
Huge 2ndpreimages and collisions of

khichidi-1

Prasanth Kumar Thandra and S.A.V. Satya Murty

Indira Gandhi Centre for Atomic Research,

Kalpakkam, Tamilnadu 603102.

prasanth@igcar.gov.in, satya@igcar.gov.in,

Abstract

Khichidi-1[1] is a contestant of Sha-3[2]. A collision attack on khichidi is proposed in [3]. In this paper we

exploited a weakness in the design of the algorithm. This allowed us to propose two kind of attacks 1)

2ndpreimage attack[4], 2) Collision attack[4]. Our attacks are applicable to all the versions 224, 256, 384

and 512 and it is potentially strong.

Key words: khichidi-1, Hash function, 2ndpreimage resistance, Collision resistance,.

Introduction: Khichidi-1 [1] is a contestant of Sha-3 program. The algorithm uses a

sequential combination of shuffling of bits, T-function, and LFSR in its compression

function, C. For further details of the algorithm, please see [1]. collision attacks are

proposed on khichidi-1 in [3].Our observation showed that the algorithm has potential

flaws in the design. In this paper, we proved that a khichidi-1 is vulnerable to

2ndpreimage attacks as well as collision attacks. With our attack, both 2ndpreimage and

collisions can be found for almost all messages of practical purpose. Our attack require a

pre-computed table, tablexC, with (2*2
32

) words of 32-bit length. Once the table is

computed, finding a 2ndpreimage for a given message requires only calling of Round1

for the given message and its 2ndpreimage. Finding a collision also requires the same.

Hence, the complexity of attacks requires the call of compression function for (N-1)

times for finding a first collision/2ndpreimage, where N is the total number of blocks for

compression in both message and its 2ndpreimage/collision. Our attack allows

constructing huge number of collisions with same hash value, similarly 2ndpreimages.

In khichidi, the compression function C used recursively to compress padded messages of

lengths multiple of 448, 512, 768 and 1024 in respective versions in CBC-mode [5]. The

compression function, C, comprises a shuffling function(S) followed by a T-function (T)

followed by a LFSR(L). These three functions act on 32-bit words. The most interesting

thing is that our attack is independent of the details of these functions. A modification in

any of these functions does not make khichidi as secured against our attack except that

the computation of tablexC changes. Hash computation for a message using khichidi

involves mainly two parts one is compression of the message, “Round1”, second is final

hash computation. This second part involves in total 5 rounds, “Round 2 to 6”. The

padded message is divided in to blocks of respective lengths and these blocks are

compressed to a fixed length through a recursive operation of function C in CBC-mode.

Hence, the output of Round1 has a fixed length depending on the version of Khichidi-1.

This fixed length output is fed to “Round2” followed by “Round3”, “Round4”, “Round5”

and “Round6”. The output of “Round6” is the hash value of the message.

Our attack concentrates on the compressed output of Round1. Using our attack for a

given message, we can find huge number of messages, which generates the same output

as that of given message after Round1. Hence, irrespective of the details of “Round2-6”

the strategy of our attack works. In finding collision/2ndpreimage it dose not even

required to compute these last five rounds.

Attack: The only pre-requirement for finding collisions or 2ndpreimage is that tablexC

involves x, C(x), for all the values of x, where x is a 32-bit number. Single table

computed once is sufficient for finding collisions or 2ndpreimages for any message for

all the versions of khichidi.

Procedure of the attack is explained for 224 version with a general example. The

procedure is same for finding a 2ndpreimages or collisions. We are going to find a

collision/2ndpreimage for a (448-32) bit message, M. Length of the message can be

expressed as, (448(p)-32)-bits where p=1, 2, 3, 4…etc. M
i
 is the i

th
block of message M

and M
i
j is the j

th
word, 32-bit, of M

i
. When M is padded with L

1
(which is

M
2

6=0X800001A0 in this case)

padded-message length becomes 448 bits. The

2ndpreimage/collision for padded-message M is the message of length (448(p + q)-32)

where q=1, 2, 3… etc. One restriction on the lengths of unpadded-messages M, m is that

the padding process should be restricted to 32 bits. That is the length of m should be such

that its binary form can be expressed using not more than 31-bits. For present case let q is

also 1. So, the length of unpadded-message m is 864 bits, and the padding word is L
2
,

which is m
4
6=0X80000360. Hence, the padded-message m has length of 896 bits. Now

the “Round1” of M is shown in Fig. 1(a). The output of “Round1” for padded-message M

is shown in Fig. 1(a). The 4 blocks and corresponding words of the padded-message m

and their compression is as shown in Fig. 1(b). The output of Round1 of this “padded-

message m” should be equal to the output of Round1 of “padded- message M”. If this can

happen the result is either a collision or a 2ndpreimage. The only word fixed in “padded-

message m” is L
2
. The requirements of message m to become a 2ndpreimage/collision of

M and achieving these requirements are given below systematically.

1) The first requirement is D
2

6 should be equal to C(L
2
 ☺ D

2
5 ☺ d

3
6). To make it

happen, find x from tablexC mentioned earlier such that D
2

6= C(x). Now, chose

d
3

6 = (L
2
 ☺ D

2
5 ☺ x).This makes D

2
6=C(L

2
 ☺ D

2
5 ☺ d

3
6).

2) But, d
3

6 = C(d
2

6 ☺ m
3
6 ☺ d

3
5). Now from tablexC find y such that d

3
6 = C(y).

Hence, m
3

6 should be equal to (d
2

6 ☺ y ☺ d
3

5). m
3

6=(d
2

6 ☺ y ☺ d
3

5). Now,

Chose words from m
1
0 to m

3
5

randomly and calculated the values of d

i
js upto d

3
5.

As d
3

5, d
2
6 and y are known and hence m

3
6.

3) The next requirement, from Fig. 1(b), to have a collision/attack is D
2

0 should be

equal to C(m
4

0 ☺ d
3

6 ☺ d
3

0) . As, d
3
0 and d

3
6 are known already, using tablexC

m
4
0 is found.

4) The next requirement, from Fig. 1(b), to have a collision/attack is D
2

1 should be

equal to C(m
4
1 ☺ D

2
0 ☺ d

3
1. As d

3
1 and D

2
0 are already known, using tablexC

m
4
1 is found.

M1
0 M

1
1 M

1
2 M

1
3 M

1
4 M

1
5 M

1
6

D1
0 D

1
1 D

1
2 D

1
3 D

1
4 D

1
5 D

1
6

M2
0 M

2
1 M

2
2 M

2
3 M

2
4 M

2
5 M

2
6= L1

 D1
0 D

1
1 D

1
2 D

1
3 D

1
4 D

1
5 D

1
6

D2
0 D

2
1 D

2
2 D

2
3 D

2
4 D

2
5 D

2
6

m1
0 m

1
1 m

1
2 m

1
3 m

1
4 m

1
5 m

1
6

d1
0 d

1
1 d

1
2 d

1
3 d

1
4 d

1
5 d

1
6

m2
0 m

2
1 m

2
2 m

2
3 m

2
4 m

2
5 m

2
6

d2
0 d

2
1 d

2
2 d

2
3 d

2
4 d

2
5 d

2
6

d3
0 d

3
1 d

3
2 d

3
3 d

3
4 d

3
5 d

3
6

m3
0 m

3
1 m

3
2 m

3
3 m

3
4 m

3
5 m

3
6

 d4
0 d

4
1 d

4
2 d

4
3 d

4
4 d

4
5 d

4
6

= LTS (X)

X

is EXCLUSIEVE-OR

Fig. 1(a) Round1 of padded message M of length 448 bits

Fig. 1(b) Round1 of padded message m of length 896 bits

Collision and 2ndPreimage of Khichidi-1

D2
0 D

2
1 D

2
2 D

2
3 D

2
4 D

2
5 D

2
6

=

d1
0 d

1
1 d

1
2 d

1
3 d

1
4 d

1
5 d

1
6 d2

0 d
2

1 d
2

2 d
2

3 d
2

4 d
2

5 d
2

6

m4
0 m

4
1 m

4
2 m

4
3 m

4
4 m

4
5 m

4
6=L2

d3
0 d

3
1 d

3
2 d

3
3 d

3
4 d

3
5 d

3
6

5) The next requirement, from Fig. 1(b), to have a collision/attack is D
2

2 should be

equal to C(m
4

2 ☺ D
2
1 ☺ d

3
2) . As d

3
2 and D

2
1 are already known, using tablexC

m
4
2 is found.

6) The next requirement, from Fig. 1(b), to have a collision/attack is D
2

3 should be

equal to C(m
4

3 ☺ D
2
2 ☺ d

3
3) . As d

3
3 and D

2
2 are already known, using tablexC

m
4
3 is found.

7) The next requirement, from Fig. 1(b), to have a collision/attack is D
2

4 should be

equal to C(m
4

4 ☺ D
2
3 ☺ d

3
4) . As d

3
4 and D

2
3 are already known, using tablexC

m
4
4 is found.

8) The next requirement, from Fig. 1(b), to have a collision/attack is D
2

5 should be

equal to C(m
4

5 ☺ D
2
4 ☺ d

3
5) . As d

3
5 and D

2
4 are already known, using tablexC

m
4
5 is found.

9) The last word m
4

6=L
2
 is the padding word to m.

Now the message m is completely known with random values from m
1
0 to m

3
5 and

calculated values from m
3
6 to m

4
5 and the padding word L

2
=m

4
6=0X80000360. This

padded-message m generates same output in Round1 as that of message M. Hence, both

M, m generates the same hash value.

More collisions/2ndpreimages: Here, padded-message m has 2 blocks and its first

collision M has 4 blocks and the compression function has been called for 5 (2+4 -1)

times. Finding a second collision/2ndpreimage is much easier. For the padded-message

M append (448-32) bits. Now the new padded-message M is

 M ||m
5

j=0,1,2,3,4,5,6 || m
6

j=0,1,2,3,4,5, ||m
6

6= L
3

Where, the last word m
6

6 is the padding word. Now, as already explained above chose the

values of m
5

j=0,1,2,3,4,5 randomly and follow the steps mentioned above to obtain the values

of m
5

6, m
6
j=0,1,2,3,4,5 to make M as a collision/2ndpreimage to both m, M, M . In finding

the second collision/2ndpreimage, the compression function C has been called only once.

Proceeding further for more collisions by appending (448-32) bits as explained to the

latest message requires a call to compression function only once. The above attack is

applicable to all the versions of the algorithm khichidi-1. The procedure is same. But, as

the number of words in each block increase with 256, 384 and 512 versions,

corresponding changes are required in the procedure. As these changes are very

straightforward we are not presenting those in this paper.

Complexity: From the above discussion, complexity of the attack can be summarized as

follows. To find N collisions/2ndpreimages for a padded-message M with N number of

blocks requires 3N calls of compression function. In addition to this, a pre-computation is

required for tablexC.

Similar attacks: As above similar kind of construction of collisions/2ndpreimages for

padded-message M is also possible where the collisions/2ndpreimages constructed are

shorter than M by even number of blocks Similar to the above attack where the collisions

found to padded-message M are lengthier than M by even number of blocks. But, as the

procedure is almost same we are not giving the complete details of this construction here.

Conclusion: In this paper, we presented a way constructing very huge number of

2ndpreimages to a given message and a way of finding collisions for khichidi-1. Our

procedure complexity is very less with a pre-computed table. The procedure requires the

number of calls to compression function linearly dependent on the total number of blocks

of messages involved in finding a collision/2ndpreimage. The procedure is same for

finding collisions/2ndpreimages for all the versions of khichidi. Our attack clearly

exploited the weaknesses involved in the design of the algorithm.

References

[1] Natarajan Vijayarangan, “A NEW HASH ALGORITHM: Khichidi-1”, available at

http://www.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html

[2] www.nist.gov/hash-competition.

[3] Nicky Mouha – “Collision for Khichidi-1”, available at http://www.nickymouha.be/software-en.html

[4] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC press, 1996

[5] en.wikipedia.org/wiki/Block_cipher_modes_of_operation

