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Abstract. In this paper, we show practical collision and preimage at-
tacks on DCH-n. The attacks are based on the observation of Khovra-
tovich and Nikolic that the chaining value is not used in the underly-
ing block cipher. Based on this observation, we show a trivial collision
resp. multi-collision attack on DCH-n and a preimage attack with a com-
plexity of about 583 compression function evaluations.

1 Description of DCH-n

The hash function DCH-n is an iterated hash function based on the Merkle-
Damgaard design principle. It processes message blocks of 512 bits (504 bits
message input) and produces a hash value of n = 224,256,384 or 512 bits. In
each iteration the compression function f is used to update the chaining value
of 512 bits as follows:

Hiyw = f(H;, M;) = H; & M; ® g(M;) ,

where g(M) is some non-linear transformation. For a detailed description of
DCH-n we refer to [3].

2 Cryptanalysis

In this section, we will present our collision and preimage attack on DCH. The
attack is an extension of the attack of Khovratovich and Nikolic [1] and is based
on similar principles as the attacks on SMASH [2]. Let ~;(M;) = g(M;) & M.
Then the above equation can be rewritten as:

H; = Ho®v(My) ®7v1(M) - D~ (M)

Note that the ~; are different since in DCH-n a block counter is used in each
message block to compute M; @ g(M;). However, this counter is reset to 0 after
computing 32 message blocks. Hence, we know that ; = ; for i = j (mod 32).
Based on this observation, we now introduce an alternative description of DCH-
n. Let F(mo) = ’Yo(Mo) @’yl(Ml) D--- @"}/31(M31) then H32 = Ho @F(mo) with
mo = Mo||Mi||--- || Ms1. In general, we have

Hit1y.30 = Ho © I'(mgo) @ --- @ I'(my) ,

with m; = Msa.i||Mag.iv1]| - - - || Ma2.i431-



2.1 Collision Attack

Based on this alternative description of DCH-n, we now describe the collision
attack. Assume we have given a message M = mg|lm; consisting of (32 - 63) - 2
bytes. Then the chaining value Hgy = Ho @ I'(mg) ® I'(mq). Furthermore, let
my1 = mg then Hgqy = Hy. Hence, constructing a collision in DCH-n is easy.

1. Choose an arbitrary value for mg and compute Hgy with m; = myg.

2. Choose an arbitrary value for m{; # mg and compute Hgs with m] = mj.
It is easy to see that this leads to a collision for mg||m; and mf||m; with
Hgq = H§, = Hy.

Hence, we can trivially construct collisions for DCH-n. Note that the messages
in the colliding message pair consist of 26 message blocks. Furthermore, we can
trivially construct t-collisions (for 0 < ¢ < 232:63) for DCH-n, since there exists
many possible choices for mg in our attack. Note that all these attacks apply to
DCH-n for all output sizes.

2.2 Preimage Attack

In a similar way as in the collision attack, we can also construct preimages for
DCH-n. The attack is based on the observation that the outputs of DCH-n form
a vector space of dimension n over GF(2) (cf. also [2]). Hence, we only need to
compute a basis of the output vector space to construct preimages for DCH-n.
In the following we set N := 512-32-2 = 215, Furthermore, we assume n = 512
since the other output lengths result from truncations of the n = 512 version.
Then, the attack can be summarized as follows:

1. Assume we want to construct a preimage for h consisting of N 4+ 1 message
blocks. Then, we have to find a message M such that:

N

h=Ho & @i moa 32(M;) -
i=0
2. Choose the last message block My such that the padding is correct.
3. Once, we have fixed the last message block, we have to find the remaining
message blocks M; for 0 < i < N such that:

N-1
@ Vi mod 32(M;i) = h & Ho & vo(Mn) -
i=0

For simplicity, let us now use the alternative description of DCH-n. Then
the above equation can be written as:

N/32—1

@ I'(m;)=c,
i=0

where ¢ = h@H() @WO(MN) and m; = M32.i||M32.i+1 || cee ||M32.i+31. To solve
this equation, we use now the fact that the outputs of DCH-n form a vector
space.



4. Compute ¢ vectors a® = I'(mf) ® I'(m¥) with arbitrary values for mg and

my and save the triple (a¥, m& m¥) in a list L.

5. From the set of £ > n vectors a* compute a basis of the output vector space
of DCH-n. The probability for £ > n vectors to contain n vectors which are
linearly independent is

n—1

n—1 ;

ot 9t , on 1
[ =1lc-2"9=2>7.
i=0 i=0

This means that we can basically construct such a basis with complexity
of 64 - ¢ compression function evaluations. This can be reduced to 63 + ¢
evaluations of the compression function by fixing all blocks in mg and all
but one block in m% when generating the basis of the output vector space.
For example choosing n = 512 and ¢ = 520 we already get a probability
of 0.9961 for finding a basis and thus need only 583 compression function
evaluations. Note, that constructing the basis is a one time effort. Let B =
{ako ... a*»—1} denote the basis for the output vector space.

6. We then represent ¢ with respect to this basis ¢ = xoako + -+ z,_1a
by solving the linear system over GF(2).

7. Next, we use the x; to construct mg, my,...,mig23 such that:

knfl

1023

Prm)=c.
1=0

—Ifz; =0for 0 < j < 512 set my; = a and maj41 = « for some arbitrary
value of a. Note that I'(a) @ I'(a)) = 0 and hence, mg; and mg;41 have no
influence on the computation of c. _ '

~Ifx; =1for 0 < j < 512 set my; = m} and mo;4+1 = m] such that
I(m))®M(ml)=a? 0<j<512.

— This technicality is necessary because we want to construct a preimage of
fixed length.

Hence, we can construct a preimage for DCH-n by solving a linear system of
equations of dimension 512 x 512 over GF'(2). Constructing the basis has a
complexity of about 583 compression function evaluations.

Furthermore, the preimage attack can be used to construct second preimages
for DCH-n with the same complexity. Note that by using the above described
method, preimages (or second preimages) always consist of N + 1 = 2% + 1
message blocks.

3 Conclusion

We showed, that it is trivial to construct collisions and (second) preimages for
DCH-n. Furthermore, the presented attack applies to all similar constructions
not introducing the chaining variable into the compression function.
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