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Abstract. We present various types of attacks on the hash family Edon-
R. In a free start attack scenario, with the initial chaining value not fixed,
all three main attacks (collisions, second preimage, and preimage) can be
launched on Edon-R with negligible effort. In these attacks we exploit the
asymmetrical diffusion of the chaining values in the compression function.
Also, by partially inverting the compression function and fixing one part
of the chaining value, we launch a meet-in-the-middle attack on Edon-

R-n to find real preimages. The attack requires 2
2n
3 effort and the same

amount of memory. The attacks are applicable to all digest sizes.

1 Description of Edon-R

The hash family Edon-R uses the well known Merkle-Damgard design princi-
ple. The intermediate hash value is rather large, two times the digest length1.
Further, we will describe only Edon-256. The chaining value Hi is composed of
two block of 256 bits each, i.e. Hi = (H1

i , H
2
i ). The message input Mi, for the

compression function, is also composed of two blocks, i.e. Mi = (M1
i ,M

2
i ). Let

Edon256 be the compression function. Then the new chaining value is produced
as follows:

Hi+1 = (H1
i+1, H

2
i+1) = Edon256(M1

i ,M
2
i , H

1
i , H

2
i )

The hash value of a message is the value of second block of the last chaining
value.
Internally, the state of Edon256 has two blocks, A and B, of 256 bits each.
Edon256 makes eight updates, by applying the quasigroup operation Q(x, y),
to one of these blocks. The exact definition of the quasigroup operation can be
found in [1]. With Ai and Bi we will denote the values of these blocks after
the i-th update in the compression function. Hence, each input pair (Hi,Mi)
generates internal state blocks (A1, B1), (A2, B2), . . . , (A8, B8). The new chaining
value (the output of the compression function) Hi+1 is the value of the blocks
(A8, B8).

2 Simple observations

We present a few simple observations that are further used in the attacks.

1 Edon-224 and Edon-384 has 512 and 1024 bits chaining values, respectively.
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Observation 1. The quasigroup operation Q(x, y) of Edon-R can be presented
as:

Q(x, y) = µ(x) + ν(y),

where the functions µ(x) and ν(y) can easily be inverted. The exact definitions
of these functions are irrelevant for the attack.

In order to invert any of these functions, we need to solve two systems of linear
equations. Hence we will assume that inverting these functions requires negligi-
ble effort.

Observation 2. The quasigroup operation Q(x, y) of Edon-R is easily invertible
as well, i.e. it is easy to find x if y and Q(x, y) are fixed. Same holds for y.

If, for example, we fix the values of y and Q(x, y) then we get an equation
of a type µ(x) = C. From the observation 1, it follows that we can invert the
quasigroup operation Q(x, y) with negligible effort.

3 Free start second preimages and free start collisions for
Edon-R

Definition. Let f(x, y) be a compression function of an iterative Merkle-Damgard
hash functionH(z), where x is the message, and y is the chaining value. The pairs
(M1, H1) and (M2, H2) produce a free start collision if f(M1, H1) = f(M2, H2).

Definition. Let f(x, y) be a compression function of an iterative Merkle-Damgard
hash function H(z), where x is the message, and y is the chaining value. Let the
message M1 and the chaining value H1 be fixed. The pair (M2, H2) produces a
free start second preimage of (M1, H1) if f(M1, H1) = f(M2, H2).

Let M1 and H1 produce the target hash value H∗. This pair generates internal
blocks (A1

1, B
1
1), . . . , (A1

8, B
1
8) = H∗. We will find another pair M2, H2 that gen-

erates internal blocks (A2
1, B

2
1), . . . , (A2

8, B
2
8), such that (A1

8, B
1
8) = (A2

8, B
2
8) =

H∗, thus providing a free start second preimage. The main goal is to correct
only H2 such that this pair will produce the required hash value. This is done
by step-by-step correction of the internal blocks A2

i and B2
i . We use the invert-

ibility of the quasigroup operation in the case when two of the three values are
fixed. Hence, sequentially, we define the internal blocks values. In the last two
steps of the algorithm the exact values of H2

1 and H2
2 are found such that all

previous equations hold. The algorithm steps are shown in Fig. 1 and work as
follow:

Free start second preimage algorithm

Input M1 = (M1
1 ,M

1
2 ), H1 = (H1

1 , H
1
2 )

1. Generate (A1
1, B

1
1), . . . , (A1

8, B
1
8) for M1, H1.
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2. Take any message M2 = (M2
1 ,M

2
2 ), such that M2 6= M1 in both blocks.

3. Find the value of A2
6 from the equation Q(M2

1 , A
2
6) = A1

7. Note that A2
5 = A2

6.
4. Find the value of B2

5 from the equation Q(B2
5 , A

2
5) = B1

6 . Note that B2
4 = B2

5 .
5. Find the value of A2

1 = Q(M2
2 ,M

2
1 ) and B2

2 = Q(A2
1,M

2
2 ). Note that A2

2 = A2
1

and B2
3 = B2

2 .
6. Find the value of A2

3 from the equation Q(A2
3, B

2
3) = B2

4 . Note that A2
4 = A2

3.
7. Find the value of H2

2 from the equation Q(H2
2 , A

2
2) = A2

3. Note that A2
4 = A2

3.
8. Find the value of H2

1 from the equation Q(A2
4, H

2
1 ) = A2

5.

Output M2,H2

The algorithm uses five inversions. Therefore, the second preimage can be
found with negligible effort.

Remark. Notice that we can freely choose the colliding messages.

4 Free start preimages for Edon-R

Definition. Let f(x, y) be a compression function of an iterative Merkle-Damgard
hash function H(z), where x is the message, and y is the chaining value. Let H∗

be some hash value. The pair (M,H) is a free start preimage of H∗ for f if
f(M,H) = H∗.

Let H∗ = (H∗
1 , H

∗
2 ) is the target hash value (chaining value). We will find

a pair M,H that generates internal blocks (A1, B1), . . . , (A8, B8), such that
(A8, B8) = H∗, hence produce a free start preimage. This is done by step-
by-step fixing the values of the internal blocks, starting from the output block
and ending with the values of the input chaining blocks.

Free start preimage algorithm

Input H∗ = (H∗
1 , H

∗
2 )

1. Take any message M = (M1,M2)
2. Fix the value of A8 to H∗

1 and B8 to H∗
2 . Note that A7 = A8.

3. Find the value of A6 from the equation Q(M1, A6) = A7. Note that A5 = A6.
4. Find the value of B7 from the equation Q(A7, B7) = H∗

2 . Note that B6 = B7.
5. Find the value of B5 from the equation Q(A5, B5) = B6. Note that B4 = B5.
6. Find the value of A1 = Q(M2,M1). Note that A2 = A1.
7. Find the value of B2 = Q(A1,M2). Note that B3 = B2.
8. Find the value of A3 from the equation Q(A3, B3) = B4. Note that A4 = A3.
9. Find the value of H2 from the equation Q(H2, A2) = A3.

10. Find the value of H1 from the equation Q(A4, H1) = A5.

Output M ,H
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Figure 1: On the left, steps of the algorithm (numbers in the blocks) for finding
free start second preimages. On the right, steps of the algorithm for finding free start
preimages.

The algorithm uses six inversions. Therefore, the preimage can be found with
negligible effort.

Remark. Notice that we can freely choose the preimage.

5 Preimage attack

The preimage attack is maintained using the meet-in-the-middle approach. The
common procedure for Edon-n where n is the digest size2 is defined as follows.

2 The attack deals with 256-bit and 512-bit versions. The versions with truncated
output can be attacked as well with the same complexity as corresponding non-
truncated versions.
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Figure 2: Meet-in-the-middle attack for partially inverting the compression function
of Edon-R.

Roughly, we prepare a set S1 of intermediate hash values that are produced
from the initial value, and a set S2 of intermediate values that are produced
from the given final hash value by partially inverting the compression function.
If these sets intersect we can build a message that leads to the given hash.

Since the intermediate value is twice as big as the hash digest we need to
put a constraint on the intermediate states: we keep only states with H1 = 0.
Surprisingly, this filtering can be maintained in both directions with less than
2n additional effort thus making the attack possible. Let us explain the attack
in details.
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Fixing H1 in forward direction. We need only one message block to get a
desired Hnew

1 . We want it to be 0, and both the initial value blocks are fixed as
well. We claim that for each M1 we can find M2 such that this message input
and the initial value blocks will produced a zero value in Hnew

1 .
Indeed, let M1 be assigned with some random value. Then we obtain the

value of A6 since A7 = Hnew
1 = 0 and the function Q is invertible. Then we

consecutively obtain the values of A5, A4, A3, A2, and A1 (keep in mind that the
initial chaining value is fixed). Given A1 and M1, we derive M2 by inverting the
first application of Q. Then we obtain all B’s and thus a pair (Hnew

1 = 0, Hnew
2 ).

We repeat this step 22n/3 times with different values of M1 and get 22n/3

valid pairs (0, Hnew
2 ). We store the pairs with the messages.

Fixing H1 in backward direction. Again, we need only one step (one message
block) to get a pair of form (0, H2) from a given hash value H = Hnew

2 . However,
this step is time-consuming. We get the desired pairs with another meet-in-the-
middle procedure.

First, we assign M1 with some predefined value m. Then we assign A8 with
some random value and consecutively obtain the values of the following internal
variables (in this order): A7, B7, B6, A6 (using M1), A5, B5, B4, A4, A3, B3. We
repeat this step 2n/3 times for different values of A8 and store pairs (A8, B3).

Now we assign M2 with some random value3 and obtain the values of A1,
A2, and B2 using the value of M1. We repeat this step 22n/3 times and store
pairs (M2, B2). Note that H2 is left undefined in both steps.

To build a correct execution it is enough to find two pairs (one from each set)
such that B2 = B3. If B2 and B3 collide then we compute all the other internal
variables without contradiction. Finally, we obtain H2 from A3 and A2.

Since blocks have n bits we get about 22n/3+2n/3−n = 2n/3 colliding pairs
and thus about 2n/3 valid pairs (H1 = 0, H2).

Meet-in-the-middle. We have prepared two sets of pairs (0, H2): first one of
size 22n/3 and the second one of size 2n/3. With high probability, there are two
elements from different sets colliding on H2, which gives us a correct preimage.

Complexity. The attack needs 22n/3 computations (compression function queries)
and roughly the same amount of memory. A trivial time-memory tradeoff can
be applied and would require about 22n/3+k operations and 22n/3−k memory.
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A Free Start (Second) Preimage Examples for
Edon-256

Table 1. Second Preimage Example.

M1 "This is a random message input."

IV1 As defined in the specifications

M2 "The second input is different from the first."

IV2 5450f88d a7ded66c 42948f72 1c9f9491 4935c383 f9fbfb82 7a529df2 3d978880

485cdd0c 348ce98e 23a6c2f1 75ee5285 7f34305e 4000567a 4fd6f191 783665e2

H1 = H2 7260b283 5f1ab7cf e2140e05 3fe875e0 cb811d29 24a8950e d7000b9e c9cbb78b

Table 2. Preimage Example.

M "NIST Competition"

IV 1a1b741 e81f784c e50b1b4a c580098f ccce0de8 fd904596 c8ac1760 625c09b4

H 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
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