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Abstract. In this paper, we show practical collision and preimage at-
tacks on DCH-n. The attacks are based on the observation of Khovra-
tovich and Nikolic that the chaining value is not used in the underly-
ing block cipher. Based on this observation, we show a trivial collision
resp. multi-collision attack on DCH-n and a preimage attack with a com-
plexity of about 521 compression function evaluations.

1 Description of DCH-n

The hash function DCH-n is an iterated hash function based on the Merkle-
Damgaard design principle. It processes message blocks of 512 bits (504 bits mes-
sage input, 8 bits dithering input) and produces a hash value of n = 224, 256, 384
or 512 bits. In each iteration the compression function f is used to update the
chaining value of 512 bits as follows:

Hipn= f(Hy, M;) =H; & M, & g(M;) ,

where g(M) is some non-linear transformation. For a detailed description of
DCH-n we refer to [3].

2 Cryptanalysis

In this section, we will present our collision and preimage attack on DCH-n. The
attack is an extension of the attack of Khovratovich and Nikolic [1] and is based
on similar principles as the attacks on SMASH [2]. Let ~;(M;) = g(M;) & M.
Then the above equation can be rewritten as:

Hii1 = Ho @0 (Mo) @71 (M) © -+ @ (M) (1)

Note that the v, are different since in DCH-n an 8-bit dithering is used in each
message block to compute M; @ g(M;). The only thing we need to know about
dithering method is that the last 5 bits are a counter and that the sequence
guiding the first 3 bits changes every time the counter resets.



2.1 Collision Attack

We now describe the collision attack. Assume we are given a message consisting
of 2% + 1 message blocks, m = My||M;]| ... || Mas. Each M; = m;||M/, where m;
is the dithering of the i — th message block. Since only 2% different dithering
blocks exist, there exist 0 < 4,7 < 2% with i # j such that m; = m;. But this
also implies that v; = 7;. Based on (1) we have with k = 28

Hyy1 = Ho © vo(Mo) ® y1(M1) © - - @ v (My).

So setting M; = Mj = a for the above i # j implies that these blocks don’t
contribute to the value Hy41. Hence, we can trivially construct collisions for
DCH-n. Note that the messages in the colliding message pair consist of 2% + 1
message blocks.

Every choice of a € {0,1}5% leads to a collision. Hence, we can trivially
construct t-collisions (for 0 < ¢ < 25%4) for DCH-n. Note that all these attacks
apply to DCH-n for all output sizes.

2.2 Preimage Attack

In a similar way as in the collision attack, we can also construct preimages for
DCH-n. The attack is based on the observation that the outputs of DCH-n form
a vector space of dimension n over GF(2) (cf. also [2]). Hence, we only need to
compute a basis of the output vector space to construct preimages for DCH-n.
The only technicality we have to take care of is the dithering of the message
blocks.

We assume n = 512 since the other output lengths of DCH-n result from
truncations of the n = 512 version.

As in the collision case we start by finding different indices (7, j) for which
the dithering m; and m; is the same. For the preimage case, we need to find
n = 512 such pairs. We will construct a preimage of length N +1 message blocks.

Then, the attack can be summarized as follows:

1. Assume we want to construct a preimage for h consisting of N + 1 message
blocks. Then, we have to find a message M such that:

N
h=Hy®@Dv(M) .
=0

2. Choose the last message block My such that the padding is correct.
3. Once, we have fixed the last message block, we have to find the remaining
message blocks M; for 0 < i < N such that:

N-1

P (M) = h@ Hy & yn(My) - )
1=0



4. N will be chosen such that among the remaining N message blocks we have
¢ index pairs (49, jo), - - -, (le—1, je—1) satisfying v;, = 7;, (where every iy, jx
is unique).

5. Compute ¢ vectors a* = ~;, (M§) @ v;, (MF) with arbitrary values for M}
and MY and save the triple (a*, M§, MF¥) in a list L.

6. From the set of £ > n vectors a® compute a basis of the output vector space
of DCH-n. The probability for £ > n vectors to contain n vectors which are
linearly independent is

n—1 n—1 on_q

2E72i i—0 — 5=
TEE (IR EES o)

1=0 i=0

This means that we can basically construct such a basis with a complexity of
2-¢ compression function evaluations. This can be reduced to £+1 evaluations
of the compression function by fixing the block M} and letting only the block
M} vary when generating the basis of the output vector space.
E. g. choosing n = 512 and ¢ = 520 we already get a probability of 0.9961 for
finding a basis and thus need 521 compression function evaluations. Note,
that constructing the basis is a one time effort.
Let B = {a",... ,a* 1} denote the basis for the output vector space and
let 7 = Uz;é i U jr be the union of all the indices contributing to the basis
vectors. (For simplicity we assume that the first n pairs correspond to the
basis vectors.)

7. We divide the indices N' = {0,..., N — 1} into Z and N '\ Z. For every index
iin N\ Z we set M/ =0...0. These are the indices not contributing to the
basis. From (2) we thus get

@%(Mi) =h& Hy® yv(Mn) @ vi(m4|0...0).
z N\T

Once a basis and the indices Z are computed, the right side of the equation
is completely known and thus we have

D) =
T

8. An arbitrary ¢ can be represented with respect to this basis ¢ = xga*® +
-+, _1aF=1 by solving the linear system over GF(2). Now we choose the
blocks M; for i € T as follows:
~Ifxpy=0for 0 <k <nset M;, =aand M;, = a for some arbitrary
value of o (as in the collision attack). Since in such a case, ;, and ~;, are
equal, these two values cancel out and don’t contribute to the result.
~Ifap =1for 0 <k < nset M;,; = M¥ and M;, = M} such that
Yip (ME) & 7, (MF) = a* for 0 < k < n.

9. What remains is to say how large N has to be. We need to guarantee that
among all indices from 0, ..., N —1 we can find ¢ pairs as described above. If



we take a look at the 8-bit dithering strings m; for i = 0,..., N —1 we know,
that the 3 non-counter bits can only have 8 different values 0,1, ... 7 (actually
6 for the concrete Hanoi sequence). Let ng, ..., n; denote the frequencies of
the value 0, ..., 7 in the non-counter part. Assume N = 32- ZZ:O n;. Then,
the number of valid pairs (ix, jx) is

SIS NCHEDE 2

Therefore, N = 2 - £ + 28 is a valid choice of N. For ¢ = 520 as above we
therefore get a preimage of length 1297 blocks.

7
=0

Hence we can construct a preimage by solving a linear system of equations
of dimension n x n over GF'(2). Constructing the basis has a complexity of £+ 1
compression function evaluations and is a one time effort.

Furthermore, the preimage attack can be used to construct second preimages
for DCH-n with the same complexity. Note that by using the above described
method, preimages (or second preimages) always consist of N +1 =20+ 2% + 1
message blocks.

3 Conclusion

We showed, that it is trivial to construct collisions and (second) preimages for
DCH-n. Furthermore, the presented attack applies to all similar constructions
not introducing the chaining variable into the compression function.
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