43790c6555
8c23abef0c1£1892
73ed27ebfa7e3a85
ab21c2e457cd9134
c050eb54f26a2d76c

X1/Xs
230d5e40851cb824
0000000000000000
648097e5093a10e8
0000000000000000
32851c3£32409£9f
230d5e40851cb824
04131e4ec79b2add
648097e5093a10e8
2b075e87a69cch0e
32851c3£32409£9f
da92ab977eb57abbc
04131ed4ec79b2add
8a64ab6504493a96
2b075e87a69cch0e
9d423a20138ebbfc
da92ab977eb57abbc
d11012d112c24993
8a64ab6504493a96
2b65442db2afafct
9d423a20138eb5bfc
def53ced7729fc16
d11012d112c24993
245a789c¢29dd333e
2b65442db2afafct
77d6013bfe2abb7c
defb53ced7729fc16
e6d6£285cac7a8b3
245a789c29dd333e
2207010d400310d9e
77d6013bfe2abb7c
£d091afc000cb7ec
e6d6£285cac7a8b3

X2/ Xs
6162638000000000
0000000000000000
230d5e40851cb824
0000000000000000
bb27b99ec31efd17
6162638000000000
6612e1d8b6e40600
230d5e40851cb824
fb75bbde6c95c571
bb27b99ec31efd17
cbOcfe8fael6735e
6612e1d8b6e40600
6fcb2839c4c9a227
fb75bbde6c95c571
a4f0de3£f7d0c4336
cbOcfe8fael6735e
2d375a2eabablfb7
6fcb2839c4c9a227
91£43770e29ae13f
24f0de3£7d0c4336
6£78095ab7e7710a
2d375a2eabablfb7
b015b34805866e5c¢
91£43770e29ae13f
352afb43790c6555
6£78095ab7e7710a
73ed27ebfa7e3a85
b015b34805866e5¢
c050e54f26a2d76¢c
352afb43790c6555
8c23abef0c1£1892
73ed27ebfa7e3a85

X3/ X7
0000000000000000
0000000000000000
230d5e40851cb824
0000000000000000
648097e5093a10e8
0000000000000000
32851c3£32409f9f
230d5e40851cb824
04131edec79b2add
648097e5093a10e8
2b075e87a69cch0e
32851c3£32409f9f
da92ab977e57abbc
04131edec79b2add
8a64ab6504493a96
2b075e87a69cch0e
9d423a20138e5bfc
da92ab977eb57abbc
d11012d112c24993
8a64ab6504493a96
2b65442db2afafct
9d423a20138eb5bfc
def53ced7729fc16
d11012d112c24993
245a789c29dd333e
2b65442db2afafct
77d6013bfe2abb7c
def53ced7729fc16
e6d6£285cac7a8b8
245a789c29dd333e
2207010d400310d9%e
77d6013bfe2abb7c

Document version 1.0, Date: 30 October 2008

40

The Hash Function Family: Lesamnta

SHA-3 Proposal

r=16:
r=17:
r=18:
r=19:
r=20:
r=21:
r=22:
r=23:
r=24:
r=25:
r=26:
r=27:
r=28:
r=29:
r=30:
r=31:

That completes the processing of thirst message bloch®. The intermediate hash value

f££52589b44e3beb
8c23abef0c1£1892
8c27f5ce9e2ce604
ab21c2e457cd9134
12b77e2e7c£6684d
f££52589b44e3beb
bd88e91fbfb40826
8c27f5ce9e2ce604
€133d378b46baa73
12b77e2e7cf£6684d
a8c43cbd33bdd476
bd88e91fbfb40826
2881837893fbbd4c
€133d378b46baa73
7409957b1f£2a49b
a8c43cbd33bdd476
09dee13209daf22d
2881837893fbbd4c
1e7a8dad467fe41b2
7409957b1f£2a49b
1a8bcbe7£3c751ba
09dee13209daf22d
bebb13debac4b513e
1e7a8dad467fe41b2
515adc58554c68d2
1a8bcbe7£3c751ba
5¢cbd07b2788db208
bebb513debac4b13e
3£8622891a4fdabe
515adc58554c68d2
5f1d8dabcf51d123
5¢cbd07b2788db208

H® is calculated to be

c0160d12659abel10
2207010d400310d9e
43b106446¢c171dd0
£d091afc000cb7ec
acbeb7afbd6a2bf7
c0160d12659abel10
c3ffdde8c288de20
43b106446¢c171dd0
373236579c0bebc7
acbeb7afbd6a2bf7
cd67e506633b8775
c3ffdde8c288de20
e2cabeb977a080be
373236579c0bebc7
0d7ecb50153a4c843
cd67e506633b8775
T7c8a8106£844467
e2cabeb977a080be
cb913bc1fle31e2b
0d7ecb50153a4c843
1296cc83c92683ae
T7c8a8106£844467
4837fc7fe4bb2fc3
cb913bc1fle31e2b
08cd3bb067a2bb546
1296cc83c92683ae
12d63beeeafbedbc
4837fc7fe4bb2fc3
4dee38cb466d4328
08cd3bb067a2bb46
2edc631£d504bbc4
12d63beeeafbedbc

ab21c2e457cd9134
c050e54f26a2d76¢c
f££52589b44e3beb
8c23abef0c1£1892
8c27f5ce9e2ce604
ab21c2e457cd9134
12b77e2e7cf6684d
f££52589b44e3beb
bd88e91fbfb40826
8c27f5ce9e2ceb04
€133d378b46baa78
12b77e2e7cf6684d
a8c43cbd33bdd476
bd88e91fbfb40826
2881837893fbbd4c
€133d378b46baa78
7409957b1f£2a49b
a8c43cbd33bdd476
09dee13209daf22d
2881837893fbbd4c
le7aB8dad67fed1b2
7409957b1f£2a49b
1a8bcbe7£3c751ba
09dee13209daf22d
bebb513de6ac4513e
1e7a8da467fe41b2
515adc58554c68d2
1a8bcbe7£3c751ba
5¢cbd07b2788db208
bebb513de6ac4513e
3£8622891a4fdabe
515adc58554c68d2

£d091afc000cb7ec
e6d6£285cac7a8b8
c0160d12659abel0
2207010d400310d9%e
43b106446¢171dd0
£d091afc000cb7ec
acbeb7afbd6a2bf7
c0160d12659abel0
c3ffdde8c288de20
43b106446¢171dd0
373236579c0bebc7
acbeb7afbd6a2bf7
cd67e506633b8775
c3ffdde8c288de20
e2cabeb977a080be
373236579c0bebc7
0d7ec50153a4c843
cd67e506633b8775
77c8a8106£844467
e2cabeb977a080be
cb9135c1fle31e2b
0d7ec50153a4c843
1296cc83c92683ae
77c8a8106£844467
4837fc7fedbb2fc3
cb9135c1fle31e2b
08cd3bb067a2b546
1296cc83c92683ae
12d63beeeafbedbc
4837fc7fedbb2fc3
4dee38cb466d4328
08cd3bb067a2b546

H® = 5f1d8dabcf51d123 & 6162638000000000 = 3e7fee25c151d123
H = 2edc631£d504b5c4 ® 0000000000000000 = 2edc631£d504b5cd
HO) = 3£8622891adfdabe ® 0000000000000000 = 3£8622891adfdabe
HY) = 4dee38cba66d4328 ® 0000000000000000 = 4dee38cb466d4328
H? = 5cbd07b2788db208 ® 0000000000000000 = 5cbd07b2788db208
HO = 12d63beceatbedbc @ 0000000000000000 = 12d63beeeatbedbc
HO = 515adc58554c68d2 ® 0000000000000000 = 515adc58554c68d2
H = 08cd3bb067a2b546 ® 0000000000000000 = 08cd3bb067a2b546

The words of thesecondpadded message blosk® are then assigned to the wors...., X; of

the block ciphelEncOuts; ,:

Document version 1.0, Date: 30 October 2008

41

The Hash Function Family: Lesamnta

SHA-3 Proposal

The following schedule shows the hex values fgr..., x7, after roundr of the “forr = 0 to

Xo = 0000000000000000,
X3 = 0000000000000000,
Xo = 0000000000000000,
X3 = 0000000000000000,

= 0000000000000000,
Xs = 0000000000000000,
Xe = 0000000000000000,
X7 = 0000000000000018.

31" loop described in Sec. 5.5.2, Figure 24, step 2.

r=0:
r=1:
r=2:
r=3:
r=4:
r=>5:
r=6:
r=7:
r==8:
r=9:
r=10:
r=11:
r=12:
r=13:
r=14:
r=15:

Xo/ X4
d97eb976bb5cae7b2
0000000000000000
1bb657b228019226
0000000000000000
fb6c651cb07£0756
d97eb976bb5cae7b2
ab4cc7495¢328d80
1bb657b228019226
4c33a91a8f0df69d
fb6c651cb07£0756
a7a8282b6e3c3bb3
ab4cc7495c328d80
07e6dcc7565cb26¢
4c33a91a8f0df69d
20915656a888c4e?2
a7a8282b6e3c3bb3
6575618e1£64665c
07e6dcc7565cb26¢
822cle21e65471fd
20915656a888c4e2
81c44e19575d610e
6575618e1£64665c
6da03e2875c1eb8b
822cle21e65471fd
9fe7019fcc3acbhae
81c44e19575d610e
1737980bb2b545bb
6da03e2875c1eb8b
dc84d51d1978f12¢c
9fe7019fcc3acbhae
1a1297a192d1db02
1737980bb2b545bb

X1/Xs
f6e54f8f9f2£838c
0000000000000000
eeccd8d36781feda
0000000000000000
adeafa7e37812406
f6e54f8f9f2£838c
11cd3d4dbfbd126f
eeccd8d36781feda
42c£d1a98b14a699
adeafa7e37812406
87a6d999479b1222
11cd3d4dbfbd126f
13201c3510519292
42c£d1a98b14a699
abd14e2c830859b9
87a6d999479b1222
29e8dc7ae201a791
13201c3510519292
debbf43484a52d25
abd14e2c830859b9
d312147aeaB845dac
29e8dc7ae201a791
e007b149234c2039
debbf43484a52d25
bf0eb2daf37379d8
d312147aeaB845dac
a9d4b5b23dal3cce
e007b149234c2039
e080e9dfb6ca8al3
bf0eb2daf37379d8
35e7c35321f0b6bb
a9d4bb5b23dal3cce

X2/ Xs
0000000000000000
0000000000000000
d97eb976b5cae7b2
0000000000000000
1bb657b228019226
0000000000000000
fb6c651cb07£0756
d97eb976b5cae7b2
ab4cc7495¢328d80
1bb657b228019226
4c33a91a8£0df69d
fb6c651cb07£0756
a7a8282b6e3c3bb3
ab4cc7495¢328d80
07e6dcc7565cb26¢
4c33a91a8£0df69d
20915656a888c4e?2
a7a8282b6e3c3bb3
6575618e1£64665c¢
07e6dcc7565cb26¢c
822cle21e65471fd
20915656a888c4e?2
81c44e19575d610e
6575618e1£64665c¢
6da03e2875c1eb8b
822cle21e65471fd
9fe7019fcc3acbhae
81c44e19575d610e
1737980bb2b545bb
6da03e2875c1eb8b
dc84d51d1978f12c
9fe7019fcc3acbhae

X3/ X7
0000000000000000
0000000000000000
£6e54f8£9f2£838¢c
0000000000000000
eeccd8d36781feda
0000000000000000
adeafa7e37812406
£6e54£8£9f2£838c
11cd3d4dbfbd126f
eeccd8d36781feda
42c£d1a98b14a699
adeafa7e37812406
87a6d999479b1222
11cd3d4dbfbd126f
13201c3510519a92
42c£d1a98b14a699
abd14e2c830859b9
87a6d999479b1222
29e8dc7ae201a791
13201c3510519292
debbf43484a52d25
abd14e2c830859b9
d312147aea845dac
29e8dc7ae201a791
e007b149234c2039
deb5bf43484a52d25
bf0eb2daf37379d8
d312147aea845dac
a9d4b5b23dal3cce
e007b149234c2039
e080e9dfb6ca8all
bf0eb2daf37379d8

Document version 1.0, Date: 30 October 2008

42

The Hash Function Family: Lesamnta

SHA-3 Proposal

r=16:
r=17:
r=18:
r=19:
r=20:
r=21:
r=22:
r=23:
r=24:
r=25:
r=26:
r=27:
r=28:
r=29:
r=30:
r=31:

That completes the processing of the second and final mebkageM®. The final hash value

3e41c264f01d726d
dc84d51d1978f12c
0ad1d941331b1c98
1a1297a192d1db02
aaca47e2b0fe3fba
3e41c264f01d726d
6dafc52cc1d0d547
0ad1d941331b1c98
ec35e37d43c01678
aaca47e2b0fe3fba
389£9e00£826d720
6dafc52cc1d0db547
ab6f2ad05£521c37
ec35e37d43c01678
389b51e96af17430
389£9e00£826d720
218aa1db06fb8ble
ab6£2ad05£521c37
9690419£78d28e70
389b51e96af17430
£8090120£f1560abe
218aa1db06£fb8ble
43789bad36235573
9690419£78d28e70
b7e7e0d12698f72f
£8090120£1560abe
€9c341998ad40243
43789bad36235573
1efb9c25cbcfbb2c
b7e7e0d12698f72f
81abe646a12c0381
€9c341998ad40243

H®@ s calculated to be

H® =
H@ =
H® =
HP =
HP =
H =
H =
H@ =

923b6d1e72db4bba
e080e9dfb6ca8al3
79e2862b3e66£d09
35e7c35321f0b6bb
7156642dcda2eb29
923b6d1e72db4bba
1e36608071dacbe3
79e2862b3e66£d09
5496d9fe8035083f
7156642dcda2eb29
bbbf18bfc2e461d6
1e36608071dacbe3
fedb£32629570c7e
5496d9fe8035083f
c05eab0119af37df
bbbf18bfc2e461d6
c60ccf0bc24eecde
fe4bf32629570c7e
5d0062be2e88926e
c05eab0119af37df
cc9fc6a753650358
c60ccf0bc24eecde
£9£1a2385da67c35
5d0062be2e88926e
bfae42089b2f3fbf
cc9fc6a753650358
b6783342a6634059
£9£1a2385da67c35
aab3b143bf427ceb
bfae42089b2f3fbf
b119c3d7aa83da4dl
b6783342a6634059

The resulting 512-bit message digest is

81a5e646a12c0381 b119c3d7aa83dadl 1efb9c25cbcfbb52c aab3b143bf427ceb
€9c341998ad40243 b6783342a6634059 b7e7e0d12698f72f bfaed2089b2f3fa’7.

1a1297a192d1db02
1737980bb2b545bb
3e41c264f01d726d
dc84d51d1978f12c
0ad1d941331b1c98
1a1297a192d1db02
aaca47e2b0fe3fba
3e41c264f01d726d
6dafcb52cc1d0d547
0ad1d941331b1c98
ec35e37d43c01678
aaca47e2b0fe3fba
389f£9e00£826d720
6dafcb52cc1d0d547
ab6f2ad05£521c37
ec35e37d43c01678
389p51e96af17430
389f9e00£826d720
218aal1db06fb8ble
ab6f2ad05£521c37
9690419£78d28e70
389p51e96af17430
£8090120f1560abe
218aal1db06fb8ble
43789bad36235573
9690419£78d28e70
b7e7e0d12698f72f
£8090120f1560abe
€9c341998ad40243
43789bad36235573
1efb9c25cbcfbb2c
b7e7e0d12698f72f

35e7c35321f0b6bb
a9d4b5b23dal3cce
923b6d1e72db4bba
e080e9dfb6ca8all
79e2862b3e66£d09
35e7c35321f0b6bb
7156642dcda2eb29
923b6d1e72db4bba
1e36608071dacbe3
79e2862b3e66£d09
5496d9fe8035083f
7156642dcda2eb29
bbbf18bfc2e461d6
1e36608071dacbe3
fedbf32629570c7e
5496d9fe8035083f
c05eab0119af37df
bbbf18bfc2e461d6
c60ccf05c24eecde
fedbf32629570c7e
5d0062be2e88926e
c05eab0119af37df
cc9fc6a753650358
c60ccf0bc24eecde
£9f1a2385da67c35
5d0062be2e88926e
bfae42089p2f3fbf
cc9fc6a753650358
b6783342a6634059
£9f1a2385da67c35
aab3b143bf427ceb
bfae42089p2f3fbf

81abe646a12c0381 & 0000000000000000 = 81abe646a12c0381,
b119c3d7aa83da4l & 0000000000000000 = b119c3d7aa83da4l,
1efb9c25cbcfb52c & 0000000000000000 = 1efb9c25cbecfbb2c,
aab3b143bf427ceb & 0000000000000000 = aab3b143bf427ceb,
€9c341998ad40243 ¢ 0000000000000000 = €9c341998ad40243,
b6783342a6634059 @& 0000000000000000 = b6783342a6634059,
b7e7e0d12698£72f & 0000000000000000 = b7e7e0d12698£72f,
bfae42089b2£3fbf & 0000000000000018 = bfae42089b2f3fa’7

Document version 1.0, Date: 30 October 2008

43

The Hash Function Family: Lesamnta SHA-3 Proposal

6 Performance Figures

We present some performance figures for the Lesamnta digwribhere.

6.1 Software Implementation
6.1.1 8-bit Processors

Lesamnta has been implemented in C and assembly languadgebitqrocessors.

6.1.1.1 Implementation on Atme® AVR® ATmega8515 Processor

Lesamnta was implemented on the AtfheAVR® ATmega8515 processor in the assembly
language, using Atm@ls AVR studid®® as a development environment and simulator. The
performance results are shown in Table 1.

Table 1: Execution time and memory requirements for Lesanont the Atme? AVR®
ATmega8515 in assembly language

Message digest Execution time Memory requirements
size Bulk speed | One-block messageConstant data Code lengthh RAM
(cyclegbyte) | (cyclegmessage) (bytes) (bytes) (bytes)
224 631 47312 256 1118 66
901 69678 256 456 68
256 631 47312 256 1118 66
901 69678 256 456 68
384 783 114031 256 2604 132
988 147088 256 928 135
512 783 114031 256 2604 132
988 147088 256 928 135

The second and third columns list the execution time for imgshThe former corresponds to
bulk speed, that is throughput speed when hashing a longages3he latter is for the execution
time to hash a 256-bit message with Lesamnta-224 or Lesa?aft@and a 512-bit message with
Lesamnta-384 or Lesamnta-512. The fourth, fifth and sixibhras list memory requirements.
The fourth lists the size of constant data and the fifth lists ¢ode length of instructions. The
sixth column lists the RAM size. Since Lesamnta does not hayeother algorithm than the main
algorithm, which processes messages and chaining vahealgorithm setup takes no time.

Time-Memory Trade-Off All the implementations above have only an S-box table of (2B6s.
The diference of code length between the implementations comesvittether internal functions
are inlined or not. Then, the time-memory tratfexan be seen on Table 1.

Document version 1.0, Date: 30 October 2008
44

The Hash Function Family: Lesamnta SHA-3 Proposal

6.1.1.2 Renes&® H8®/300L Processor

Lesamnta was implemented on the RenBdd8®/300L processor in assembly and C languages,
using Renes&s High-performance Embedded Workshop as a developmentoament and
simulator. The performance results are shown in Tables Band

Table 2: Execution time and memory requirements for Lesanomt the Renes&sH8®/300L
processor in assembly language

Messge digest Execution time Memory requirements
size Bulk speed | One-block messageConstant data Code lengthh RAM
(cyclegbyte) | (cyclegmessage) (bytes) (bytes) | (bytes)
224 1526 114660 512 904 80
256 1526 114660 512 904 80

Table 3: Execution time and memory requirements for Lesanomt the Renes&8sH8®/300L
processor in C language

Messge digest Execution time Memory requirements
size Bulk speed | One-block messageConstant data Code lengthh RAM
(cyclegbyte) | (cyclegmessage) (bytes) (bytes) | (bytes)
224 5442 429232 256 1140 62
256 5442 429232 256 1140 62
384 7551 1012408 256 1712 123
512 7551 1012408 256 1712 123

In the tables, the second and third columns list the execuioe for hashing. The former
corresponds to bulk speed, that is throughput speed whdnngaa long message. The latter
is for the execution time to hash a 256-bit message with Leta®24 or Lesamnta-256 and a
512-bit message with Lesamnta-384 or Lesamnta-512. Thehfofifth and sixth columns list
memory requirements. The fourth lists the size of constatd dnd the fifth lists the code length
of instructions. The sixth column lists the stack size. 8ihesamnta does not have any other
algorithm than the main algorithm, which processes messageé chaining values, the algorithm
setup takes no time.

6.1.2 32-bit Processors

Here, we show some performance figures for Lesamnta on 3fdmessors.

6.1.2.1 ANSI C Implementation on NIST Reference Platform

We implemented Lesamnta in ANSI C language on the NIST Reterd’latform. The NIST
Reference Platform contains the IfteCore" 2Duo E6600 processor, Micros8f$ VisualStudi®
2005 Gr+ compiler and Windows VisfaUltimate 32-bit Edition. The platform is shown at Table
4. This implementation follows the NIST API format.

Document version 1.0, Date: 30 October 2008
45

The Hash Function Family: Lesamnta SHA-3 Proposal

Table 4: NIST Reference Platform
Language CPU Memory (0N Compiler
Core' 2 Duo Windows Vist&®
ANSI C | E6600 (2.4GHz) 2 GBytes| Ultimate 32-bit Edition| VisualStudi®2005

Table 5 shows performance figures of the implementation. Jdwond column lists the
execution time to hash a long message, which correspondgitgiieed. The third column lists the
execution time to hash a 256-bit message for Lesamnta-22dsamnta-256 and a 512-bit message
for Lesamnta-384 or Lesamnta-512. The fourth column shbesize of constant data which are
look-up tables, round constants and initial vectors. The siff the look-up tables dominates the
value. Since Lesamnta does not have any other algorithnthieanain algorithm, which processes
messages and chaining values, the algorithm setup takés@o t

Note that the result for the implementation includes ovadheoming from the NIST API
format.

Table 5: Performance figure of implementations in ANSI C laage with NIST API on the NIST
Reference Platform

Message digest Execution time Memory requirement
size Bulk speed | One-block message Constant data
(cyclegbyte) | (cyclegmessage) (bytes)
224 68.9 5709 8288
256 68.9 5709 8288
384 97.7 14320 12416
512 97.7 14320 12416

6.1.2.2 Assembly Implementation on Inté? Core™ 2 Duo E6600 Processor

Here, we show performance figures of assembly implemenstid Lesamnta on the Infél
Core "2 Duo processor. The used platform is shown at Table 6.

Table 6: NIST Reference Platform
Language CPU Memory oS Compiler
Core"'2 Duo Ubunt® Linux® 8.04
Assembly| E6600 (2.4GHz) 2 GBytes| 32-bit distribution gnu as

Table 7 shows performance figures of the implementationse Sétond column lists the
execution time to hash a long message, which correspondsitgireed. The third column lists the
execution time to hash a 256-bit message for Lesamnta-22&samnta-256 and a 512-bit message
for Lesamnta-384 or Lesamnta-512. The fourth column shbesize of constant data which are
look-up tables, round constants and initial vectors. The sif the look-up tables dominates the
value. The fifth column lists the code length of the instrmiesi. The sixth column lists the size of

Document version 1.0, Date: 30 October 2008
46

The Hash Function Family: Lesamnta SHA-3 Proposal

stack. Since Lesamnta does not have any other algorithnthileanain algorithm, which processes
messages and chaining values, the algorithm setup tak@s®o t

Table 7: Performance figure of implementations in assenasiguage on the Int&lCore" 2 Duo
processor

Message digest Execution time Memory requirements

size Bulk speed | One-block messageConstant data Code length Stack
(cyclegbyte) | (cyclegmessage) (bytes) (bytes) | (bytes)

224 59.2 4750 8288 5705 84

100.2 8383 1632 7463 84

256 59.2 4750 8288 5705 84

100.2 8383 1632 7463 84

384 54.5 8827 20608 10944 148

715 10968 9344 13549 148

512 54.5 8827 20608 10944 148

715 10968 9344 13549 148

Time-Memory Tradeoff As is seen from Table 7, there is tradigdoetween the speed of hashing
and the size of look-up tables.

6.1.2.3 ANSI C Implementation on ARM® ARM926EJ-S" Processor

Lesamnta was implemented on the ARMIRM926EJ-S" processor in ANSI C language, using
ARM®’s RealView? Development Suite as a development environment and siomulalhe
performance results are shown in Table 8.

Table 8: Performance figure of implementations in ANSI C laange with NIST API on the ARIA
ARMO926EJ-S" processor

Message digest Execution time Memory requirement
size Bulk speed | One-block message Constant data
(cyclegbyte) | (cyclegmessage) (bytes)
224 204.1 15978 8288
256 204.1 15978 8288
384 244.0 34020 12416
512 244.0 34020 12416

Table 8 shows performance figures of the implementation. Sdéwond column lists the
execution time to hash a long message, which correspondsitgiieed. The third column lists the
execution time to hash a 256-bit message for Lesamnta-22&samnta-256 and a 512-bit message
for Lesamnta-384 or Lesamnta-512. The fourth column shbesize of constant data which are
look-up tables, round constants and initial vectors. The sif the look-up tables dominates the

Document version 1.0, Date: 30 October 2008
47

The Hash Function Family: Lesamnta SHA-3 Proposal

value. Since Lesamnta does not have any other algorithnthieamain algorithm, which processes
messages and chaining values, the algorithm setup tak@s®o t

6.1.3 64-bit Processor

Here, we show some performance figures for Lesamnta on at @elgiessor.

6.1.3.1 ANSI C Implementation on NIST Reference Platform

We implemented Lesamnta in ANSI C language on the NIST ReferePlatform. The
NIST Reference Platform contains the IfteCore" 2 Duo 2.4GHz processor, Micros8fs
VisualStudi® 2005 G-+ compiler and Windows Visfa Ultimate 64-bit Edition. The platform
is shown at Table 9. Moreover, the implementation followstST API format.

Table 9: NIST 64-bit Reference Platform
Language CPU Memory (0N Compiler
Core" 2 Duo Windows Vist®
ANSI C | E6600 (2.4GHz) 2 GBytes| 64-bit Edition | VisualStudi® 2005

Table 10 shows performance figures of the implementatione Sdéctond column lists the
execution time to hash a long message, which correspondgitgiieed. The third column lists the
execution time to hash a 256-bit message for Lesamnta-22&samnta-256 and a 512-bit message
for Lesamnta-384 or Lesamnta-512. The fourth column shbesize of constant data which are
look-up tables, round constants and initial vectors. The siff the look-up tables dominates the
value. Since Lesamnta does not have any other algorithnthieamain algorithm, which processes
messages and chaining values, the algorithm setup takés®o t

Note that the result for the implementation includes ovadheoming from the NIST API
format.

Table 10: Performance figure of implementations in ANSI @laage with NIST APl on the NIST
64-bit Reference Platform

Message digest Execution time Memory requirement
size Bulk speed | One-block message Constant data
(cyclegbyte) | (cyclegmessage) (bytes)
224 78.4 6581 8288
256 78.4 6581 8288
384 65.4 10962 24704
512 65.4 10962 24704

6.1.3.2 Assembly Implementation on Inté? Core™ 2 Duo Processor

Here, we show performance figures of assembly implemenstid Lesamnta on the Infgl
Core" 2 Duo processor. The used platform is shown at Table 11.

Document version 1.0, Date: 30 October 2008
48

The Hash Function Family: Lesamnta SHA-3 Proposal

Table 11: 64-bit Platform used for measurement of assendugs
Language CPU Memory (O Compiler

Core"2 Duo Ubunt® Linux® 8.04
Assembly| E6600 (2.4GHz) 2 GBytes| 64-bit distribution gnu as

Table 12 shows performance figures of the implementationse Second column lists the
execution time to hash a long message, which correspondgitsiieed. The third column lists the
execution time to hash a 256-bit message for Lesamnta-22dsamnta-256 and a 512-bit message
for Lesamnta-384 or Lesamnta-512. The fourth, fifth anchsbaiumns list memory requirements.
The fourth column shows the size of constant data which are-lgp tables, round constants and
initial vectors. The size of the look-up tables dominatesualue. The fifth column lists the code
length of the instructions. The sixth column lists the sitstack. Since Lesamnta does not have
any other algorithm than the main algorithm, which processessages and chaining values, the
algorithm setup takes no time.

Table 12: Performance figure of implementations in assetablyuage on the IntBlCore" 2 Duo
processor

Message digest Execution time Memory requirements

size Bulk speed | One-block messageConstant data Code length Stack
(cyclegbyte) | (cyclegmessage) (bytes) (bytes) (bytes)

224 52.7 4318 16672 5921 88

93.8 8151 1824 7817 80

256 52.7 4318 16672 5921 88

93.8 8151 1824 7817 80

384 51.2 8373 24704 12326 200

70.8 10752 9344 13948 208

512 51.2 8373 24704 12326 200

70.8 10752 9344 13948 208

Time-Memory Tradeoff Asis seen from Table 12, there is traffdzetween the speed of hashing
and the size of look-up tables.

6.2 Hardware
6.2.1 ASIC Implementation

We made estimations for speed and gate count of seveitareht hardware architectures of
Lesamnta. These estimates are based on existing 90 nm CN@&asd cell library. A gate is
a two-input NAND equivalent. The results are shown in Talde 1

Document version 1.0, Date: 30 October 2008
49

The Hash Function Family: Lesamnta SHA-3 Proposal

Table 13: ASIC implementation estimates of Lesamnta

Message digest Architecture Gate countf Max. frequency, Throughput
size (k gates) (MHz) (Mbps)
Speed Optimized| 190.1 282.5 6026.4
256 Balance Optimized 68.0 636.9 3623.5
Area Optimized 20.7 169.8 336.9
Speed Optimized| 393.0 234.2 9992.2
512 Balance Optimized 144.9 571.4 6501.6
Area Optimized 44.3 144.1 571.9

7 Tunable Security Parameters

Lesamnta provides the following tunable security paramsete
1. The number of rounds fd&gncCompose: Nr_comp256;
2. The number of rounds fd&ncOut,ss. Nr_out256;
3. The number of rounds f&ncComps;,: Nr_comp512; and
4. The number of rounds fdgncOuts;,: Nr_out512.

Choosing the values for these parameters enables seleofioa range of possible
securityperformance traddfs. Considering the security analysis results describedem $2,
however, we recommend a value of 32 for each of these parenets specified in Sec. 5.
Hereafter, we denote this recommended value of 38:by

8 Design Rationale

8.1 Block-Cipher-Based Hash Functions

The design rationale of Lesamnta is based on achieving tlosviag goals:
e To provide the same application program interface as thédteoSHA-2 family;
e To ensure both attack-based security and proof-baseditseeund
e To be dficient on a wide range of platforms.

To achieve these goals, we adopted an iterative hash furzdigsed on the block cipher as the basic
design. Since the idea of building hash functions from bldpkers goes back more than 30 years,
the enormous volume of research on this idea helped us tgrdessamnta.

Hence, Lesamnta basically follows a traditional designibcbrporates new methods to resist
recent attacks and provide security proof.

Document version 1.0, Date: 30 October 2008
50

The Hash Function Family: Lesamnta SHA-3 Proposal

8.2 Domain Extension

The domain extension scheme of Lesamnta is designed tovadiie following goals: ficiency
comparable to that of the Merkle-Damgard iteration, andusgcagainst the length-extension
attack. The scheme consists of the Merkle-Damgard iteratibthe compression function,
enveloped with the output function. We call this MDO, anditliustrated in Figure 31. Unlike the
NMAC-like domain extension in [9], the output functigrhas the last block of a padded message
input as a part of the input. The output function avoids tmgtk-extension attack. The overhead
of the output function is small, since it shares componeiits the compression function.

Figure 31: Domain extension scheme MDI®is the compression function, amgdis the output
function. pad(M) = MOM@)]| ... IMN-DMMN) | wherepad is the padding function anM is a
message input.

8.3 Compression Function
8.3.1 PGV Mode

The criteria taken into account in designing the compreskioction are the following:
e Efficiency equal to that of the underlying block cipher;
e Provable security in theoretical models; and
e Security evaluation using attacks against block ciphers.

The first criterion implies that the compression functioodd be as fficient as the underlying
block cipher in terms of any computational resource. Theseéand third criteria imply that the
security aspects of the compression function can be redodbdse of the block cipher.

The PGV modes [7] meet the first criterion, because they wsblttk cipher exactly one time.
Not all PGV modes, however, meet the second criterion. Itdesn shown that the twelve PGV
modes are secure in the ideal cipher model in terms of amflis@sistance and preimage resistance
[7].

Lesamnta uses the Matyas-Meyer-Oseas (MMO) mode, whiaei®bthe secure PGV modes
in terms of collision resistance and preimage resistanbe.MMO mode is defined as follows:

h(H(i_l), M(i)) — E(H(i_l), M(i)) e MO ,

whereE is an encryption function and(-Y works as a key, as illustrated in Figure 32 [24].

Document version 1.0, Date: 30 October 2008
51

The Hash Function Family: Lesamnta SHA-3 Proposal

H(i—l)—» E

Figure 32: Matyas-Meyer-Oseas (MMO) mode

The MMO mode has no feedforward of the key, but only feedfodxd the message. Compared
with the other eleven secure PGV modes, it is easier to aaéhgzsecurity of the MMO mode with
block-cipher attacks. Thus, the security of the MMO mode loanmeduced to the security of an
underlying block cipher, in the senses of both proof-bagsedsty and attack-based security.

8.4 Output Function

To increase the security margin in terms of pseudo-randemaad to fier a tradeff between
security and fficiency, Lesamnta uses an output functignconstructed from an encryption
functionL in the following manner:

g(H(N_l), M(N)) — |_(|_|(N—1), M(N)) e MM

8.5 Block Ciphers

Each of the four Lesamnta algorithms uses two block cipherand L. We set the following
requirements as goals for our design of these underlyingkldiphers.

e 256-bit block ciphers for Lesamnta-22%6 and 512-bit block ciphers for
Lesamnta-38412.

e Key lengths of 256 bits for the 256-bit block ciphers and 5it&fior the 512-bit block ciphers
e Resistance against known attacks.

e Design simplicity:
To facilitate ease of security analysis:

To facilitate ease of implementation.

e Speed on processors for general purposes, on processa@ari@rs, on future processors,
and on various hardware platforms.

e Capable of implementation on an 8-bit processor with a samtunt of RAM.

e Capable of implementation on hardware with a small gate ttoun

Document version 1.0, Date: 30 October 2008
52

The Hash Function Family: Lesamnta SHA-3 Proposal

Round Key input Plaintext input
constants
T) N ™ . i""—
cO +—f fk ph—n fu |
c® Al f pn{ fu]
N
e B o B Y
T Key scheduling | Mixing
function function
Output

Figure 33: Structure of the encryption function for the hasiction,E

Figure 33 shows an overview of the encryption function

The encryption functioi is broken into two parts to process data: the key schedulingtion
and the mixing function. Each of these iteratively uses afsabtion. Therefore, we denote the
corresponding sub-functions for the key scheduling fuumcind mixing function byfx and fy,,
respectively.

Figure 34 shows an overview of the encryption function

Round Key input Plaintext input
constants
co o i o i
e Bl)
: b i b I :
poc®w oy B fw]
: A
SN f e Sy R
P e Dl fy P fw
T Key scheduling | Mixing
function function
Output

Figure 34: Structure of the encryption function for the autfunction,L

The structure oL is similar to that of. In L, both the key scheduling function and the mixing
function usefy, as the round function.

Document version 1.0, Date: 30 October 2008
53

The Hash Function Family: Lesamnta SHA-3 Proposal

9 Motivation for Design Choices

9.1 Padding Method

The padding method of Lesamnta adopts Merkle-Damgardgitiening. Thus, the last block of a
padded message includes the binary representation ofrththlef the message input.

For the padding method of Lesamnta, the last block does mdaroany part of the message
input. It only contains the length of the message input. Asashin Figs. 6 and 7 or Figs. 8 and
9, there are at most two possibilities for the last blockesponding to the remaining blocks. This
property is necessary to prove that Lesamnta isfiedintiable from a random oracle in the ideal
cipher model.

9.2 MMO Mode
We have four motivations for choosing the MMO mode.

1. Attack-based security
From the viewpoint of attacks on a block cipher, recent smh-finding attacks use the
fact that an attacker can directly control the key of a blogher. This is because popular
hash functions such as the SHA-2 family use the Davies-M@#®h) mode with a poor key
scheduling function. In contrast, the MMO mode does nowvalloe attacker to control the
key of a block cipher. Rather, since the key correspondsggtavious chaining values, the
attack must control the chaining values by varying the ngsbséock. When we assume that
the key (i.e., the previous chaining values) is fixed for tthacker, the attack model is similar
to the attack model of block-cipher cryptanalysis. Themwmn countermeasures against
block-cipher cryptanalysis can be applied to design a geiMO mode.

2. Proof-based security
The MMO mode enables us to reduce the security of Lesamntatotthe underlying block
ciphers to a greater extent than with the DM mode used by th& fakhily. In particular,
the PRF property of HMAC is almost reduced to the PRP propartiie underlying block
ciphers. Furthermore, Lesamnta can be showrftiadintiable from a random oracle in the
ideal cipher model.

3. Efficiency of implementation
The computational resources required by the MMO mode areslnhe same as those
required by the block cipher. In particular, the followingoperties contribute to
performance:

e The number of invocations of the block cipher is exactly one.

e The size of the internal ltier is less than that of other secure PGV modes such as the
Miyaguchi-Preneel mode.

e The output length is equal to that of the block cipher.

Document version 1.0, Date: 30 October 2008
54

The Hash Function Family: Lesamnta SHA-3 Proposal

4. Resistance against side-channel attacks
Side-channel attacks should be taken into account in haediwgpolementation. It has been
pointed out that one can perform side-channel attacks on @M#h hash functions using
the DM mode, such as the SHA family [27]. We thus adopt the MM@&@d&) with which
HMACSs remains secure against side-channel attacks.

9.3 Output Function

The primary purpose of the output function is to make lerggttension attacks impossible.
Resisting length-extension attacks requires that theviatlg tasks be infeasible, wheheandg
are the compression function and the output function, icsfsdy.

e To find H&D M® satisfyingh(H*&D, M®) = g(H&D, M®): and
e To find HN-D satisfyingy = g(HN-, M™) for giveny andM®™),

In Lesamntah andg are in the MMO mode, but the underlying block ciphers aféedent. The use
of different block ciphers isfBective in making the first task infeasible. To make the sedasi
infeasible, Lesamnta uses a well-designed underlyingkidgaher forg. Additionally, to keep the
implementation cost low, the block cipher@tonsists of only the mixing function ¢f.

9.4 Block Cipher

Each algorithm of Lesamnta uses two block cipieendL. E is used in the compression function
and the other is used in the output function. For reducinghtrdware complexity: shares the
mixing function withL. In addition, the mixing function is identical to the key sclling function
in L except that the additional input parameter changes fromoilned key to the round constant.
The block size and key size of the block ciphers are both 23@)(bits for Lesamnta-256
(Lesamnta-512). The block cipher plays an important roléoth ensuring resistance against
cryptanalytic attacks and achieving high performance. &etthese requirements, for the round
function, we adopt a well-studied Feistel network and apply design approach of AES in
designing the F function, which is the most significant congrd in the underlying block ciphers.
As a result, we can show that 12 rounds are secure agaftesteditial cryptanalysis in the sense
that the maximum dierential characteristic probability is less thad®2 (2-512).

9.4.1 Mixing Function

The plaintext is denoted by = (po, ps1, ..., p7), and the ciphertext b€ = (cp,Cy,...,C7). The
mixing function is defined as follows:

0 0 0
(X(O)9 Xg_)7“‘7X(7)) = (p09 pl""’ p7) b
OO) = ST Y 1<r<mg

(CO, Ci,.vvs C7) = (X((JnR), Xg_nR), e, X(7nR)))

Document version 1.0, Date: 30 October 2008
55

The Hash Function Family: Lesamnta SHA-3 Proposal

9.4.1.1 Network in the Round Function

Our strategy to design the mixing function of Lesamnta is ¢ostruct it from block cipher
components whose security anfli@ency have been well-studied. This is because techniques
to design and analyze block ciphers have been well undetstwough the AES competition. For
now, we know a lot about both how to design 64-bit or 128-hitcklciphers and how to evaluate
these ciphers.

Our design approach is to construct a 256-bit (512-bit) Hashtion from a 64-bit (128-bit)
block-cipher like permutation. In this respect, the Feiggtwork is more suitable than the SP
network since using the SP network would require to desigitt#band 512-bit block ciphers
which we think are less mature in terms of design, analysid jmplementation.

Round key| |

Figure 35: Type 1 4-branch generalized Feistel network

The mixing function of the block cipher of Lesamnta uses aetyp4-branch generalized
Feistel network (GFN) [36] for simplicity and hardware fleity. It is illustrated in Fig. 35.
For implementation reasons, each of the branches is storeédd 32-bit (64-bit) words for
Lesamnta-256 (Lesamnta-512).

The round functionfy consists of XOR operations, a nonlinear functiénand a wordwise
permutation. Thé function is a non-linear transformation with a two-wordum@and a two-word
round key inputK®) taken from the key schedule, and a two-word output. The rdunction fy,
is defined as follows:

(")”X(l’) (r- 1)||X(r 1))69 F(K(r) X(r 1)||Xg—1))
Xg X 1) X(f) (r-1)

Xfr) X?r = X(”r) N i

=0 X = X5

’

9.4.1.2 F Function

The functionsF,56 and Fsy, are the most significant components in the underlying bloghers.
Note that we denotd,s¢ and Fs1, by F when the message digest size is not relevant. Our
requirement on thé& functions is both fiiciency and resistance against known attacks such as
differential cryptanalysis. Another requirement onfhiinctions is inversibility for a given round
key to make the analysis of collision attacks easy. To desigf functions, we applied one of
the most successful approaches known as the wide traiegyr§i0] which is used in the design

of AES. We can show that the maximuntférential characteristic probability for Lesamnta-256

Document version 1.0, Date: 30 October 2008
56

The Hash Function Family: Lesamnta SHA-3 Proposal

(Lesamnta-512) is less than®2 (271°%) by applying the Four-Round Propagation Theorem in the
wide trail strategy to th& functions:

Hereafter, we explain each step used in tRefunctions. In Lesamnta-22256 and
Lesamnta-38412, operations are performed on SubState256 and SubR2ate5

The functiong-,5s andFsy, are the composite mappings which are parameterized by timelro
key:

Fas6 = Fase0 AddRoundKey256(),

whereF s = (Shi f t Rows256() o Byt eTr anspos256() o SubByt es256())

Fs12 = Fs100 AddRoundKey512(),

whereFs1, = (Shi ft Rows512() o Byt eTr anspos512() o SubByt es512())%

The functionF is a sequence of transformations calgegps like AES. The steps used in the
full Lesamnta are the round key addition step, the non-tisegp, the byte transposition step, and
the linear dffusion step. For Lesamnta-3842, each step iRsy, is the same as the corresponding
step in AES.

9.4.1.3 Round Key Addition Step

The round key addition stepgsldRoundKey256() andAddRoundKey512() simply combine the
SubState with the round key by means of bitwise XOR operatiofacilitate ease of security
analysis and of implementation.

9.4.1.4 Non-Linear Step

The non-linear stepSubByt es256() andSubByt es512() consist of parallel applications of a
non-linear substitution box. As for the S-box, we apply tHeoX used in AES, for security reasons
and implementation reasons. This S-box has the followioggnties:

e The maximum dferential probabilities are2.

e The S-box has no fixed points.

9.4.1.5 Byte Transposition Step

The byte transposition stef@yt eTr anspos256() and Byt eTr anspos512() cyclically shift
rows over diferent numbers of bytes ffsets). These ftsets are selected in a way that
Byt eTr anspos256() andByt eTr anspos512() arediffusion optimal [10], which means that
the diferent bytes in each column are distributed over dfedént columns.

9.4.1.6 Linear Diffusion Step

The linear difusion stepsshi f t Rows256() and Shi ft Rows512() are linear mappings based
on the MDS code. An important fllusion measure introduced in [10] is theanch number.
The branch numbers foghi ft Rows256() and Shi ft Rows512() are 3 and 5, respectively.

Document version 1.0, Date: 30 October 2008
57

The Hash Function Family: Lesamnta SHA-3 Proposal

Shi ft Rows256() andShi ft Rows512() have an #ect to mix the bytes in each SubState256
column and in each SubState512 column, respectively.

9.4.2 Key Scheduling Function

Since the structure of the key scheduling function is simdathat of the mixing function, strong
non-linearity is ensured as compared with key schedulingtfans of the SHA-2 family.
We designed the key scheduling functior&rior the following purposes:

1. Itintroduces asymmetry which prevents symmetry betweends leading to attacks such as
slide attacks.

2. It provides the resistance against pseudo-collisi@ciast

Note that in the collision attack model, the attacker cargwsitrol the input to the key
scheduling function in a direct way due to the MMO mode whilehe pseudo-collision
attack model, he can.

3. It should be #ficient on a wide range of platforms.

For the security purposes, the key scheduling function trees/pe 1 general Feistel network
where the non-linear function uses the composition of alivaar step and the linearftlision step
as is commonly done in block ciphers. For the performancpgaes, the linear ffusion step is
composed of a linear mapping based on a MDS code and a bytparisaitation because linear
diffusion steps consisting of a single linear mapping based oD & &bde would be expensive. The
branch numbers of the linear mappings E¥%s andEs;, are 5 and 9, respectively. Since the key
scheduling function shares most of its components with tixénigpfunction, an éicient hardware
implementation is possible.

9.4.3 Round Constants

The round constants introduce randomness, non-regylanidyasymmetry into the key scheduling
function. The round constants of Lesamnta are generateddmyater-like function (Sec. 5.1).
Each of two words of a round constant changes its value oward® This is because the linear
mapping used in the key schedule operates on one word ratetwo.

In contrast, the round constants of popular hash functimmeften generated from real numbers
such asV2. Hence, they are usually implemented via a large lookufetalRound constant
generation by a counter-like function is more suitable ftiaedware #icient implementation on
resource-poor devices such as RFID tags than is generatiataoge lookup table.

Document version 1.0, Date: 30 October 2008
58

The Hash Function Family: Lesamnta SHA-3 Proposal

10 Expected Strength and Security Goals

Table 14 shows the expected strength of Lesamnta for eadte &ecurity requirements (i.e., the
expected complexity of attacks). What values in Table 14nrmieeexplained below. The row
indicated by “HMAC” lists the approximate number of querresjuired by any distinguishing
attack against HMAC using Lesamnta. The row indicated byFPI®ts the approximate number
of queries required by any distinguishing attack againstatiditional PRF modes described in
Sec. 13.1. The row indicated by “Randomized hashing” lisesa@pproximate complexity to find
another pair of a message and a random value for a given pai2ebit message and a random
value. The fourth row lists the approximate complexity oy aollision attack. The fifth row lists
the approximate complexity of any preimage attack. Théngbuv lists the approximate complexity
of the Kelsey-Schneier second-preimage attack with anydiemage shorter thark dits. The
seventh row lists the approximate number of queries reqiyeany length-extension attack against
Lesamnta. A cryptanalytic attack may be a profound threaegamnta if its complexity is much
less than the complexity in Table 14.

Table 14: Expected strength of Lesamnta

Requirement Lesamnta

224 | 256 | 384 | 512
HMAC 2112 2128 2192 2256
PRF 2112 2128 2192 2256
Randomized hashing 2256k | 9256k | 9512k | 9512k
Collision resistance 212 | o128 | 192 | 2256
Preimage resistance 2224 | 02%6 | 34 | 9512
Second-preimage resistanc@?56-k | 2256k | 25127k | 2512k
Length-extension attacks| 212 | 2128 | 2192 | 2256

Table 14 includes proof-based strength and attack-basedgsh. The security proof of
Lesamnta is given as follows:

Proved security 1: Lesamnta is ifi@girentiable from a random oracle under the assumption that
block ciphersE, L are independent ideal ciphers.
This proof partially ensures the security of randomizedhivag collision resistance,
preimage resistance, second-preimage resistance, ayttextension attacks.

Proved security 2: Lesamnta is collision resistant under dssumption that the compression
functionh and the output functiog are collision resistant.

This proof ensures the security of collision resistance, iarpart, preimage resistance and
second-preimage resistance.

Document version 1.0, Date: 30 October 2008
59

The Hash Function Family: Lesamnta SHA-3 Proposal

Proved security 3: Lesamnta is a pseudorandom functionruhdeassumption that block ciphers
E, L are independent pseudorandom permutations.

This proof ensures the security of HMAC and PRF.

The attack-based strength is estimated in security asabgainst known attacks described in
Sec. 12.

11 Security Reduction Proof

11.1 MMO Mode

11.1.1 Collision Resistance

The collision resistance of the MMO mode is proved in the lidgzher model. The MMO mode
is given byh(H, M) = E(H, M) & M, whereE is an ideal cipher. Consider an infinitely powerful
adversanA that makes) queries tcE andE~L. Then, the col-advantage éfis defined as

AdvE(A) = Pr[((H, M) # (H’, M") A h(H, M) = h(H’, M"))
Vh(H, M) = HEDARE™ = ((H, M), (H", MY)]

wheren s the block length oE. According to Black et al.'s analysis [7], the col-advargagygiven
by
0.039g-1)(g-2) q(q+ 1)
2n n
The above inequality means that any adversary must make abbgueries to find a collision.
In Lesamnta, the dedicated block cipher is in place of thalidgherE. Although it is not the

ideal cipher, the above inequality suggests that the MMOa@risc good choice for designing a
compression function.

< AdvO(A) <

11.1.2 Preimage Resistance

The preimage resistance of the MMO mode is proved in the idgdder model. Then, the
pre-advantage oA is defined as, for any public constaft

AQVE () = Pr[M ¢ @ AR(K, M) = HIASE " = (M, H)]

whereQ is the set of messages thatsends taE and A receives frome=! [7]. Sinceh(K, M) =
E(K, M) & M, the pre-advantage is transformed into

AdVI"(A) = Pr[M ¢ Q A E(K, M) = He MIASE™ = (M, H)].

Denoting byg the number of queries, we have

1

AdVE(A) = 5= 3

Document version 1.0, Date: 30 October 2008
60

The Hash Function Family: Lesamnta SHA-3 Proposal

In Lesamnta, the dedicated block cipher is in place of thalidgherE. Although it is not
the ideal cipher, the preimage resistance of the MMO modedsaed to the correlation between a
plaintext and a ciphertext for a known key.

11.1.3 Pseudorandom Function

Consider an adversar that outputs a bit after making queries to an oracle. Suppa«K is
randomly chosen from a key spageas a random function, andis a random permutation. Then,
the prf-advantage and the prp-advantag@ of defined as

AdvPT(A)

[Pr[ag®) = 1] -

AdvEP(A) = ‘Pr[AE(K") = 1] - Prix =

whereE is an underlying block cipher of the MMO mode. For any adver#ethat makes) queries
to the oracle wherg < 2"2, the PRPPRF switching lemma yields

aa-1)

2n+1

q(q)

AdvEP(A) - < AdvPT(A) < AdvEP(A) +

Since the MMO modé is given byh(K, M) = E(K, M) @ M, there is an adversaty that makes
gueries the same times Asand has the same prf-advantage.

AdvP'(B) = AdvE'(A)
Hence, we have

q(q)< AdVP"(B) < AdVEP(A) + aq-1)

AVER(A) - o

The above inequality roughly means thagifis a secure block cipher, thdnis a pseudorandom
function.

11.2 MDO Domain Extension with MMO Functions

11.2.1 Collision Resistance

It is easy to see that Lesamnta is collision-resistant (R} icompression function and output
function are CR, that is, it is flicult to compute a pair of distinc§(X) and &, X’) such that

EsX)@X=Es(X)®X or Ls(X)@®X=Ls(X)®X

for the underlying block cipherg andL. Unfortunately, the pseudorandomness of a block cipher
cannot imply the property. It is easy to find a counterexamplewever, it is still reasonable to
assume that well-designed block ciphers have this property

The CR of Lesamnta can also be proved in the ideal cipher musiled the technique by Black
etal. in[7].

Document version 1.0, Date: 30 October 2008
61

The Hash Function Family: Lesamnta SHA-3 Proposal

11.2.2 HMAC
Lesamnta supports HMAC specified in FIPS 198:

HMAC(K, M) = H((K & opad)||H((K & ipad)||M)) ,

whereH represents Lesamnta aKds a secret key. A diagram of HMAC using Lesamnta is given
in Figure 36.

inner hashing

Ljbin(| KopV1)

outer hashing

Figure 36: Diagram of HMAC using Lesamnté& and L are underlying iy, n) block ciphers.
Kip = K ® ipad andK,, = K ® opad. For a massage inpt, pad(K;,/|M) = K;,M® ... MM,
wherepad is the padding functionbin(|K,,V|) represents then(- 1)-bit binary representation of
the length ofK,||V.

The security of HMAC using Lesamnta is reduced to the secwfitthe underlying block
ciphers. HMAC using Lesamnta resists any distinguishingcétthat requires much fewer than
22 queries if the underlying block ciphers are independentgseandom permutations and the
following function is a pseudorandom bit generator:

:uE(K) = (EIV(Kop) ® Kop)”(EIV(Kip) @ Kip) s

whereK,, = K @ opad andK;, = K @ ipad. More precise statements and proofs are given in
Annex A.

11.2.3 Indifferentiability from the Random Oracle

Many cryptographic protocols are proved to be secure ondberaption that the underlying hash
functions are random oracles. Thus, it is important to sudba kind of results by validating the
ideal assumption in such a way as in [9].

Lesamnta is shown to resist any attack tffetentiate it from the random oracle with much
fewer than 22 queries in the ideal cipher model. More precise statemeatgigen in Annex B.

Document version 1.0, Date: 30 October 2008
62

The Hash Function Family: Lesamnta SHA-3 Proposal

12 Preliminary Analysis

In our preliminary analysis, we analyzed resistance of bed#a against various kinds of
known attacks such as attacks collision-finding, firstypeaie-finding, second-preimage-finding,
length-extension attack, multicollision attack. The bestlts on attacks on Lesamnta-256 are a
collision finding attack on 16 rounds with a complexity/,2a first preimage finding attack on 16
rounds with a complexity?3, and a second preimage finding attack on 16 rounds with a @iyl
2193 These attacks are easily repeated in the case of LesarhdtaFbe best results on attacks on
Lesamnta-512 are a collision finding attack on 16 rounds witomplexity 2%, a first preimage
finding attack on 16 rounds with a complexity?2 and a second preimage finding attack on 16
rounds with a complexity $°.

In this section, we view the 256-bit internal state in Lestay2b6 as four 64 bit words, instead
of eight 32-bit words, in order to make the analysis easignil&ly, we view the 512-bit internal
state in Lesamnta-512 as four 128 bit words, instead of éigHtit words. We denot€ ,5¢ and
Fs1, by F. Furthermore, we decompoBeasF = Fo AddRoundKey. Note that- is a permutation.

Figure 37 and 38 illustrate another representatioRwindF permutation, respectively.

Yo Y1 Y2 Y3

Round key| |

Yo Yi Y2 Y3

Figure 37: Another representation ey

________ [

)
1
|

__________ L - - -

\ 4

E : Permutation |
I

v

Figure 38:F permutation

12.1 Length-Extension Attack

As an actual method for making the length-extension attacgossible, Lesamnta uses the
output function diferent from the compression function. Furthermore, Lesanmproved to
be indiferentiable from the random oracle in the ideal cipher mod8ecurity against the
length-extension attack is a necessary condition to bé&erdntiable from the random oracle.

Document version 1.0, Date: 30 October 2008
63

The Hash Function Family: Lesamnta SHA-3 Proposal

12.2 Multicollision Attack

Joux’s multicollision attack [17] can be applied to Lesaanit is easy to see that the complexity
to find 2 collisions of Lesamnta i©(t 2"/?) if the birthday attack is used to find collisions of its
compression function or output function.

12.3 Kelsey-Schneier Attack for Second-Preimage-Finding

The Kelsey-Schneier second-preimage attack [18] can besddp Lesamnta. Against the attack,
it has second-preimage resistance of approximatelk bits for any message shorter thambits.

12.4 Randomized Hashing Mode

The randomized hashing mode in NIST SP 800-106 [12] can bieeddp Lesamnta. However, the
more general mode called RMX [14] is suitable for iterateshti@nctions. The following function
rmx specifies a version of RMX optimized for Lesamnta: It maxiesithe number of random bits
applied to the padded messagenx takes two inputs: a messa@é and a random salt. For
simplicity, the length of is assumed to b, the output length of Lesamnta.

1. Lett be the minimum non-negative integer such {Mit+ t + 16 = 0 (modn).

2. M = M||0Y|(16-bit binary representation of

—_——
3. R=rlrfl---Ir
4. rmx(M,r) Er(MaR)
The Kelsey-Schneier second-preimage attack can be agplieedsamnta withhrmx. Thus, it
provides approximatelyg — k bits of security against the following attack:

The attacker chooses a messagavith 2¢ bits. Then, given random, the attacker
attempts to find a second messadeand a randomization valuéthat yield the same
randomized hash value.

12.5 Attacks for Collision-Finding, First (Second)-Preinage-Finding

In this section, we present a collision and second preimtgekafor 16 rounds of Lesamnta-256.
The analysis can easily be repeated for the case of 16 rotih@samnta-512. This attack is based
on our preliminary analysis and the analysis of a previousigra of Lesamnta by Florian Mendel.
First, we show how to construct collisions for the compr@ss$iunction. LetH = Ho||H4||H.||H3

denote the output of the compression function. Now assuatenth can find ¥ message blocks
nm, such that all message blocks produce the same ¥u€&hen we know that due to the birthday
paradox two of these message blocks also lead to the samesttluH,, andH,. In other words,
we have constructed a collision for the compression functigased on this short description, we

Document version 1.0, Date: 30 October 2008
64

The Hash Function Family: Lesamnta

SHA-3 Proposal

will show now how to construct message blocks which all produce the same valti. We get

the following characteristic:

Table 15: Characteristic for the collision attack

Round| Inputs (64-bit words)
message block | Ag A1 Ay Az®6

0| Az Ay Ag A

1| - A3 A Aq

2| - - A3 Ao

3| - - - A3

41 A3 - - -

5| - Az - -

6| - - Az -

71?7 - - A3

8| A3 ? - -

9| - Az ? -

10| ?2 - Az ?

11| ? 2?2 - A3

12| A 2?2 7 -

13| ?2 Az 7 ?

14| ? ? Az ?

15| ? 2?2 ? A3
feedforward | ? 7 ? o

where the symbol ? denotes an arbitraffetence. and denotes a message blocktdrence
The diferences have to be selected such that they can be transfoynked in the following way:

0
Ap
Ay
Ao

-

-

—

—

As
A1
Ao
As.

It is easy to see that this characteristic for 16 rounds caumskd to fix 64 bits of the output of the
compression function. It can be summarized as follows.

1. Choose a random message blatk Mg||M4||M,||M3 and computed = Ho||H4||H,||H3 and

check ifHs; = d for a predefined valud.

2. If Hz # d then adjust = H; @ d accordingly and compute

Ay = Mya (FYF(MyoK® @ s) e KD),

Al = M (FYF(M o KM e Ay) e KD),
Ao = Mo® (FHF(MydK?) @A) @ K@),
As = (M3@6)® (FYF(Mza K®a6) e Ag) @ KO),

whereK®’s are round keys.

Document version 1.0, Date: 30 October 2008

65

The Hash Function Family: Lesamnta SHA-3 Proposal

3. Now we have to construat* by adjustingnsuch thatHs = d as follows:m* = Mo@®Ag||M1 &
A1][M2 @ A2|[M3 @ (Az ® 6)

Hence, we can find a message blook such thatH; = d for an arbitrary value ofl with a
complexity of about 2 compression function evaluationseréfore, we can find a collision for the
compression function (and the hash function) with a conipl@f about 27 compression function
evaluations.

In a similar way as we can construct a collision for the coragi@n function, we can construct
a preimage for the compression function. In the attack, we ba find a message, such that
h(K, m*) = H for the given value oH andK. Since we can find a message blauk whereH; is
correct (note that the value dfcan be chosen freely) with a complexity of about 2 compressio
function evaluations, we can construct a preimage for timepcession function with a complexity
of 2193, By repeating the attack'® times we will find a message block* such thatH,, H;, and
H, are correct.

Due to the final output transformation of the hash functioncae not extend the attack to a
preimage attack on the hash function. However we can usedrtstruct second preimages for the
hash function with a complexity of about® compression function evaluations.

12.5.1 Collision Attacks Using the Message Modification

Wang et al. showed methods for finding collisions for widedgd hash functions including MD5
and SHA-1. Their approach is based on théedéential cryptanalysis and the message modification
technique. As for Lesamnta-256, the maximuiiiedential characteristic probability for 12 rounds
is less than 2% and the message block space is a 256-bit space. Their meftiofiading
collisions require a diierential characteristic with a large probability and aéadggree of freedom

in the message block space. Considering the limited sizeeafiessage block space and very small
maximum diferential characteristic probability, it is very unlikely apply their collision finding
methods to Lesamnta-256. The analysis can easily be repeatite case of Lesamnta-512.

12.6 Attacks for Non-Randomness-Finding

Despite the fact that the most threatening attacks on hastiduns at this moment areftirential
attacks, we evaluate the security of Lesamnta with respeetrious kinds of widely known attacks
on block ciphers. These include not onlyfdrential attacks, but also linear attacks, interpolation
attacks, and Square attacks.

The methods used to evaluate the compression functionganse against these attacks are
described below. In general, our analysis indicates thsalmta has large security margins against
all of these attacks.

The motivation to analyze the Lesamnta compression fumetith respect to attacks which do
not immediately apply to hash functions is that we want taem#s security against future attacks
which might borrow techniques from the field of block ciphgratanalysis. Another motivation is
that a number of block-cipher-based constructions, inoythe MMO mode, can be proved to be

Document version 1.0, Date: 30 October 2008
66

The Hash Function Family: Lesamnta SHA-3 Proposal

collision resistant if the underlying block cipher behaassan ideal cipher (see [30, 7]). An ideal
cipher has the true-randomness property.

The best way to ensure this randomness is to apply block cgtedysis techniques to the core
function E, and to see if this reveals any weakness or non-random bwh&ao far, we have not
found any weakness in the full block cipher.

12.6.1 Diferential and Linear Attacks

Considering the fact that the most successful attacks om fo@stions are of dierential nature,
and that dfferential [5] and linear cryptanalysis [22] are two of the tpswerful tools in block
cipher cryptanalysis, we examined resistanck ahdL against diferential and linear attacks.

In order to estimate the strengthBfwith respect to dferential and linear attacks, we compute
upper bounds on the probabilities oftérential and linear characteristics. As is commonly done
in block cipher cryptanalysis, we will make abstraction loé texact dierences or masks used
in these characteristics, and just consider patterns ofeaStboxes. Hereafter, we only explain
our method of evaluating the security againgtadential cryptanalysis as we can apply a similar
method regarding linear cryptanalysis because of its yualidifferential cryptanalysis [8].

By applying the wide trail strategy, we can prove that theargpounds on the probabilities
of differential characteristicB,ss and Fsy, are 254 and 21 respectively. On the other hand, it
is easy to prove that four consecutive rounds has at leasacine F function. As a result, it
is provable that the probabilities offtkrential characteristics of 20 rounds of Lesamnta-256 and
Lesamnta-512 are upperbounded b$?2and 2°'2. Furthermore, by making experiments with the
Viterbi algorithm, we observed that 12 rounds of Lesamri-and Lesamnta-512 have at least
five activeF functions, which means that 12 rounds of them achieve theeabounds as well. As
aresult, it is very unlikely to apply fierentiallinear attacks to the full Lesamnta.

12.6.2 Interpolation Attack

In the interpolation attack [16], an attacker constructslgmomial using cipher inpyutput pairs
and then he aims to determine key-dependentficents a polynomial expression of a cipher. If
the number of terms in the polynomial expression is readgrsaall, the interpolation attack can
be mounted.

Lesamnta-256 uses the AES S-box which can be expressed isampal of degree 254 over
GF(2). Lesamnta uses a fixed characteristic polynomial to remtesn element over GF{R Our
analysis only considers polynomial expressions basediskhlaracteristic polynomial.

A few rounds of Lesamnta-256 can be expressed as a polynwittic82 variables over GFE}.
We have confirmed that after the 10th round, an input to then€Etfon depends on all the 32
variables. Then, due to high degree of the S-box, we expatttie number of cd&cients reaches
the maximum some rounds after the 10th round. This analgseasily repeated in the case of
Lesamnta-512. Thus we believe that the full 32 rounds Lesalisnsecure against interpolation
attacks.

Document version 1.0, Date: 30 October 2008
67

The Hash Function Family: Lesamnta SHA-3 Proposal

12.6.3 Square Attack

We analyze the resistance of Lesamnta against the Squack §t0]. (This attack is sometimes
referred to as th&aturation attack.) It is a chosen-plaintext attack with security requirersant
the case of block ciphers. An important characteristic ¢ #itack is that it does not depend
on the specific structure of the functiéh The only requirement for this analysis to be valid,
is that F is an invertible transformation. This attack is based on mmetiminary analysis and
analysis of a previous version of Lesamnta by Vincent Rijm#&fe present the attack for the case
of Lesamnta-256. The analysis can easily be repeated faafeof Lesamnta-512.

In Table 16 we present a characteristic over 19 rounds. Herstart with a set of 22 blocks
such that the first 64 bits are constant and the remaining i92alie all values. We denote this by
using the symbolb,, b,, bs. Herea denotes that the input takes all possible values over the-set
denotes that the input is constasitienotes that the sum of the values over the set eqyalsd “?’
denotes that we cannot predict this input. Some explanatittnthis characteristic is as follows:

Round 1: Consider only the last two lines of the input. This Feistelstouction is invertible hence
we can write the symbols,, by, b; at the output. (Even if the values in the line marked by
‘bs’ have changed.)

Round 4: At the output of round 4, we have the property that the 192fbis the second, third
and fourth lines take all possible values. Also the 192 biasfthe first, second and third
lines take all possible values. Note however that the valudise first and the fourth lines
have no special relation among one another. This will caudeterioration of property in
round 8.

Round 16: The outputsis the sum of 3 balanced words.

Suppose now that we would be studying a block cipher. Thenattatker can use this
characteristic to attack a 20-round version of the blockeipE, L by guessing the last round
key, partially decrypting the ciphertexts and checking tuke thes property would hold. This
would eliminate false guesses for the last round key.

The attacker would first construct 4 sets of?2texts with the right structure for the
characteristic. Then, for each guess of the roundkeys dagteound (64 bits), the attacker would
partially decrypt and verify whether he obtainssar-or a wrong guess of the roundkeys, this will
happen with probability 24. Hence after verifying against the 4 sets, all wrong gueadlébave
been eliminated. For most of the roundkeys, only one cheeks e be done. The complexity of
the attack can be roughly estimated as follows:

2192

4% (2% roundkey guessex2!°? partial decryptionguess x(complexity of one partial decryption)

Estimating the complexity of one partial decryption #2Q ~ 2-43 of a full decryption, we obtain
for the total complexity the figure o2’ full decryptions.

Document version 1.0, Date: 30 October 2008
68

The Hash Function Family: Lesamnta SHA-3 Proposal

Table 16: Characteristic for the Square attack
Round Inputs

©Co~NOOhA~,WNEFO
&
o
[y
o
N
&

12| s ? b2 b3
13 b3 S ? bz
14| ? by s ?
15/ ?2 ? by s
16| s ? ? b3
17| ? s ? 7
18| ? ? s ?
19| ? 2?2 ? s

12.6.4 Attacks Using the Known-Key Distinguisher

Recently, a new method for attacking block ciphers has ba&eposed [31]. This attack is a
distinguishing attack where the attacker knows the key. r@fbee the distinguisher is called
known-key distinguisher. We examined the resistance chlmgga-256 against this kind of attack.
As a result, we can construct a known-key distinguisher fsdmnta-256 reduced to 12 rounds.
The distinguisher computes two plaintexts denoteglayd p'which have a special property. Let
the corresponding ciphertexts be denotedcby (z, z1, 2, 23) andc = (%, Z1, 2, Z3), then the
following equation will hold with probability 1.

Z3 = 23.

Figure 39 shows the algorithm to compute the plaint@asd p satisfying the equation.

Document version 1.0, Date: 30 October 2008
69

The Hash Function Family: Lesamnta SHA-3 Proposal

Input :
The 12 subkeys K@, . KM, with K@ £ KO,

Algorithm :
1. Choose an arbitrary value for X.
2. Define the values y,a as:
y=K@aKO
a=F LY FXNoKOaK®) e xe KD e KO

3. Compute

P = (Yo, Y1, Y2, ¥3) B
P = (Yo, FH(y2) ® K&, F(y1 @ K®), y3)
,where yo = K@@ F1(a)

It follows that ys®z=F(y @ F(y1®K®)oK®) =§; @ 7.
Consequently, z3=17;.

Figure 39: Algorithm to compute the plainteisand g satisfying the equation.

13 Extensions

13.1 Additional PRF Modes
13.1.1 Keyed-via-IV Mode

A PRF is obtained from Lesamnta by replacing the fixed initédlie with a secret key. A diagram
of the function, Keyed-Lesamnta, is given in Figure 40.

The security of Keyed-Lesamnta is reduced to the securith@tinderlying block ciphers. It
resists any distinguishing attack that requires much fetam 2/? queries if the underlying block
ciphers are independent pseudorandom permutations. Mecese statements and proofs are given
in Annex C.

K

Figure 40: Diagram of Keyed-LesamntB.andL are underlying 1, n) block ciphers.pad is the
padding algorithmK is a secret keyM is a message input.

Document version 1.0, Date: 30 October 2008
70

The Hash Function Family: Lesamnta SHA-3 Proposal

13.1.2 Key-Prefix Mode

The key-prefix mode is a method to construct a PRF with a giveh iunction. It simply feeds
K|IM to the hash function as an input, whétas a secret key anifl is a message input. A diagram
of the mode with Lesamnta is given in Figure 41. We call thefiom Key-Prefix-Lesamnta. This
mode uses Lesamnta as a black box. In this sense, it is sitnilAMAC. However, it is more
efficient than HMAC.

Key-Prefix-Lesamnta resists any distinguishing attack teguires much fewer than"2
queries if the underlying block ciphers are independentiggseandom permutations arkg, (K)
is pseudorandom. More precise statements and proofs ae igilAnnex C.

K||M

!

| pad

A%

Figure 41: Diagram of Key-Prefix-Lesamnti.andL are underlyingt, n) block ciphers.pad is
the padding algorithmK is a secret keyM is a message input.

13.2 Enhancement Against Second-preimage Attacks

To resist against the security of second-preimage attaskgxtend Lesamnta in such a way that
round constants depend on not only the round irraexd but also the message-block indeX his
extended version of Lesamnta is called Lesamnta-OOOex&mple, Lesamnta-256e. Since the
compression function of this extended scheme depends andbgsage-block indaxthis extended
scheme is similar to HAIFA [4] and dithering hash [33] in thespect.

13.2.1 Lesamnta-224e and Lesamnta-256e

Let C(-rond) he a 64-bit constant for theund™ round in thei™ message block. When the message
block MO is processed, the Key Expansion routies ExpConp256() , described in Sec. 5.3.2.6
usesCt-roind) jnstead ofCr™), Namely,KeyExpConp256() uses round constan@o) that
depend on both the message-block indexd the round inderound, but do not depend on the
message block itself. Notice that the other functions amhanged. The constaéf-**" js given
by

C(|,round) — Cg,round) || Cg,round)’

whereC{" ™ andC{""*"™ are 32-bit constants. The 32-bit const@t®"™ is generated by the
linear feedback shift register of the following primitivelgnomial [29]

Co(X) = 3% + % + x%° + x*° + 1,

Document version 1.0, Date: 30 October 2008
71

The Hash Function Family: Lesamnta SHA-3 Proposal

where the initial value is76543210 in hexadecimal. The 32-bit consta@ ™" is the
concatenation of a zero bit and a 31-bit sequence that isrgiekeby the linear feedback shift
register of the following primitive polynomial

ci(X) =t + x® + 1,

where the initial value i1234567 in hexadecimal. Notice that the most significant bic§f *"
is always zero. Figure 42 shows the pseudocode for compGfitRy™.

ConstantGenerator256(word C[N-1] [Nr_comp256] [2])
begin

word cO

word cl

cO0 = 76543210 /* in hexadecimal */
cl = 01234567 /* in hexadecimal */
for i =1 to N-1
for round = 0 to Nr_comp256 - 1
word bO
word bl
/* >>: right shift, <<: left shift */

b0 = cO @& (c0>>2) & (c0>>6) & (c0>>7)

cO = (cO0 >> 1) v (bO << 31)

/* A: bitwise AND, 00000001 in hexadecimal */
bl = (c1 & (c1>>3)) A 00000001

cl = (c1 > 1) v (bl << 30)

C[i] [round] [0] = cO

C[i] [round] [1] = c1

clrond) j5 given by C[i] [round] [0]||C[i] [round] [1].
end for
end for
end

Figure 42: Pseudocode for computing 64-bit constants

When the message blodk(is processed, the Key Expansion routiesy ExpConp256()
useC[i][round][0] andC[i][round][1] instead ofC[round][0] andC[round][1], respectively.
Some round constan@&'"°" in hexadecimal are given below.

C19 = bb2a19004091a2b3, CIY =53950¢806048d159,
C12 = 3eca8640302468ac, CI3 = 3765432058123456,

C130) = 89¢98¢c5a31072dcb, C®3D = c4f4c62d188396e5,
C20 = 627a63164c41cb72, CGY =bH13d318b2620e5b9.

13.2.2 Lesamnta-384e and Lesamnta-512e

Let COround) he g 128-bit constant for theund™ round in the™ message block. When the message
block M® is processed, the Key Expansion routiey ExpConp512() described in Sec. 5.5.2.6

Document version 1.0, Date: 30 October 2008
72

The Hash Function Family: Lesamnta SHA-3 Proposal

usesC(-roond) jnstead ofCr®d) . Notice that the other functions are unchanged. The constan
clroond) is given by

C(i,round) — Cg,round) || Cg,round)’

whereCl""™ andC{"*" are 64-bit constants. The 64-bit constafjf™"™ is generated with the
linear feedback shift register of the following primitivelgnomial

Co(¥) = X + 33 + X+ X0+ 1,

where the initial value igedcba9876543210 in hexadecimal. The 64-bit constadf" ™" is the
concatenation of a zero bit and a 63-bit sequence that isgtedewith the linear feedback shift
register of the following primitive polynomial

ci(x) = X3+ x5% + 1,

where the initial value i9123456789abcdef in hexadecimal. Notice that the most significant bit
of C!""" is always zero. Figure 43 shows the pseudocode for compGHiffy™.

ConstantGenerator512(word C[N-1] [Nr_comp512] [2])
begin

word cO

word cl

c0 = fedcba9876543210 /* in hexadecimal */
cl = 0123456789abcdef /* in hexadecimal */
for i =1 to N-1
for round = 0 to Nr_comp512 - 1
word bO
word b1l
/* >>: right shift, <<: left shift */
b0 = cO @ (c0>>1) @ (c0>>3) & (c0>>4)
cO = (cO > 1) v (b0 << 63)
/* A: bitwise AND, 0000000000000001 in hexadecimal */
b1 (cl1 & (c1>>1)) A 0000000000000001
cil (cl1 >> 1) v (bl << 62)
C[i] [round] [0] cO
C[i] [round] [1] cl
clrond) js given by C[i] [round] [0]||C[i] [round] [1].
end for
end for
end

ono> o

Figure 43: Pseudo code for computing 128-bit constants

Document version 1.0, Date: 30 October 2008
73

The Hash Function Family: Lesamnta SHA-3 Proposal

Some round constan@'"°" in hexadecimal are given below.

C9 = ff6e5d4c3b2a19080091a2b3c4d5e6£7,
CAY = f£fb72ea61d950c840048d159e26af 37D,
Cl? = 7fdb97530eca8642002468acf13579bd,
C®® = bfedcbad8765432140123456789abcde,

C130 - 89a3dcf7fdb975304d7e2b1802468act,
CA3) = c4diee7bfedcbad826bf158c01234567,
C?9 = 6268f73dff6e5d4c135£8ac60091a2b3,
C®Y = p1347b9effb72eab09afc5630048d159.

13.2.3 Selection of Polynomials

This extension uses a sequence produced by two primitivenpotialscy(x), c1(x). We chose
primitive polynomials consisting of as small terms as palssbecause such polynomials can be
implemented ficiently on hardware. Since there is no primitive trinomigthradegree 32 and 64,
we chose primitive polynomials consisting of five terms.c®ithere are primitive trinomials with
degree 31 and 63, we chose them.

In the case of Lesamnta-256e, polynomigss), c,(X) produce sequences with periotf 2 1
and 21 -1, respectively. Since GCD2-1, 2% - 1) = 1 and Lesamnta-256e accepts & (21)-bit
message at mosg(-round) = c".round) if and only ifi = i’ andround = round’ where 1< i,i’ < N-1
and 0< round, round’ < Nr_comp256. It follows that the block cipheEncComp,ss depends on the
message-block index Similarly, the block cipheEncComps;, of Lesamnta-512e depends on the
message-block indéxecause GCD2 -1, 253-1) = 1 and Lesamnta-512e accepts &2 1)-bit
message at most.

14 Advantages and Limitations

14.1 Advantages
Flexibility

e The number of the rounds of the underlying block ciphers isr@able parameter. It allows
the selection of a range of possible secypérformance tradets.

e Lesamnta can be implemented securely afittiently on a wide variety of platforms,
including constrained environments, such as smart cards.

Document version 1.0, Date: 30 October 2008
74

The Hash Function Family: Lesamnta SHA-3 Proposal

Simplicity

e We take a rather conservative and simple approach to deseganinta. It is a
Merkle-Damgard iterated hash function of a compressiowtfan enveloped by an output
function. Furthermore, both the compression function dredutput function are MMO
modes using distinct block ciphers.

e The underlying block ciphers do not base its security or pait on obscure and not well
understood interactions between arithmetic operations.

e The tight design of Lesamnta does not leave enough room &éhichpdoor.

Hardware Design Scalability

e Lesamnta is suited to be implemented in dedicated hardwidedware architectures of
Lesamnta can be designed to meet the high-speed processirand because of its highly
parallelizable structure.

e The type-1 general Feistel network used in Lesamnta allovpsdcess thre€ functions in
parallel without additional delay. As for designing sizetimized architectures, Lesamnta
has a nice feature that tiefunction is parallel and it consists of four iterations of ttame
function. The gate count of the Lesamnta hardware can beeedwy using a shared function
module.

14.2 Limitations

e The design of the Lesamnta domain extension is performarieated, and it makes only
a small change to the Merkle-Damgard iteration. It does moigiase the resistance against
Joux’s multicollision attack and the Kelsey-Schneier selcpreimage attack in comparison
with the SHA-2 family.

15 Applications of Hash Functions

Lesamnta has the same application program interface adHAe2Samily. Therefore, Lesamnta
supports all applications that are supported by the SHA¥Iyasuch as:

¢ digital signatures (FIPS 186-2);
e key derivation (NIST Special Publication 800-56A);
¢ hash-based message authentication codes (FIPS 198); and

e deterministic random bit generators (SP 800-90).
The proof-based and attack-based security analyses slabwhthsecurity provided by Lesamnta
against known attacks is not less than that provided by th&-Sifamily.

Document version 1.0, Date: 30 October 2008
75

The Hash Function Family: Lesamnta SHA-3 Proposal

16 Trademarks

e ARM® and RealVieW are registered trademarks and ARM926EJ-B a trademark of
ARM Limited in the United States apat other countries.

e Atmel®?, AVR® and AVR Studi® are registered trademarks of Atmel Corporation in the
United States andr other countries.

e Intel® is a registered trademark and COrés a trademark of Intel Corporation in the United
States antr other countries.

e Microsoft®, Visual Studi® and Windows Vist® are registered trademarks of Microsoft
Corporation in the United States dadother countries.

e Renesd® and H® are registered trademarks of Renesas Technology Corporiatithe
United States aridr other countries.

17 Acknowledgments

In the first place we would like to thank Kota Ideguchi for hifi@ent ANSI-C and assembly
implementations. Many people have been extremely helpfuhd the design of Lesamnta. In
particular we would like to thank Kazuo Ota, Kazuo Sakiyabe Wang, Yasuko Fukuzawa, Toru
Owada. We would like to thank Florian Mendel, Vincent Rijmérr Dunkelman, Sebastiaan
Indesteege Ozgul Kiiciik, Bart Preneel, Hongjun Wu for their crypadysis of preliminary
versions. We would like to thank Masahiro Ito, Satoshi Kaaran and Yuji Matsuo who helped us
with the proposal of Lesamnta from implementation pergpect his work was partially supported
by the National Institute on Information and Communicasidachnology, Japan. Finally we would
also like to thank the NIST SHA-3 team for initiating the SKEAprocess.

Document version 1.0, Date: 30 October 2008
76

The Hash Function Family: Lesamnta SHA-3 Proposal

References

[1] M. Bellare, “New proofs for NMAC and HMAC : Security withd collision-resistance,”
Advances in Cryptology - CRYPTO 2006, Lecture Notes in Cotap&cience, vol. 4117,
pp. 602—619, 200Gttp://eprint.iacr.org/2006/043. pdf.

[2] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash @ions for message authentication,”
Advances in Cryptology - CRYPTO '96, Lecture Notes in Congpucience, vol. 1109,
pp. 1-15, 1996http: //www-cse.ucsd.edu/ " mihir/papers/kmd5 . pdf.

[3] M. Bellare and T. Kohno, “Hash function balance and itspant on birthday attacks,”
Advances in Cryptology - EUROCRYPT 2004, Lecture Notes inmPater Science,
vol. 3027, pp. 401-418, 2004. http://www-cse.ucsd.edu/users/mihir/papers/
balance.pdf.

[4] E. Biham and O. Dunkelman, “A framework for iterative hasinctions — HAIFA,” The
Second Cryptographic Hash Workshop, 2086tp: //csrc.nist.gov/groups/ST/hash/
documents/DUNKELMAN_NIST3.pdf.

[5] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Standard,
Springer, 1993.

[6] A. Biryukov and D. Wagner, “Advanced slide attacks,” Aahces in Cryptology -
EUROCRYPT 2000, Lecture Notes in Computer Science, vol.718p. 589-606, 2000.
http://www.iacr.org/archive/eurocrypt2000/1807/18070595-new . pdf.

[7] J. Black, P. Rogaway, and T. Shrimpton, “Black-box asayof the block-cipher-based
hash-function constructions from PGV,” Advances in Crnipgy - CRYPTO 2002, Lecture
Notes in Computer Science, vol. 2442, pp. 320-335, 2002.

[8] F. Chabaud and S. Vaudenay, “Links betweerfedential and linear cryptanalysis,”’
Advances in Cryptology - EUROCRYPT 94, Lecture Notes in Quter Science, vol. 950,
pp. 356—365, 1995.

[9] J.S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merklamgard revisited: How to
construct a hash function,” Advances in Cryptology - CRYPZ@D5, Lecture Notes in
Computer Science, vol. 3621, pp. 430-448, 2005.

[10] J. Daemen, L. R. Knudsen, and V. Rijmen, “The block cipBQUARE,” Fast Software
Encryption, FSE '97, Lecture Notes in Computer Science, @67, pp. 149-165, 1997.
http://www.esat.kuleuven.ac.be/ cosicart/pdf/VR-9700.PDF.

[11] I. B. Damgard, “A design principle for hash functiongtivances in Cryptology - CRYPTO
'89, Lecture Notes in Computer Science, vol. 435, pp. 416+-4290.

Document version 1.0, Date: 30 October 2008
17

The Hash Function Family: Lesamnta SHA-3 Proposal

[12] Q. Dang, “Randomized hashing digital signatures (2nmdfti” Draft NIST Special
Publication 800-106, 2008http://csrc.nist.gov/publications/drafts/800-106/
2nd-Draft_SP800-106_July2008. pdf.

[13] B. Gladmanhttp://fp.gladman.plus.com/cryptography_technology/.

[14] S. Halevi and H. Krawczyk, “Strengthening digital sajares via randomized hashing,”
Advances in Cryptology - CRYPTO 2006, Lecture Notes in Cotap&cience, vol. 4117,
pp. 41-59, 2006. http://www.ee.technion.ac.il/ hugo/rhash/rhash.pdf, http:
//tools.ietf.org/html/draft-irtf-cfrg-rhash-01.

[15] S. Hirose, J. H. Park, and A. Yun, “A simple variant of thierkle-Damgard scheme with
a permutation,” Advances in Cryptology - ASIACRYPT 2007 ctiee Notes in Computer
Science, vol. 4833, pp. 113-129, 2007.

[16] T. Jakobsen and L. R. Knudsen, “The interpolation &ttae block ciphers,” Fast Software
Encryption, FSE '97, Lecture Notes in Computer Science,¥267, pp. 2840, 199t tp:
//homes.esat.kuleuven.be/ cosicart/ps/LRK-9700.ps.gz.

[17] A. Joux, “Multicollisions in iterated hash function&pplication to cascaded construction,”
Advances in Cryptology - CRYPTO 2004, Lecture Notes in Cotap&cience, vol. 3152,
pp. 306-316, 2004.

[18] J. Kelsey and B. Schneier, “Second preimages-tit hash functions for much less thah 2
work,” Advances in Cryptology - EUROCRYPT 2005, Lecture B®in Computer Science,
vol. 3494, pp. 474-490, 200%ttp: //www.schneier.com/paper-preimages . pdf.

[19] L. R. Knudsen, “Truncated and higher ordeffeientials,” Fast Software Encryption — Second
International Workshop, Lecture Notes in Computer Scieppe 196-211, 1995ftp://
ftp.esat.kuleuven.ac.be/cosic/knudsen/trunc.ps.Z.

[20] P. Koche, J. Xée, and B. Jun, “Dterential power analysis,” Advances in Cryptology -
CRYPTO '99, Lecture Notes in Computer Science, vol. 1666 388—397, 1999.

[21] K. Lemke, K. Schramm, and C. Paar, “DPA p+bit sized boolean and arithmetic operations
and its application to IDEA, RC6, and the HMAC-constructio@ryptographic Hardware
and Embedded Systems - CHES 2004, vol. 3156, pp. 205-219, 200

[22] M. Matsui, “Linear cryptanalysis method for DES cipfieLecture Notes in Computer
Science Advances in Cryptology - EUROCRYPT 93, vol. 765, 36—-397, 1994.

[23] U. Maurer, R. Renner, and C. Holenstein, “Midrentiability, impossibility results
on reductions, and applications to the random oracle methgyg,” First Theory of
Cryptography Conference, TCC 2004, Lecture Notes in Coserp8cience, vol. 2951,
pp. 21-39, 2004.

Document version 1.0, Date: 30 October 2008
78

The Hash Function Family: Lesamnta SHA-3 Proposal

[24] A. J. Menezes, P. C. van Oorschot, and S. A. VanstonldANDBOOK of APPLIED
CRYPTOGRAPHY, CRC Press, 1996.

[25] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Ingasibns of power analysis
attacks on smartcards,” Proceedings of the USENIX Worksimofmartcard Technology on
USENIX Workshop on Smartcard Technology, 199&:tp://www.usenix.org/events/

smartcard99/full_papers/messerges/messerges.pdf.

[26] National Institute of Standards and Technology, “Sedwash standard,” Federal Information
Processing Standards Publication 180-2, August 2002http://csrc.nist.gov/
publications/fips/fips180-2/fips180-2.pdf.

[27] K. Okeya, “Side channel attacks against HMACs basedackicipher based hash functions,”
Information Security and Privacy, 11th Australasian Cosrfiee, ACISP 2006, Lecture Notes
in Computer Science, vol. 4058, pp. 432-443, 2006.

[28] D. A. Osvik, “Speeding up Serpent,” AES Candidate Coarfee, pp. 317-329, 2008t tp:
//www.ii.uib.no/"osvik/pub/aes3.pdf.

[29] W. W. Peterson and J. E. J. Welddgr.ror-Correcting Codes. The MIT Press, 1972.

[30] B. Preneel, R. Govaerts, and J. Vandewalle, “Hash fanstbased on block ciphers: a
synthetic approach,” Advances in Cryptology - CRYPTO '9&cture Notes in Computer
Science, vol. 773, pp. 368-378, 1994.

[31] L. R. Knudsen, and V. Rijmen, “Known-Key Distinguisisefor Some Block Ciphers,”
Asiacrypt 2007, Lecture Notes in Computer Science, vol.71p§. 149-165, 2007.

[32] R. Rivest, “The MD5 message-digest algorithm,” Requdes Comments, no. 1321, April
1992.ftp://ftp.rfc-editor.org/in-notes/rfc1321.txt.

[33] R. L. Rivest, “Abelian square-free dithering and rewag for iterated hash functions,”
First Cryptographic Hash Workshop, 200%ttp://csrc.nist.gov/groups/ST/hash/
documents/rivest-asf-paper.pdf.

[34] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu, “Cryptanatysf the hash functions MD4
and RIPEMD,” Advances in Cryptology - EUROCRYPT 2005, LeetiNotes in Computer
Science, vol. 3494, pp. 1-18, 2005.

[35] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in theufl SHA-1,” Advances in
Cryptology - CRYPTO 2005, Lecture Notes in Computer Sciexok 3621, pp. 17-36, 2005.

[36] Y. Zheng, T. Matsumoto, and H. Imai, “On the construntaf block ciphers provably secure
and not relying on any unproved hypotheses,” Advances im©Gtygy - CRYPTO 89,
Lecture Notes in Computer Science, vol. 435, pp. 461-4880.19

Document version 1.0, Date: 30 October 2008
79

The Hash Function Family: Lesamnta SHA-3 Proposal

18 List of Annexes

A HMAC Using Lesamnta Is a PRF

A.1 Definitions

Let Func(D, R) be the set of all functions from to R, andPerm(D) be the set of all permutations on
D. Lets & S represent that an elemesits selected from the s& under the uniform distribution.

Pseudorandom Bit Generator Let 4 be a function such that : {0,1})" — {0,1}', where
n < I. Let A be a probabilistic algorithm which outputs 0 or 1 for a givaput in{0,1}'. The
prbg-advantage oA againsiu is defined as follows:

AdvPS(A) = [PrIAGu(K) = 11k & {0, 1) - PriA(S) = 1] s < {0,1)1]]

where the probabilities are taken over the coin tosse& agd the uniform distributions off), 1}"
and{0,1}. u is called a pseudorandom bit generator (PRBG) if ,%tﬂ(/A) is negligible for any
efficient A.

Pseudorandom Function Let f : K x D —» Rbe a keyed function or a function family.(k, -)

is often denoted by (:). Let A be a probabilistic algorithm which has oracle access to atiom
from D to R. A first asks elements iB and obtains the corresponding elementRwith respect
to the function, and then outputs 0 or 1. The prf-advantageajainstf is defined as follows:

AdV"(A) = |PriA = 11k & K] - PriA = 1]p & Func(D.R)]| .

where the probabilities are taken over the coin tosses agd the uniform distributions ok and
Func(D, R). f is called a pseudorandom function (PRF) if ,%QA) is negligible for any #icient
A.

Let p: Kx D — D be a keyed permutation or a permutation family. The prp-athge ofA
againstp is defined similarly:

AdVEP(A) = Pr[AP = 1]k & K] - Pr[A = 1]p & Perm(D)]| .
pis called a pseudorandom permutation (PRP) if 2#) is negligible for any #ficientA.

Pseudorandom Function Pair Let A be a probabilistic algorithm which has oracle access to
a pair of functions fromD to R. The prf-pair-advantage (prfp-advantage)fofigainst a pair of
functions (f, g) is given by

Adv?f;p(A) = |Pr{A% = 1|k & K] - Pr{AC = 1|p,p' & Func(D,R)]| ,

Document version 1.0, Date: 30 October 2008
80

The Hash Function Family: Lesamnta SHA-3 Proposal

where the probabilities are taken over the coin tosses agd the uniform distributions ok and
Func(D, R). (f,g) is called a PRF pair if Adﬁ?;p(A) is negligible for any #icientA.

For a pair of permutations, the prpp-advantage of an adweesad a PRP pair can also be
defined similarly.

Computationally Almost Universal Function Family Computationally almost universal
function families are formalized by Bellare in [1]. Lét: K x D — R be a function family.
Let A be a probabilistic algorithm which takes no inputs and poedia pair of elements ID. The
au-advantage oA againstf is defined as follows:

AdVEY(A) = Prfu(My) = fi(M2) A My # Mz | (Mg, Mp) «— AAK hd K] ,

where the probabilities are taken over the coin tosses agd the uniform distribution oK. f is
called a computationally almost universal function faniilfxdv $(A) is negligible for any #icient
A

A.2 Analysis

In the analysis of this section, for HMAC using Lesamntas iassumed that the length of an input
M is a multiple ofn and that the padding is not appliedK¢iM. We call this slightly generalized
functionHMACIE, L, 1V]. The proof technique given by Bellare in [1] is used in thalgasis.

First, the compression function construction is considefiéghe following lemma says that the
MMO compression function is a PRF up to the birthday boundwkesyed via the chaining variable
if the underlying block cipher is a PRP under the chosen t#atrattack. The proof is easy and
omitted.

Lemma 1 Let E be an , n) block cipher andh be a function such thdi (X) = Ex(X) ® X. Let A,
be a prf-adversary againstwhich runs in time at modtand asks at most queries. Then, there
exists a prp-adversaiy: againste such that

q(a-1)

2n+1 ’

AdvP(An) < AdVEP(AE) +

whereAg runs in time at most+ O(q) and asks at mostqueries.

The following lemma says that the pair of the MMO compressumaetion and the MMO output
function is a PRF pair up to the birthday bound if the pair & timderlying block ciphers is a PRP
pair under the chosen plaintext attack. The proof is easyoaritted.

Lemma 2 Let E andL be (, n) block ciphers. Leh andg be functions such théu (x) = Ex(X)® x
andgk(X) = Lk(X) @ X, respectively. Lef\, 4 be a prfp-adversary against, §) which runs in time
at mostt and asks at mosf queries. Then, there exists a prpp-advergsry against E, L) such
that

q(q-1)

on+1 ’

AdVEP(Ang) < AdVERP(Ag) +

Document version 1.0, Date: 30 October 2008
81

The Hash Function Family: Lesamnta SHA-3 Proposal

whereAg | runs in time at most+ O(q) and asks at mosfqueries.

Let B = {0,1)" andB* = | J;_, B'. For the compression functidnand the output functiog, let
gh* : 8 x 8 — B be a function family such thagh*(K, M) is defined forKk € 8 andM € B* as
follows: LetM = M) .. |IMMN andM® € {0, 1}" for 1 < i < N. Then,

1. a@ =K,
2. if N> 2, thena® = h(a™9, MM for1<i<N-1,
3. gh*(K, M) = g(a™b, MM\,

The following lemma is on the inner hashing. It says thathifgf is a PRF pair, themgh* is
computationally almost universal. The proof is given in A.2

Lemma3 Leth: {0,1}* x 8 — {0,1} andg : {0, 1}* x B8 — {0, 1}* be function families, and let
Agh- be an au-adversary agaimgbt. Suppose thadg,- outputs two messages with at mésaind/,
blocks, respectively. Then, there exists a prfp-adversagyagainst , g) such that

1
Advgﬁ* (Agh*) < (fl + 52 - 1) Advﬁ’r;p(Ah,g) n ? ,

whereA, g runs in time at mosD((¢1 +£2) Th + Tg) and makes at most 2 queriéls, andTg represent
the time required to computeandg, respectively.

Lemma 3 requires a PRF palr,). However, it does not seem severe since adversaries aneedll
to make only at most 2 queries to the oracles.

The following lemma is on the outer hashing. It says thath@ tompression function and
the output function are PRFs, then the outer-hashing fonds also a PRF. The proof is easy and
omitted.

Lemma4 Leth: {0,1}* x 8 — {0,1}* andg : {0,1}* x B8 — {0, 1}* be function families. Let
gh: {0,1}* x 8 — {0, 1}* be a function family defined by

gh(K, X) = g(h(K, X), 1j|bin(x + n)) ,

whereK € {0, 1}, X € 8 andbin(x + n) is the (1 — 1)-bit binary representation &f+ n. Let Ay, be
a prf-adversary againgh that runs in time at mostand makes at mostqueries. Then, there exist
prf-adversaries\, andAq againsth andg, respectively, such that

AdvE (Agn) < Advp" (An) + qAdVE™(Ay)

whereA,, runs in time at modt+O(q Tg) and makes at mosftqueries, and\ runs in timet+0O(q Tg)
and makes at most 1 query.

The following lemma is Lemma 3.2 in [1]. It says the{K,, G(K;,)) is a PRF iff(K,,) is
a PRF and5(K;,) is computationally almost universal, whefg andK; are secret keys chosen
uniformly and independently of each other.

Document version 1.0, Date: 30 October 2008
82

The Hash Function Family: Lesamnta SHA-3 Proposal

Lemmab (Lemma 3.2in[1]) Let f : {0,1}" x B8 — {0,1}" andG : {0, 1}* x D — B be function
families. LetfG : {0,1}"" x D — {0, 1}* be defined byfG(K,||K;, M) = f(K,, G(K;, M)) for
K, € {0,1}7, K; € {0,1}* andM € D. Let A be a prf-adversary again$G that runs in time at
mostt and makes at mosf(> 2) queries each of whose lengths is at nmbbtits. Then, there exist
a prf-adversanA; againstf and an au-adversal®s againsiG such that

q(9-1)
2
whereA; runs in time at mostand makes at mostqueries, and\s runs in timeO(Tg(d)) and the

two messages it outputs have length at ntbSis(d) is the time to comput& on ad-bit input.

AdVPL (Are) < AdVP(Ar) + Adv3(As) ,

The following theorem is on the pseudorandomness of the NNMIRe&function made from
HMAC[E, L, IV](K, -) by replacing the first calls of the compression functionninar and outer
hashing with two secret keys chosen uniformly and indepethg®f each other. The theorem
states that the security of the function as a PRF is reductuketsecurity of the underlying block
ciphers as a PRP pair. It directly follows from Lemmas 1 tigto6.

Theorem 1 Let E andL be (n,n) block ciphers. Leh : 8x 8 - Bandg : 8x 8 — B be
functions such thahk(X) = Ex(X) @ x andgk(X) = Lk(X) ® x. Letghgh* : 82 x 8* — B be
defined byghgh*(K,|[K;, M) = gh(K,, gh*(K;, M)) for K,,K; € 8 andM € B*. Let Agygr be a
prf-adversary againgihgh* that runs in time at mostand makes at mosf(> 2) queries each of
which has at mosf blocks. Then, there exist prp-adversarfgsand A, againste andL, and a
prpp-adversarfg, against E, L) such that

(€+1)f

prf
Adv, n ,

phgh: (Pangr) < AdVEP(Ag) + g Advg P(AL) + € PAdVE T (Ae) +

whereAg runs in time at most + O(qT.) and makes at most queries,A_ runs in time at most
t + O(qT.) and makes at most 1 query, aAd, runs in timeO(¢ Tg + T.) and makes at most 2
gueries.

The following lemma says that, even if the secret key of a PRfeplaced by the output of a
PRBG, the resulting function remains a PRF. The proof is easyomitted.

Lemma 6 Letyu : {0,1} — {0, 1} be a function andF : {0, 1} x D — B be a function family.
Let Fu : {0, 1} x D — B be a function family defined b u(K, M) = F(u(K), M) for K € {0, 1}*
andM € D. Let Ag, be a prf-adversary againsj: that runs in time at mostand makes at most
queries of length at mositbits. Then, there exist a prbg-adversayyagainsj: and a prf-adversary
Ar againstF such that

AdVZ(Ag,) < AdVEPYA,) + AdvE'(AF) |

whereA, runs in time at most+ O(q T¢(d)), andA¢ runs in timet and makes at mostqueries of
length at mostl bits.

Document version 1.0, Date: 30 October 2008
83

The Hash Function Family: Lesamnta SHA-3 Proposal

Now, we can obtain the result on the pseudorandomnesdMAC[E, L, V] simply by
combining Theorem 1 and Lemma 6.

Corollary 1 Let E be an ¢, n) block cipher. Letug : 8 — 82 be a function such thatg(K) =

(Eiv(Kop) ® Kop)l(Eiv(Ksp) @ Kyp) , whereK,, = K ® opad andK;, = K ® ipad. LetAbe a
prf-adversary againstMACIE, L, I V] that runs in time at mogtand makes at most(> 2) queries
each of which has at moétlocks. Then, there exist prp-adversagsandA_ againstE andL, a
prpp-adversanAg | against E, L) and a prbg-adversary,, such that

(C+1)f

prf
Adv on ,

Twacie.Liv(A) < AAVEPI(A,) + AdVEP(A) + G AV P(AL) + € PAdVE P(Ae L) +

whereA,, runs in time at most+ O(q ¢ Tg), Ae runs in time at most+ O(q T,) and makes at most
g queries,A_ runs in time at most + O(qT.) and makes at most 1 query, aAd, runs in time
O(¢ Te + T.) and makes at most 2 queries.

A.2.1 Proof of Lemma 3

ForM e 8%, let|M|, = [M|/n. ForM, M, € 8%, let LCPMy, M,) = [|M,|/n], whereM, represents
the longest common prefix &fl, and M.

In the following, letM; and M, be distinct elements iB*. Letm, = |Mq|, andnm, = |My|,.
Without loss of generality, we can assume tmat< mp. Let p = min{LCP(Mq, M), m; — 1}.

This proof uses the gantg and the adversar given in Figure 44.

Claim1 Supposethat¥ | <m+m,— p-1. Then,

PriA*" (Mg, M2, 1) = 1| p, o’ & Func(8, {0, 1})] = Pr[G(My, My, 1) = 1]
PHA™ S (M, My, 1) = 1K < {0, 1] = PrlG(My, M, | — 1) = 1] .

Proof. Itis first shown that¥*' (M4, My,) is equivalent taG(My, My, |).
If | < p(< my — 1), then, inA*, ay[l] « p(M4[l]) anday[l] « a[l]. ai[l] « p(M4[l]) is

equivalent taay[l] i {0, 1}* sincep is random.
If | =p+1,thenp+1<m and

o(Mi[p+1]) ifp+l<m—1
al[p”]“{p'(mll[p+11) fpr1-m

o(My[p+1]) ifp+l<m—1
aﬂp*”“{p'(wlzz[p+11) ifp+l=m .

If p+1<m -1 thenp+1<m—1andp=LCPMi,M;). Thus,a;[p + 1] <« p(Mi[p + 1]),
a[p+ 1] « p(M[p + 1]), andMy[p+ 1] # Ma[p+1]. f p+1=mandp+1<m-1,
thenay[p + 1] « p’'(My[p + 1]) anday[p + 1] « p(My[p+ 1]). If p+1=m andp+ 1 = my,
thenm, = mp andp = LCP(My, M,). Otherwise, LCP{1;, M,) = my = mp, andM; = My,

Document version 1.0, Date: 30 October 2008
84

The Hash Function Family: Lesamnta SHA-3 Proposal

which causes a contradiction. Thas[p + 1] « o’ (M1[p + 1]), a[p + 1] « p’(M2[p + 1]), and
Mi[p+ 1] # My[p+ 1]. Inany casea;[p+ 1] anda,[p + 1] are selected frorfD, 1}* uniformly and
independently of each other.

If p+2<1<my,thenal] « p(M4[l]) or p’(M4[l]), anday[p + 1] & {0, 1}*. Thus,a[l] and
a[p + 1] are selected frortD, 1}* uniformly and independently of each other.

If I > my+1, thenay[my] & {0, 1}, anday[K] <« p(My[K]) or p’(M;[K]). Thus,a;[my] anday[K]
are selected front0, 1}* uniformly and independently of each other.

It is concluded from these observations that the first eqoaif the claim holds.

It is shown below that the second equation holds. The proed tisee game transformations.

G1(My1, My, 1) given in Figure 45 is obtained simply by substituting 1 to | of G(My, M, |).
ThUS, Pl’ﬁ(Ml, M2,| - 1) = 1] = Pr[Gl(Ml, M, |) = 1]

The equivalence betweds, andG; given in Figure 45 is confirmed as follows. It is easy to
see that the lines 506 through 509 are equivalent to the i@8sand 609. Fop + 2 < | < my, the
lines 513 through 521 are equivalent to the lines 619 thr&@&fh Ifl = m; + 1, thenk « p+1
in G,. Thus, the lines 519 through 524 are equivalent to the li@stbrough 624 form; + 1 <
| <m +m,— p— 1. The other parts db, are copied fronG;. Thus, Pr{5;(My, Mo, 1) = 1] =
PI'[Gz(M]_, Mo, |) = 1]

The equivalence betwedb, andGs given in Figure 46 is shown below. &3, K in the lines
702 and 724 is sampled frof@, 1}* under the uniform distribution at the line 699. Notice that
K is used either in 702 or in 724 exclusively. It is easy to se# the lines 610 through 612
are equivalent to the lines 710 through 715. The other pdrz;are copied fromG,. Thus,
PI'[Gz(M]_, Mo, |) = 1] = PI’[Gg(M]_, M., |) = 1]

The equivalence betweedB; and A% given in Figure 46 is shown below. The lines 701
through 705 are equivalent to the lines 801 through 807. Farll< p(< my — 1), ayfl — 1] «
aifl — 1] = K at 712 inGz, while ay[l] « a[l] = h(K, My[I]) at 812 in A%, The evaluation
of a,[l] is delayed until the line 729 itG;. If | = p + 1, then the evaluation da[l] is delayed
until the line 729 or 730 irG;. Similarly, if my +1 < | < my + mp, — p — 1, then the evaluation
of ay[l — my + p + 1] is delayed until the line 729 or 730 {@3. Thus, Pr53(M1, M, 1) = 1] =
Pr{AMS (Mg, My, 1) = 1K <& {0, 1}4].

From these observations, it is concluded that the secoratiequof the claim holds.]

Let P! (s, M) = Prigh'(K, M) = gh'(K, M) | K & {0,111,

Claim2 Letm=m+m,— p- 1. Then,

1
Pr[G(Ml, Mz, m) = 1] = E

Pr[G(My, M,,0) = 1] = P (Mg, M) .

Proof. If G is run with the argumentMy, M, m), thena;[my] is chosen from0, 1}* uniformly at
random. Thus, P&§(M1, M,, m) = 1] = 1/2~.

Document version 1.0, Date: 30 October 2008
85

The Hash Function Family: Lesamnta SHA-3 Proposal

On the other hand, suppose ti@atis run with the argumentMy, M,, 0). Then,a;[my]

gh*(a1[0], My), az[m,] = gh*(a2[0], M), andaz[0] = a,[0] & 10,1, Thus, Pr5(My, My, 0)
1] = PCO'(ML M,).

Let A; be a prfp-adversary against () such that, for giveM,, M5,

1. itfirst selectd from{1,2,...,m + mp, — p — 1} uniformly at random, and

2. invokesA*" with (M1, My, 1), and output@“'(My, Mo, I).

Claim3 Letm=nm+m,— p— 1. Then,

AdviP(A) =

1
P°°' M - .
(1 2) 2K

Proof. From the definition,

Advp P (A) = 'Pr[AhK % = 11K & (0,1 - PrIAY = 11p,p’ < Func(8, {0, 1)

On the other hand,

Pr{ak % — 1|K<—01"]—ZPr[I—|/\AthK 11K & 10,1}
i=1

|

m
= o 25 PIAT (M3, Mo) = 11K & (0,179

3

3

_1 > PHG(ML Mzi - 1)=1] .

i=1
