Non-randomness in the Sarmal Compression Function*

Nicky Mouhal»2** Tor E. Bjgrstad®, and Bart Preneel®»?**

! Department of Electrical Engineering ESAT/SCD-COSIC, Katholieke Universiteit Leuven.
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
3 The Selmer Center, Department of Informatics, University of Bergen, Norway.

Abstract. Sarmal is a hash function submitted to the NIST SHA-3 hash function competition. The
design and structure of Sarmal is quite similar to that of ARIRANG, another SHA-3 candidate. We
analyse the impact and applicability of recent attacks by Guo et al. on ARIRANG, with respect to
Sarmal. Our results indicate that Sarmal is less vulnerable against this line of attack; in particular
we were not able to obtain pseudo-collisions for Sarmal faster than using a generic attack. However,
we have found that the compression function of Sarmal can be distinguished from a pseudorandom
function with probability one, using only two compression function calls. This result is specific to
the compression function, and does not seem extensible to the full hash function.

Keywords: Cryptanalysis, hash function, Sarmal, pseudocollision, non-randomness.

1 Introduction

Sarmal [8], designed by Varici, Ozen and Kocair, is a candidate for the SHA-3 hash function
competition [7]. Another SHA-3 candidate, ARIRANG [2], was recently attacked by Guo et al.
[3]. Because the round function of ARIRANG and Sarmal have similar structure (the designs
are in both cases influenced by that of the hash function FORK-256 [4]), we have examined the
security of Sarmal with respect to this type of attack.

2 Brief Description of the Sarmal Compression Function

Sarmal is built upon the HAIFA [1] framework, and produces a digest size of either 224, 256, 384
or 512 bits. All operations in Sarmal are on 64-bit words. To hash a message, it is padded and
split into 1024-bit blocks, which are iteratively processed by the Sarmal compression function
f. The final hash value is obtained by truncating (for digest sizes less than 512 bits) the final
hash state. The only differences between the different digest sizes are the IVs, the constants,
the number of rounds of the compression function, and which bits are truncated at the end.

The compression function f operates on two independent, parallel branches, which are com-
bined at the end using xor. Finally, a Davies-Meyer feed-forward is applied to produce the next
chaining value. Each branch consists of 16 or 20 calls to the round function, denoted G, shown
in Fig. 1. In each round, four reordered words of the message block M; are used as input. Earlier
cryptanalysis of Sarmal [5, 6] has found that the branches are combined in a way which is vul-
nerable to the generalised birthday attack [9]. To the best of the authors’ knowledge, no other
independent cryptanalysis of Sarmal exists.

As can be seen from Fig. 1, the round function G contains two calls to an inner function g.
This g-function provides a large part of the nonlinearity in Sarmal. It consists of a layer of eight

* The information in this document reflects only the author’s views, is provided as is and no guarantee or
warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

** This work was supported in part by the Concerted Research Action (GOA) Ambiorics 2005/11 of the Flemish
Government, by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in
part by the European Commission through the ICT programme under contract ICT-2007-216676 ECRYPT
II. This author is funded by a research grant of the Institute for the Promotion of Innovation through Science
and Technology in Flanders (IWT-Vlaanderen).

X0 X[X2 X.[B X[[4 X[X[= X.[7]

1

A—OD B c—d D~
— g -9
X [0] X[1] X[2] X[3] X [4] X[5] X [6] X[7]

A=0,(M)[(4i-4) mod 16] B=0,(M)[(4i-3) mod 16] C=0,(M)[(4i-2) mod 16] D=0,(M)[(4i-1) mod 16]

j j j j

Fig. 1. The Sarmal G-function

parallel 8-bit S-boxes, and an 8x8 MDS matrix. This is essentially the same construction as the
G®12) function in ARIRANG-512, although the particular S-box and MDS matrix in Sarmal
are both different. For further information about Sarmal, we refer to the full specification [8].

3 Choosing the Type of Difference

In the recent attack on ARIRANG [3], the authors use symmetric differences; in other words,
each message or state word either contains no difference, or A = 0xFF. . .FF. Restricting oneself
to this pair of differences has several nice properties: they are invariant under rotation, are a
closed set under xor, and pass through the S-box and MDS layer of ARIRANG with a “good”
probability (2728 for ARIRANG-256).

Unlike ARIRANG, Sarmal does not contain any rotations, so we can in principle use any
fixed pair (0, d) in the same manner. However, the only xor difference that always passes through
the modular additions and subtractions in Sarmal?, is a difference in the most significant bit,
0x80. ..00. Because the MDS layer in the g-function spreads any single-byte difference to all
eight bytes, this difference is not useful (in this context) for characteristics that contain active
g-functions.

The selection heuristic for a good differential characteristic should thus be to minimise the
number of active g-functions, as well as the number of active additions and subtractions, since
these will all have to be satisfied either probabilistically or through message modification. As
a first-order estimate of the overall attack complexity, we have only considered the number of
active g-functions, and assumed that the modular operations behave differentially as xor.

Finding a good differential for the g-function can be done by examining the MDS and S-box
layers separately. The MDS matrix used in Sarmal has only one eigenvalue, 0x0D, with mul-
tiplicity 8 and the corresponding eigenvector [0x01, 0x01,0x01, 0x01,0x01, 0x01, 0x01, 0x01]7",
We may therefore consider word differences that have the same (fixed) value in every byte, and
where the value of this byte is chosen to maximise the probability of passing it through the
S-box. Assuming that inputs to the g-function are distributed uniformly at random, the byte
differences 0x55, 0x7A and 0xA8 will pass through the S-box with probability 6/256. Hence we
may assume that the difference 0xA8. . . A8 (as well as the other two) is passed through an active
g-function with probability p = (6/256)% ~ 274332,

If we assume that there is some ¢ that passes through the g-function unchanged with proba-
bility p, and that all additions and subtractions behave differentially as xor, we can easily search

4 The ARIRANG compression function does not use modular additions or subtractions.

Fig. 2. An iterative characteristic for the Sarmal round function

through all possible characteristics, much in the same way as for ARIRANG in [3]. With a sin-
gle exception, all characteristics obtained in this way will have a number of active g-functions
present. These can be satisfied either through the use of message modification techniques (in
the same style as for the attack on ARIRANG, see [3] and Appendix A.1 for details), or proba-
bilistically. While the exact analysis (involving the number of equivalent compression function
calls) is more involved, a good working estimate is that one may satisfy {2,3,4,6} of the active
g-functions probabilistically for Sarmal-{224, 256, 384,512}, while keeping the overall cost of the
characteristic below generic attacks.

4 Non-random Behavior of the Compression Function

A curious observation about the Sarmal compression function is that it is possible to obtain an
iterative differential characteristic for the round function G that holds with probability one.

Consider a single application of G, with state input X; 1 = (X;-1[0],...,X;_1[7]) and
message input m; = (A, B,C,D). Now suppose that we have input differences AX;_; =
(0,0,0,0,6,0,0,6), and Am; = (9,6, 9,). This means that none of the g-functions will be active,
since the differences in X;_1[0] and X;_1[4] are cancelled by the differences coming from A and
C'. If the two additions and the two subtractions also behave as xor, we find that AX; = AX;_;.
When § = I £ 0x80...00, this occurs with probability one. This is illustrated in Fig. 2.

By using this characteristic, it is simple to distinguish the full compression function of
Sarmal from a pseudorandom function, with only two compression function calls (having suitable
differences in the inputs). For the particular mode of operation used in Sarmal, this corresponds
to having differences (in the most significant bit) of not only all the message blocks M; and
some of the incoming chaining values h;_1, but also the salt s, and the HAIFA counter value ¢
which denotes the number of bits hashed. This is somewhat unreasonable in practice, and hence
we have not been able to apply this result to attack the full hash.

5 Finding the Best Characteristics

We performed an exhaustive search for characteristics leading to collisions and pseudo-collisions,
similar to the one in [3]. The round function takes 16 message words and 8 state words as input,
so checking all possible inputs with respect to the input differences (0,0xA8. . .A8) requires only
224 trials. Our search heuristic was to look for characteristics with the least number of active
g-functions.

The “best” characteristics found in this way did not contain differences in any of the message
words, but only in part of the chaining value h;_;. Common for these characteristics is that only

one of the two parallel branches becomes active. The single best characteristic found for Sarmal-
256 has 9 active g-functions, and is shown in Fig. 3. For Sarmal-224, the best characteristic is
also unique, but more expensive (10 active g-functions), due to the way output truncation is
performed. In the case of Sarmal-{384,512}, there are several different characteristics with the
minimal number of active g-functions, 12. Characteristics leading to collisions, as opposed to
pseudo-collisions, are significantly more expensive. The results of our search are summarised in
Table 1.

Finally, we applied message modification strategies in the style of [3] to all the most promising
characteristics. While we (in principle) control more input words (24) than the number of active
constraints on the pseudo-collision characteristic, the message schedule makes it difficult to
satisfy enough g-functions. Our best result was for Sarmal-512, but even here we would still
need to satisfy 7 of the g-functions probabilistically, yielding an attack complexity well above
27256 We were therefore not able to construct pseudo-collisions for any of the Sarmal digest
sizes. A possible strategy for message modification is explained in the appendix.

Table 1. Complexity of the best pseudo-collision and collision characteristics for all digest sizes

Digest size 224|256|384(512
Active g-functions for pseudo-collision| 10| 9 | 12| 12
Active g-functions for collision 17172526

Since we in this analysis neglected the cost of passing our differential through the modular
arithmetic, the real cost of any attack along these lines is likely to be even higher.

6 Conclusion and Acknowledgements

We studied the impact of the recent ARIRANG attacks [3] for Sarmal, a hash function with a
similar design. We find that Sarmal appears less vulnerable to these attacks. Using the techniques
developed for ARIRANG, we could not construct pseudo-collisions nor collisions for any digest
size.

The Sarmal compression function can, however, be distinguished from a pseudorandom
function by using a differential characteristic that holds with probability one. This result does
not seem extensible to the full hash function, and hence does not seem to invalidate the security
claims made by the designers of Sarmal.

The authors would like to thank Sebastiaan Indesteege, Christophe De Cannieére, Vesselin
Velichkov as well as Kerim Varici for useful discussions. Tor E. Bjgrstad would like to thank the
COSIC research group at Katholieke Universiteit Leuven for hosting him while this research
was done.

References

1. E. Biham and O. Dunkelman. A Framework for Iterative Hash Functions — HAIFA. In Second NIST
Cryptographic Hash Workshop, 2007.

2. D. Chang, S. Hong, C. Kang, J. Kang, J. Kim, C. Lee, J. Lee, J. Lee, S. Lee, Y. Lee, J. Lim, and J. Sung.
ARIRANG. Submitted to the NIST SHA-3 hash function competition, 2008. Available: http://csrc.nist.
gov/groups/ST/hash/sha-3/Roundl/documents/ARIRANGUpdate. zip.

3. J. Guo, K. Matusiewicz, L. R. Knudsen, S. Ling, and H. Wang. Practical pseudo-collisions for hash functions
ARIRANG-224/384. Available online, 2009.

4. D. Hong, D. Chang, J. Sung, S. Lee, S. Hong, J. Lee, D. Moon, and S. Chee. A New Dedicated 256-Bit Hash
Function: FORK-256. In M. J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer Science,
pages 195-209. Springer, 2006.

5. F. Mendel and M. Schléiffer. Collisions and Preimages for Sarmal. Available online, 2008.

6. I. Nikoli¢. Preimage attack on Sarmal-512. Available online, 2008.

7. N. I. of Standards and Technology. Announcing Request for Candidate Algorithm Nominations for a New
Cryptographic Hash Algorithm (SHA-3) Family. Federal Register, 27(212):62212-62220, November 2007.
Available: http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf (2008/10/17).

8. K. Varia, O. Ozen7 and C. Kocair. Sarmal: SHA-3 Proposal. Submitted to the NIST SHA-3 hash function
competition, 2008. Available: http://csrc.nist.gov/groups/ST/hash/sha-3/Roundl/documents/Sarmal.
zip.

9. D. Wagner. A generalized birthday problem. In M. Yung, editor, CRYPTO, volume 2442 of Lecture Notes in
Computer Science, pages 288-303. Springer, 2002.

A Appendix

A.1 A Pseudo-collision Characteristic for Sarmal-256

Using the characteristic in Fig. 3, we construct a strategy for message modification to find a
pseudo-collision for Sarmal-256.

— Single-message modification can be used for M;[0] in round 1.

— We can use single message modification for M;[15] in round 5 as well. Although this changes
M;[15] in round 4, the change will not propagate through a g-function, and as such still
follows the characteristic.

— We change M;[12] in round 6. This will also change M;[12] in round 4. By correcting M;[7]
in round 2 as well, the output after round 4 will not be changed.

— Changing M;[13] in round 7 will also affect M;[13] in round 4. To keep the output after round
4 the same, we modify M;[4] in round 2. As this will change the output of the g-function in
round 2, we must modify h;_1[0], h;—;[1] and h;_1[2] as well.

— Changing M;[3] in round 7 will affect M;[3] in round 1 as well. Correcting this change is
not possible, as we cannot change the counter value c[0]. As message modification cannot
be used, M;[3] in round 7 will only have the right value with some probability.

— Changing M;[14] in round 10 also changes M;[14] in rounds 4 and 5. To correct these changes,
we must also change M;[5] in round 2 and M;[8] in round 3. As the change of M;[8] in round
3 is at the input of a g-function, we must change several other words of the message and
chaining value in earlier steps as well. We must also correct the changes of M;[5] and M;[8]
in rounds 8 and 7 respectively. As we do not have the freedom to do this, we can only satisfy
M;[14] in round 10 probabilistically.

— Message modification techniques for M;[6] in round 11, M;[1] in round 15 and M;[9] in round
16 are not possible for similar reasons. They will therefore only have the correct values with
some probability.

Using this strategy for message modification, we need to satisfy at least five g-function inputs
probabilistically. As was shown in Sect. 3, the attack complexity will never be lower than the
generic birthday bound if the number of g-functions that we cannot control is more than three.
For other characteristics, our search program showed that the complexity is even worse. Similar
results were obtained for the other digest sizes of Sarmal. We were therefore not able to produce
a pseudo-collision attack for any digest size of Sarmal, using the techniques of [4].

X X X X 0 0 0 0 0 0 X 0 0 0 X X
0—o - 20 3 M—o 4 10— 70
H o H oo H oo H oo
— = = e = —_— = = =
q @ @ Q D D (0 q ([¢ ¢ X
4—o 5-& 6o 79 14— 9o 13- -
H oo H oo a0 H oo
(>E>%$$ﬁ<;<ﬁ >>>$%)<<<
8—g 9o 10 —¢ Mg 6—¢ 59 8o 20
H oo H o} a0 H o}
—_— = = - —_— = = =
q Q Q X Q D D q q @ q Q D
12 ¢ 13 o 14 ¢ 150 3 o 15 o 12 o 0o
H oo el H oo e
—_— = = = —_— = = -
q Q Q Q X D D q Q X @ q Q D
1—& 14— 15—~ 10 -0 8—& 23 09 5—¢
H oo oo H oo H oo
— = = e —_— = = =
(0 q @ Q X 0 0 D X 0 D D
12— 29 7 -9 4 - 10 —¢ 39 14— 13 -9
a0 H o} H oo H o}
YT Y 3 3 L ST T 1
13 —o 8 - 3 -9 9 -0 12 —¢ 79 1-¢ 15—
el o]0 H oo o]0
—_— = = = —_— = = =
q @ @ Q X ((0 q @ q X
MN—e 5 00— 6 - 9—o 4 6—o M-
H oo e el e

%
ﬁ

Fig. 3. A characteristic for a pseudo-collision for Sarmal. No difference in the words is indicated
by 0, a difference of 0x55...55 by X. Only the left branch is shown, as the right branch contains
no differences. No differences are introduced in the message words. A shortened notation is used
for the message words that do not include the block index.

