
Collisions and Pseudo-Collisions for Sarmal

Florian Mendel and Martin Schläffer

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria.

{florian.mendel,martin.schlaeffer}@iaik.tugraz.at

Abstract. In this paper, we show a collision attack on the hash function of Sarmal with different
salt. The attack has a complexity of 2n/3 compression function evaluations and memory requirement
of 2n/3. Since the salt of Sarmal is only 256 bits the attack works only for variants of Sarmal up
to 384 bits. Note that we can choose the messages in our attack and hence we can even construct
meaningful collisions for the hash function.

1 Description of Sarmal

The hash function Sarmal is an iterated hash function based on the HAIFA framework. It
processes message blocks of 512 bits and produces a hash value of 224, 256, 384, or 512 bits. If
the message length is not a multiple of 512, an unambiguous padding method is applied. For
the description of the padding method we refer to [1]. Let M = M1‖M2‖ · · · ‖Mt be a t-block
message (after padding). The hash value h is computed as follows:

H0 = IV

Hi = f(Hi−1,Mi, S, i) for 0 < i ≤ t
h = truncn(Ht)

where truncn denotes the truncation to n bits. IV is a predefined initial value and s is the salt
of 256-bits. The compression function f of Sarmal basically consist of two streams α and β. Let
Mi the i-th message block of 512 bits, Hi−1 = h0‖h1 the previous chaining value of 512 bits,
S = s0||s1 the 256-bit salt, and t the 64-bit block counter. Then the compression function f is
computed as follows:

f(h0‖h1,Mi, s0‖s1, t) = α(h0,Mi, s0, t)⊕ β(h1,Mi, s1, t)⊕ h0‖h1 (1)

For a detailed description of α and β we refer to [1], since we do not need it for our attack.

2 Collision for Sarmal with different salt

In this section, we present a collision for the hash function Sarmal with different salt. For the
sake of simplicity, we show how the collision attack for Sarmal works for a single message block.
First, we choose two arbitrary different message blocks M1 and M ′1. To get a collision we require
that:

f(H0,M1, S, 1)⊕ f(H0,M
′
1, S
′, 1) = 0

Using Equation (1) we get:

α(h0,M1, s0, 1)⊕ β(h1,M1, s1, 1)⊕ h0‖h1 ⊕ α(h0,M
′
1, s
′
0, 1)⊕ β(h1,M

′
1, s
′
1, 1)⊕ h0‖h1 =

α(h0,M1, s0, 1)⊕ β(h1,M1, s1, 1)⊕ α(h0,M
′
1, s
′
0, 1)⊕ β(h1,M

′
1, s
′
1, 1) = 0

Since h0, h1, M1, and M ′1 are fixed in the attack, the above equation can be rewritten as:

u(s0)⊕ v(s1)⊕ w(s′0)⊕ z(s′1) = 0 (2)

with

u(s0) = α(h0,M1, s0, 1)
v(s1) = β(h1,M1, s1, 1)
w(s′0) = α(h0,M

′
1, s
′
0, 1)

z(s′1) = β(h1,M
′
1, s
′
1, 1)

In order to construct a collision for Sarmal with different salt, we have to solve equation (2).
This can be done by using the generalized birthday attack [2]. Wagner shows that this system
can be solved with a complexity of about 2n/3 computations and memory.

Note that we can independently choose 2128 values for each of s0, s1, s′0, s
′
1. Hence, this attack

works only for variants of Sarmal with an output size up to n = 128 · 3 = 384 bits. In other
words, the attack is not applicable to Sarmal-512 at the moment. However, it can be used to
construct collisions for Sarmal-224, Sarmal-256 and Sarmal-384.

Table 1. Summary of results.

complexity memory

Sarmal-224 274.7 274.7

Sarmal-256 285.4 285.4

Sarmal-384 2128 2128

By allowing differences in the chaining variables as well, we can construct pseudo-collisions
for all output sizes of Sarmal, with 2n/3 computations and memory. Note that we can choose
the messages in our attack and hence, we can even construct meaningful collisions for the hash
function.

References

1. Kerem Varici, Onur Özen, and Çelebi Kocair. Sarmal: SHA-3 Proposal. Submission to NIST, 2008.
2. David Wagner. A Generalized Birthday Problem. In Moti Yung, editor, CRYPTO, volume 2442 of LNCS,

pages 288–303. Springer, 2002.

2

