AURORA:
A Cryptographic Hash Algorithm Family

Submitters:

Sony Corporation! and Nagoya University?

Algorithm Designers:

Tetsu Iwata?, Kyoji Shibutani!, Taizo Shirai!, Shiho Moriai!, Toru Akishita!

October 31, 2008

Executive Summary

We present a new hash function family AURORA as a candidate for a new cryptographic hash algo-
rithm (SHA-3) family. The hash function family AURORA consists of the algorithms: AURORA-
224, AURORA-256, AURORA-384, AURORA-512, AURORA-224M, and AURORA-256M, where
AURORA-224M and AURORA-256M are optional instances that are designed to have multi-
collision resistance.

AURORA-224 and AURORA-256 are constructed from the secure and efficient compression
function using a security-enhanced Merkle-Damgard transform, i.e., the strengthened Merkle-
Damgard transform with the finalization function. The compression function is designed based on
the well-established design techniques for blockciphers, and uses the Davies-Meyer construction.
Since most of existing attacks on hash functions exploited simplicity of message scheduling, we
employ a secure message scheduling, which is a different design philosophy from the MDx family
including SHA-2.

AURORA-384 and AURORA-512 employ a novel domain extension transform called the Double-
Mix Merkle-Damgard (DMMD) transform. The DMMD transform consists of two parallel lines of
the compression functions and the mixing functions inserted at intervals. This domain extension
transform enables an efficient collision-resistant construction for double length hash functions.
Furthermore, the combination of the compression function and the DMMD transform achieves
further efficiency by sharing the message scheduling of two compression functions.

The overall structure of AURORA-224M and AURORA-256M is the same as AURORA-
384/512 except constants and the final mixing function. The DMMD transform also opens a new
efficient way of providing multi-collision resistance. By using the DMMD transform, AURORA-
224M and AURORA-256M efficiently achieve multi-collision resistance. As a result, the AURORA
family achieves consistency of the design, because all algorithms use similar 256-bit compression
functions as building blocks.

Moreover, the AURORA family achieves high efficiency on many platforms. In software imple-
mentation on the NIST reference platform (64-bit), AURORA-256 achieves 15.4 cycles/byte and
AURORA-512 achieves 27.4 cycles/byte. Also, AURORA shows good performance across a variety
of platforms, because it uses platform-independent operations. In hardware implementation, AU-
RORA enables a variety of implementations, from high-speed to area-restricted implementations.
Using a 0.13um CMOS ASIC library, AURORA-256 can be implemented with only 11.1 Kgates in
an area-optimized implementation. In a speed-optimized implementation, AURORA-256 achieves
the highest throughput of 10.4 Gbps. For AURORA-512, the smallest size is 14.6 Kgates and the
highest throughput is 9.1 Gbps.

These good performance both in hardware and in software in a single algorithm family which
is based on the above design techniques makes a clear distinction between the AURORA family
and the SHA-2 family.

Contents

7

|2 Specification of AURORA| 11
20 717 S 11
2.2 Bulding Blocks| o 13
[2.2.1 Message Scheduling Module: MSM| 13
2.2.2 Chaining Value Processing Module: CPM| 13
2.2.3 Byte Diffusion Function: B} oo, 15
2.2.4 F-Functions: Fy, 1, Fo,and F5| o oo 17
2.2.5 Data Rotating Function: DR 19

2.3 Specification of AURORA-256(. 21
231 Overall Structurel 21
12.3.2 Compression Function: CF| 0. 21
2.3.3 Finalization Function: FFA oo Lo 23
[2.3.4 Alternate Method for Computing C'F and FF|. 25

2.4 Specification of AURORA-224]. 27
2.5 Specification of AURORA-512[. 28
2.5.1 Overall Structurel Lo 28
[2.5.2 Compression Functions: CFo, CFq1,..., CFe. 28
2.0.3 Mixing Function: MF| oL 30
[2.5.4 Mixing Function for Finalization: MFF 32

2.6 Specification of AURORA-384]. 34
2.7 Specification of AURORA-256M (optional)] 35
RTIT Overall Structurd 35
2.7.2 Compression Functions: CFy', CF{",...,CF2[. 35

2.7.3 Mixing Function: MF™ 37
2.7.4 Mixing Function for Finalization: MFF™| 37

[2.8 Specification of AURORA-224M (optional)] 40
29 Constant Valued 41
2.9.1 Constant Values for AURORA-224/256] 41

2.9.2 Constant Values for AURORA-384/512] 42

2.9.3 Constant Values for AURORA-224M/256M| 43
294 Tistof Constant Values oo vvvv v vt 44

47

53

[3 55
55

55

56

56

56

5

[3.3.2 Compression Function| 000

3.4 omponents and Constants|o

[4 _Security of AURORA|

1 xpected Strength|
4.2 Security Argument| Lo oL Lo
4.2.1 Security of HMAC using AURORA|.
4.2.2 Security Proots of DMMD Transtorm|
4.2.3 Security Properties of AURORA structurel.

4.3 Algorithm Analysis|.

4.3.2 Preimage Attacks|. oo
4.3.3 Second Preimage Attacks|o oo
4.3.4 Length-Extension Attackl oL,
4.3.5 Multicollision Attackl. o oo o

[Efficient Implementation of AURORA]
p.1 Sottware Implementation|. oo oL
Pp.1.1 Implementation Types| oo
BI2 FEvaluation Resultd

5.2 Hardware Implementation|
[5-2.1 Optimization Techniques of F-functions| oo v v oo ..

[6 Applications of AURORA|

6.1 Digital Signature| oL o
6.2 Keyed-Hash Message Authentication Code (HMAC)|
6.3 Key Establishment Schemes Using Discrete Logarithm Cryptography|.
6. andom Number Generation Using Deterministic Random Bit Generators|.

[7 Advantages and Limitations|

Chapter 1

Introduction

This document describes the algorithm specifications and supporting documentation including
design rationale, security, efficient implementation, applications, advantages and limitations of
the hash function family AURORA, which we submit as a candidate for a new cryptographic hash
algorithm (SHA-3) family.

Since SHA-3 is expected to provide a substitute of the SHA-2 family, AURORA is designed to
preserve certain properties of the SHA-2 family including the input parameters, the output sizes,
collision resistance, preimage resistance, second-preimage resistance, and the one-pass streaming
mode of execution, according to the requirements for SHA-3 candidates [38]. Moreover, AURORA
is designed to offer features that exceed the SHA-2 family.

AURORA is designed based on the following design philosophy:

e Security: Its security level should be guaranteed by security proofs or security arguments
as far as possible.

— There is no known structural weakness in the design of the domain extension transform,
and the security of the hash function is supported by security proofs.

— In the design of a compression function, the structure and the components should be
chosen to facilitate analysis and to utilize the well-established techniques for blockcipher
design and analysis.

— It should be designed based on different design criteria from the MDx family including
SHA-2 so that a possibly successful attack on SHA-2 is unlikely to be applicable to it.

e Implementation Efficiency and Flexibility: It should be designed to have better effi-
ciency than the SHA-2 family on many platforms. Also, it should be designed to be less
platform-specific.

— It should be implemented efficiently in a wide range of software platforms (32-bit, 64-
bit and 8-bit processors with various compilers and operating systems) without too
dedicated optimization techniques for specific processors.

— It should be suitable to flexible hardware implementations with wide variety of area/speed
trade-offs.

e Originality: It should contain technical breakthroughs to improve security and/or efficiency,
not just a combination of existing techniques.

e Similarity among the Algorithm Family: According to the NIST requirements [3§]
(NIST does not intend to select a wholly distinct algorithm for each of the minimally required
message digest sizes), all the hash function instances with hash sizes of 224, 256, 384, and
512 bits should be designed under a consistent design philosophy. Concretely, by using the
same structure and components, e.g., S-boxes and matrices, they should provide security
arguments and performance evaluation in a unified framework.

Table 1.1: AURORA family.

Name max. message | message block | chaining value | hash size
size (bits) size (bits) size (bits) (bits)
AURORA-224 512 x (204 — 1) 512 256 224
AURORA-256 512 x (257 — 1) 512 256 256
AURORA-384 512 x (2% —1) 512 512 384
AURORA-512 | 512 x (257 —1) 512 512 512
optional instances
AURORA-224M | 512 x (204 — 1) 512 512 224
AURORA-256M | 512 x (25 —1) 512 512 256

The hash function family AURORA. To practice the design philosophy, we designed the
hash function family AURORA which consists of the algorithms called AURORA-224, AURORA-
256, AURORA-384, AURORA-512, AURORA-224M, and AURORA-256M. AURORA-224,
AURORA-256, AURORA-384 and AURORA-512 support hash sizes of 224, 256, 384, and 512
bits, respectively. AURORA-224M and AURORA-256M support hash sizes of 224 and 256 bits,
respectively. They are optional instances that are designed to have multi-collision resistance by in-
creasing the internal chaining value size (“M” means multi-collision resistance). Every instance of
the AURORA family supports a maximum message length of 512 x (264 — 1) bits, which meets the
minimum acceptability requirement regarding the maximum message length. Table [[LT] presents
the basic properties of the AURORA family.

AURORA-224 and AURORA-256 are constructed from the secure and efficient compression
function using a security-enhanced Merkle-Damgard transform, i.e., the strengthened Merkle-
Damgard transform with the finalization function. The compression function is designed based on
the well-established design techniques for blockciphers, and uses the Davies-Meyer construction.
Since most of existing attacks on hash functions exploited simplicity of message scheduling, we

employ a secure message scheduling, which is a different design philosophy from the MDx family
including SHA-2.

AURORA-384 and AURORA-512 employ a novel domain extension transform called the Double-
Mix Merkle-Damgard (DMMD) transform. The DMMD transform consists of two parallel lines
of the compression functions and the mixing functions inserted at intervals. This domain exten-
sion transform enables an efficient collision-resistant construction for double length hash functions.
Furthermore, the combination of the compression function of AURORA and the DMMD transform
achieves further efficiency by sharing the message scheduling of two compression functions.

The overall structure of AURORA-224M and AURORA-256M is the same as AURORA-
384/512 except constants and the final mixing function. The DMMD transform also opens a new
efficient way of providing multi-collision resistance. By using the DMMD transform, AURORA-
224M and AURORA-256M efficiently achieve multi-collision resistance. As a result, the AURORA
family achieves consistency of the design, because all algorithms use similar 256-bit compression
functions as building blocks.

Moreover, the AURORA family achieves high efficiency on many platforms. In software imple-
mentation on the NIST reference platform (64-bit), AURORA-256 achieves 15.4 cycles/byte and
AURORA-512 achieves 27.4 cycles/byte. Also, AURORA shows good performance across a variety
of platforms, because it uses platform-independent operations. In hardware implementation, AU-
RORA enables a variety of implementations, from high-speed to area-restricted implementations.
Using a 0.13um CMOS ASIC library, AURORA-256 can be implemented with only 11.1 Kgates in
an area-optimized implementation. In a speed-optimized implementation, AURORA-256 achieves
the highest throughput of 10.4 Gbps. For AURORA-512, the smallest size is 14.6 Kgates and the
highest throughput is 9.1 Gbps.

Organization of the document. This document is organized as follows: Chapter 2 describes
the specification of the AURORA family. Chapter 3 provides the design rationale. Chapter 4 ex-
plains all aspects of security: security argument and algorithm analysis. Chapter 5 shows efficient
implementation results of AURORA. Chapter 6 describes the usage of AURORA in important
applications. Finally, AURORA’s advantages and limitations are described in Chapter 7.

10

Chapter 2

Specification of AURORA

2.1

Notation

We first describe notation, conventions and symbols used throughout this document.

We use the prefix 0x to denote hexadecimal numbers.

A bit string z with the suffix, z(,), indicates that x is n bits. This suffix is omitted if there
is no ambiguity.

For bit strings « and y, ||y or (x,y) is their concatenation.

For bit strings « and y, = < y means that the bit string x is updated by the bit string y.

For an ni-bit @, we write (2o (n), T1(n),---»>Ti—1(n)) < () to mean that z is divided into
(xoaxlv) xl)a where (:L'O (n) ” L1 (n) ” T ” xl—l(n)) = Z(nl)-
For a bit string x(,) and an integer I, x <<, [is the [-bit left cyclic shift of z, and x >>, [

is the I-bit right cyclic shift of z.
For bit strings xg, Z1,...,Zn—1, {Zj}o<j<n is a shorthand for (zo,z1,...,2Zn_1).

For an integer I, 0' is the [times repetition of zero bits and 1! is the [times repetition of
one bits.

For a bit string x, T is the bit-wise complement of z.

For an element of GF(2™) represented as a polynomial Tpo10" V2 00 2 4+ i+
xo where « is a root of an irreducible polynomial, z,_1||Z,—2||...||z1]|zo denotes the bit
representation of the polynomial.

11

Following variables and symbols have specific meanings.

M The input message.

M; The i-th block of the message (after the padding).
m The length of M in blocks (after the padding).

H; The i-th chaining value.

MSM The Message Scheduling Module.

CPM The Chaining value Processing Module.

BD The Byte Diffusion function.

DR The Data Rotating function.

PROTL The Partial ROTating Left function.

PROTR The Partial ROTating Right function.

Pad The Padding function.

Len, The Length of the input message in blocks encoded into n bits.
TF, The Truncation Function that outputs n bits.

Fy, Fy, F5, and F3 The F-Functions.

Mg, My, My, and M3 The matrices used in the F-functions.

S The S-box.

Following symbols are used for AURORA-224/256.

CF The Compression Function for AURORA-224/256.
MS, and MSg The Message Scheduling functions for CF.
CP The Chaining value Processing function for CF.
FF The Finalization Function for AURORA-224/256.
MSF and MSF R The Message Scheduling functions for Finalization for FF.
CPF The Chaining value Processing function for Finalization for FF.
CONM, ; and CONM R ; The CONstants for MSy,, MSgr, MSF, and MSF g.
CONC The CONstant for CP and CPF.
Following symbols are used for AURORA-384/512.
CFy,CF4,...,CF; The Compression Functions for AURORA-384/512.
MF The Mixing Function for AURORA-384/512.
MFF The Mixing Function for Finalization for AURORA-384/512.
MSyp s and MSp s The Message Scheduling functions for CF¢ (0 < s <7),
MF (s =8), and MFF (s =9).
CPr s and CPRr s The Chaining value Processing functions for CF¢ (0 < s <7),

MF (s =8), and MFF (s=09).
CONM s ; and CONMp,; The CONstants used in MSy s and MSg s, respectively.
CONCp s and CONCR,; The CONstants used in CPp s and CPpg g, respectively.

Following symbols are used for AURORA-224M /256M.

Ccri, cFrM ... cFM The Compression Functions for AURORA-224M /256 M.
MFM The Mixing Function for AURORA-224M/256M.
MFFM The Mixing Function for Finalization for AURORA-224M /256 M.
ME%IS and ME% s The Message Expansion functions for CFM (0 < s < 7),
MFM (s =8), and MFFM (s =9).
C’Pé{ s and C’P%{ s The Chaining value Processing functions for CFM (0 < s < 7),

MFM (s =8), and MFFM (s =9).
CONM%SJ- and CONM%SJ- The CONstants used in ME%IS and ME%S, respectively.
CONC’%{SJ- and CONC’%{S)]- The CONstants used in CP]LV{S and C’P%S, respectively.

12

2.2 Building Blocks

In this section, specifications of the essential building blocks for constructing AURORA algorithms
are described.

2.2.1 Message Scheduling Module: MSM

The message scheduling module, MSM, takes the following two inputs;
e a bit string X(56), and
e a set of bit strings {Y] (32)}0Sj<32'

The output is a set of bit strings {Z; (32) }o<j<72-
MSM internally uses a byte diffusion function BD : ({0,1}32)® — ({0,1}3?)8, which is a
permutation over ({0,1}3?)® and is defined in Sec. 2223l MSM is parameterized by two functions

F and F’, where
F:{0,1}?* — {0,1}%, 91
F o {0,1)%2 — {0, 1), (2.1)

We write MSM[F, F'] when we emphasize that it is parameterized by functions F' and F’. We
now describe the specification of MSM[F, F'].

Step 1. Let (X (32), X1(32),---» X7(32)) «— X(256)-

Step 2. Let (X1, X3, X5, X7) — (X1, X3, X5, X7) @ (Yo, Y1, Yo, V3).

Step 3. Let (Zo, Z1,...,27) «— (X0, X1,...,X7).

Step 4. (7 round iterations) The following operations are iterated for i = 1 to 7.

()(0,)(17 ,X7)<—BD(X0,X1,...,X7)

(Xo, X2, Xy, Xg) « (F(Xo), F'(X2), F(X4), F'(Xs))

(X1, X3, X5, X7) — (X1, X3, X5, X7) © (Yas, Yair1, Yairo, Yairs)
(X1, X3, X5, X7) « (X1, X3, X5, X7) @ (X0, X2, X4, X6)
(Zsi, Zgiy1s - - Zsivr) — (Xo, X1,..., X7)

Step 5. (8-th round) Then the following operations are executed.
XO;X17~ .. ,X7) — BD(Xo,Xl, N 7)(7)
Xo, X2, Xy, X¢) — (F(Xo), F'(X2), F(X4), F'(Xg))

(
(
(Xl,X37X5,X7) — (X17X3,X5,X7) D (XQ,X27X4,X6)
(Zea, Zes, - - Zm1) — (Xo, X1,...,X7)

Step 6. Finally, the output is {Z; 32) }o<j<72-

See Fig. 2l for an illustration and Fig. [Z13] for a pseudocode.

2.2.2 Chaining Value Processing Module: CPM

The chaining value processing module, CPM, takes the following three inputs;
e a bit string X a5,
e aset of bit strings {Y] (32) }o<j<144, and

e a set of bit strings {W (32) }o<j<es-

13

Xo X1 Xo X3 Xy X5 Xs X7
b Yo Y] D+ Yo S Y3
Zo b 7, Zs Z bz Zs bz
| BD
7 e-n [F] v [F] &% [F] é-w
D D D D
b~ 73 —~ Zg —~ Z10 —~ Z11 —~ Z12 —~ Z13 —~ 214 —~ Z15
| BD
O Vs - Yo & Yio - Yu
D D D D
Z16 —~ 217 Z18 —~ Z19 Z20 ~ Za1 Z92 —~ Z23
| | ' | |
BD
D Yiit1 D~ Yaiqo D~ Yaiys
D D D
- 2843 Zgiva > Zgit5 Zgit6 t~ Z8it7
{ | ' \ | ' | |
| BD
I:I*L:I D Yoy E?] B Yo Ij’:' B Y3 ELZI B Y3
D D D D
-~ 256 - Zs7 - 758 -~ 259 - 260 - Z61 -~ Z62 - 263
| BD
D D D D
Z64 —~ Zgs Z66 —~ Ze7 Z68 —~ Zgg Z70 ~ Zn

Figure 2.1: {Z; 32) fo<j<r2 «+ MSM[F, F'](X (256), {Y; (32) Jo<j<32)-

14

The output is a bit string Z(a56)-

CPM internally uses a byte diffusion function BD, which is also used in MSM, and is defined
in Sec. As with MSM, CPM is parameterized by two functions F' and F’ over {0,1}3?, and
we write CPM[F, F'] when we use functions F' and F”.

We now describe the specification of CPM[F, F”].

Step 1. Let (Xq(32), X1(32):---> X7(32)) + X(256)-
Step 2‘ Let (X17X37X57X7) — (X17X37X57X7) @ (WO7W17W27W3)'
Step 3. Let ()(0,)(17 ce ,X7) — (X07X1; AN ,X7) D (}/E),Yl, A 7}/7).

Step 4. (16 round iterations) The following operations are iterated for i = 1 to 16.

(Xo,X1,...,X7) <« BD(Xo, X1,...,X7)

(Xo, X2, X4, Xo) (F'(Xo), F'(X2), F(X4), F"(Xe))

(X1, X3, X5, X7) — (X1, X3, X5, X7) © (Was, Waig1, Waigo, Waigs)
(X1, X3, X5, X7) — (X1, X3, X5, X7) @ (X0, Xo, X4, Xo)

(X0, X1,...,X7) — (X0, X1,...,X7) ® (Y8i, Ygit1,-- -, Yaig7)

Step 5. (17-th round) Then the following operations are executed.

(Xo,X1,...,X7) « BD(Xo, X4,...,X7)

(Xo, X2, X4, Xg) « (F(Xo), F'(X2), F(X4), F'(Xs))

(X1, X3, X5, X7) — (X1, X3, X5, X7) @ (Xo, X2, X4, X6)
(Xo, X1,...,X7) — (X0, X1,...,X7) ® (Y36, Y137, .- -, Y143)

Step 6. Finally7 the output is Z(256) — (XO (32) || X1 (32) || cee || X7 (32)).

See Fig. for an illustration and Fig. 214 for a pseudocode.

2.2.3 Byte Diffusion Function: BD

The byte diffusion function, BD, takes a bit string (Xg (32)s X1(32) - - - » X7 (32)) as the input, and
outputs the updated bit string (X¢ (32), X1 (32),-- -, X7(32))-
It works as follows.

Step 1. For i =0,1,...,7, X;(32) is divided into a 4-byte sequence as
40 (8)> Tdi+1(8)1 Tdi+2 (8)s T4i+3 (8)) + Xi(32)s
(z x x x) — X
and (X (32), X1 (32),- -+, X7 (32)) is now regarded as a sequence of bytes;
(360(8),501(8)7 <y X3 (8)) = (X0(32)7X1 (32)7---7X7(32))-

Step 2. Next we permute (zg,21,...,231) according to the permutation 7 defined in Fig. [Z3]
where the i-th byte z; is moved to the 7(i)-th byte. In other words, let x;(i) = x; for

i = 0,1,...,31. Then (z(,2},...,25) is the result of the permutation. For example,
xH = T4, T) = X29, and so on.

Step 3. For i = 0,1,...,7, the 4-byte sequence (z, (8),xﬁu+1(8),zﬁli+2 (8)’$ili+3 (8)) is concate-
nated to form the updated X; (s2) = (2, () [®) (o ®) | %13 (s)), and the output
is (X0 (32), X1(32)5 - - -» X7(32))-

See Fig. 24 for an illustration and Fig. for a pseudocode.

15

X, X, X, X4 X, X; X X,
Wo i Wh Wy W3
Y, Y, Y3 Yy Ys \C Y7
BD
- Wi @j & Ws @] & W E?j & W7
DYy ©~Yio H-Yn G-Yi2 &~Yiz DY H-Yis

D Waiys
D
D— Ygit7

BD
D Wes lj’] &~ Wee E?\ZI @~ Wer
b Y31 @ Yiza & Yizz S Yizu D+ Yizs

D Yi39 D Y43

Z3 Zq

Z

Figure 2.2: Z(956) < CPM[F, F'|(X (256), {Yj (32) Jo<j<144, {W} (32) Jo<j<68)-

16

? 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
w() |28 29 3 31 0 9 18 27 4 5 6 7 8 17 26 3
1
(

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
i) |12 13 14 15 16 25 2 11 20 21 22 23 24 1 10 19

Figure 2.3: Definition of the permutation «(-): {0,1,...,31} — {0,1,...,31}.

X X, Xo X3 X, X; X X7

” J 1
el ST
/// 4 /// \V

Xo X, Xo X; X, X X X7

Figure 2.4: (Xg (32), X1 (32)s - - -» X7(32)) + BD (X (32), X1 (32), -+, X7 (32))-

2.2.4 F-Functions: Fy, Fi, F5, and I3

We use four F-functions, Fy, Fi, F», and F3, where they take 32-bit input X as input and produce
32-bit output Y. Each function is used as an instantiation of a parameter functions F or F' in
MSM and CPM.

Before defining these F-functions, we first define the S-box S : {0,1}® — {0,1}%, and four 4 x 4
matrices, Mo, M1, My and Ms.

e The S-box S : x(g) — y(s) is defined as follows.

y{ g(f(x)™) if f(m)ig

The inverse function is performed in GF((2*)?) defined by an irreducible polynomial 22 + 2 +
{1001} for which the underlying GF(2%) is defined by an irreducible polynomial z"* + 2’ + 1.
Moreover, f : x5y — y(s) and g : x5y — ¥y(s) are affine transformations over GF(2), which
are defined as

Yo 000000T11 %o 0
" 00001100 1 1
Yo 00110000 5 1
Y3 11000000 23 1
f v |l oo0oo0o000 01 ez |70 | (2.2)
ys 00000T10 0 s 1
Y6 00010000 6 0
Y7 0100000 0 7 0

[t
-3

Table 2.1: S

.0 .1 .2 .3 .4 5 6 .7 .8 .9 .a . b .¢c .4 .e .f
0. do dc d3 69 bd 00 4d eb 02 24 57 c2 b8 5d b7 6d
1. | f5 40 37 4e 19 d8 64 62 9d 34 O0Of 7Tc ec <ce 94 04
2. |dl 8 74 fb e7 87 12 23 b5 5¢c l1la bb 42 49 18 85
3. 11 46 0d 71 67 8f c6 50 58 fd 4b a4 cd 8e 99 If
4. ad 63 c9 6b f7 28 9f 65 2f ObH5f 61 73 3d 8b Oe 1b
5. | 33 e0 ac 26 al e3 f3 82 83 75 44 90 13 af f0 07
6. 96 21 f8 3f a2 98 9a a3 91 4c Tf 92 97 ea 01 1ic
7. le 2d 89 39 e6 9c Oa 54 Oc 51 6¢c 43 ae db 53 B9
8. a6 f4 06 da e2 78 1d 29 30 el 35 fc ed Dbc 47 d5
9. cO ab cc a8 80 2b 09 bO 93 d4 c6 b3 do df a9 aa
a. | 7a 36 2a d6 b2 fa e8 bl a0 68 ba 81 48 08 17 c7
b. fe 76 bf c4 f2 3e 4a Ob 10 14 f1 ef a7 27 eb c8
c.| de 9 8 3c 56 d7 8c 60 6a 79 ee ab 31 2 77T 41
d. | ff 95 dd 25 3b 55 ca 52 9e 2c 15 4f e4 16 70 T7d
e. | 72 3a 7o 84 f6 32 8 03 b4 38 6f b9 c1 45 88 €9
f. | ba b6 6e be be Te 20 f9 22 66 05 d2 cb <3 cf 5b
and

Yo 1 1.0 0 0 0 0 O To 1

Y1 001 1 0000 T 0

Y2 00 0 0O 1 1 00 To 1

L w | _[0oo00000 11 v |1

95y 10000000 T4 0

Ys 001 00 O0O00O0 5 0

Y6 000 01 000 Tg 1

Y7 000 O0O0O0OT1TO0 7 0

where (zoq1)llz1) llz20)l|zsm) ey |25 Te) [127(1)) — 2(s) and (Yo Iy 2y llvsa)

Hy4(1)||y5(1)||y6(1)||y7(1)) — ¥(g). Table 2.1l shows the output values of S.

e The four matrices are defined as follows.

Mo

My

Mo

Ms

0x01
0x03
0x02
0x02

0x01
0x02
0x08
0x06

0x03
0x02
0x02
0x01

0x06
0x01
0x02
0x08

0x02
0x01
0x03
0x02

0x06
0x01
0x02
0x08

0x01
0x03
0x02
0x02

0x08
0x06
0x01
0x02

18

0x02
0x02
0x01
0x03

0x08
0x06
0x01
0x02

0x02
0x01
0x03
0x02

0x02
0x08
0x06
0x01

0x03
0x02
0x02
0x01

0x02
0x08
0x06
0x01

0x02
0x02
0x01
0x03

0x01
0x02
0x08
0x06

(2.4)

(2.5)

(2.6)

(2.7)

Multiplications are operated over GF(28) defined by an irreducible polynomial 284 24423 422 4 1.
Now we describe F-functions.

Step 1. Let (.’Eo(g),fl}l (8)7:1;2 (8)7.’133 (8)) — X(32).
Step 2. Let (zg,x1,x2,23) — (S(x0),S(x1),5(x2),S(x3)).

Step 3. For i € {0,1,2,3}, the output of F; is Y32y = (yo (s | 1 (8) | ¥2(8) | ¥3 (s)), where

Yo Zo
Y| _ M, Z1
Y2 T2
Y3 z3

2.2.5 Data Rotating Function: DR
The data rotating function, DR, takes the following two inputs;

e a set of bit strings {X; (32)}0§j<727 and
e a set of bit strings {Y] (32)}o<j<72-

The output is a set of bit strings {Z; (32) }o<j<144-
DR uses the following two functions;

PROTL : ({0,1}32)8 — ({0,1}32)8,
{ PROTR : ({0,1}%2)% — ({0,1}32)8,

which we define as
PROTL(XO (32) Xl (32)5 -+ X7 (32)) = (X(l) (32)» X{ (32)7 - 7X’/7 (32))7 (28)

where X] = X; for i =0,2,4,5,6,7, and (X} || X3) = (X1 || X3) <64 1.
Similarly, we define

PROTR(X((32), X1(32), -+ X7(32)) = (X6(32)7X{ 32y X7(32))5 (2.9)
where X! = X; for i =0,2,4,5,6,7, and (X} || X3) = (X1 || X3) >>e4 1.
In other words, they rotate the two words by one bit, where these words are concatenated and

regarded as one 64 bit string.
Now DR works as follows.

Step 1. For inputs { X (32)}o<j<r2 and {Y](32)o<j<r2, we define {Z; 32)}o<j<144 by iterating
the following operations for ¢ = 0 to 8.

{ (Z16i, Z16i+1s - - - > Z16ig7) — PROTL(Xg;, Xgit1, -+, X8it7)
(Z16i+8> 2161495 - - - s Z16i+15) — PROTR(Ys;, Ysit1,-- ., Ygit7)

Step 2. The output is {Z; (32) fo<j<144 defined in the above operations.

See Fig. for an illustration and Fig. 216 for a pseudocode.

19

Xea
Yeu

Xgs -

Ye5

X = | (Z11Z3) « XIXs) <l | — Zo 74
Yi = | (%o Zn) < Y || Ys) >l | = Zs Zy
Xi5 = | (Zi7| Z19) < (Xol|X11) Kea 1l | = Zis Zi7
Yis — | (Zosl| Z2r) «— (Yol Yi1) el | — Zos Zos
Xoz — | (Zs3|| Z35) < (Xur|| X1o) <64l | — Z32 Zs3
Yos — | (Zal|Zas) < (Vi7||Yi9)>>6a 1 | — Zao Zau
X1 = |(Zi29]| Z131) — (Xos || Xo7) <4 1 | — Zi2g Zizg -
Y — |(Zisr]| Zize) — (Yos|Yor) 3641 | — Zizs Zizr -+~

Figure 2.5: {Z; (32)}o<j<144 — DR({ X (32) Yo<j<72, {Y; (32) Yo<j<7r2)-

20

Zr
215
Zo3
Z31
Z39

Z135
Z143

2.3 Specification of AURORA-256

2.3.1 Overall Structure

AURORA-256 takes the input message of length at most 512 x (264 — 1) = 273 — 512 bits, and
outputs the hash value of 256 bits. It internally uses a compression function CF and a finalization
function F'F, where
CF(-,-) : {0,1}?5% x {0,1}°'2 — {0,1}%%%,
{ FF(-,-) :{0,1}%%6 x {0,1}°'2 — {0,1}2°6.

The compression function CF' is defined in Sec. and a finalization function FF' is defined in
Sec.
Now AURORA-256 works as follows.

Step 1. The input message M is padded with the following padding function Pad(-);

Pad(M) = M || 1]]0°| Lenea, (2.10)
where b is the minimum non-negative integer (possibly zero) such that |M|+ b+ 65 = 512m
for some integer m, and Leng, is an encoding of [|M|/512] in 64-bit string. That is, Lengy
is the length of M in blocks, where a partial block counts for one block, and b is the minimal

integer such that the total length of Pad(M) is a multiple of 512 bits. Then Pad(M) is
divided into blocks My, My, ..., M,,_1 each of length 512 bits, i.e., we let

(Mo (512)» M, (512)5+ -+ My, (512)) < Pad(M).

Step 2. Let HO (256) = 0256, and Compute Hl (256)> H2 (256) - - - 7Hm71 (256) by iterating
Hi+1 — CF(Hl,Mz)

fori=0tom— 2.

Note that when Pad(M) has one block (i.e., when m = 1 and Pad(M) = My), then Step 2
is not executed.

Step 3. Finally, let H,, <+ FF(Hy,_1, Mpy,_1), and the output is H,, (256)-

See Fig. for an illustration and Fig. 217 for a pseudocode.

M, M, M, M, s M, .
Hy — CF CF CF . CF FF | —H,
Hy Hy Hj Hp, Hy,q

Figure 2.6: AURORA-256.

2.3.2 Compression Function: CF

The compression function, CF, takes the chaining value H; of 256 bits and the input message
block M, of 512 bits, and outputs the chaining value H; 1 of 256 bits.

21

It internally uses two message scheduling functions MS; and MSg, a data rotating function
DR, and a chaining value processing function CP, where

MSp() :{0,1}2%0 — ({0,1}2)72,

MSR() {0,1}2°¢ — ({0, 1}2)™2,
DR(-,-) : ({0, 1}%)™ x ({0, 1}2)7 — ({0, 1}2)144,
(,) {O 1}256 % ({O, 1}32)144 — {07 1}256'

These functions are described below.

Components of CF

e MSy is an instance of MSM described in Sec. 22211 and for any X € {0,1}2%%, it is defined
as

MSp(X) = MSM[Fy, F1}(X,{CONM 1 (32) }o<j<32); (2.11)

where Fy and F are F-functions defined in Sec. 224 and { CONM p, ; 32y }o<j<32 is the set
of constants defined in Sec.

e Similarly, for any X € {0,1}?°¢, MSx is defined as
MSR(X) = MSM[F,, F5](X,{ CONM R j (32) }o<j<32); (2.12)

where F5 and F3 are F-functions defined in Sec. 224, and { CONM g ; (32) }o<j<32 is the set
of constants defined in Sec.

e DR is the data rotating function defined in Sec. 2.2.5]

e CP is an instance of CPM described in Sec. 2222, and for any X € {0,1}?® and Y €
({0,1}32)144 it is defined as

CP(X,Y) = CPM[Fy, Fo)(X,Y,{CONC} (32) }o<j<6s), (2.13)

where Fp and F are F-functions defined in Sec. 224 and { CONC'; (32) }o<;<es is the set of
constants defined in Sec. 2.9

Specification of CF

Now we present the specification of CF'.
Step 1. Let (M (256): MR (256)) < M (512), and let X (256) < H; (256)-
Step 2. Let {17 j (32) fo<j<r2 + MSL(Mp (256))-
Step 3. Let {Tr ; (32) fo<j<72 < MSR(Mg (256))-
Step 4. Let {U; (32)}o<j<144 — DR({TL ; (32) bo<j<72, {TR,j (32) Yo<j<72)-
Step 5. Let Y(a56) < CP(X(256), {Uj (32) bo<j<144)-
Step 6. Finally, the output is H; 1 (256) < Y(256) ® X(256)-
See Fig. 2.7 for an illustration and Fig. 218 for a pseudocode.

22

Tro Tpy - Tpr— — Uy Uy -+ Up —
— Tro Try - Tr7y —| [~ Us Uy --- U5 —
T — TL,g TLg"'TL15—' —'Ulﬁ U17"' U23_.
— Trg Tro -+ Tris —|DR[™ Uoa Uss -+ Us1 —| CP

MEy,

I A — TresTres - Trrn— [Uiog Urog -+ - U35

— TresTres - Tr1—| [Uize Urz7 -+ Uraz—

)
N

Hiq

Figure 2.7: Hi+1 (256) < CF(Hz (256)7Mi (512))'

2.3.3 Finalization Function: FF

The finalization function, FF, is used at the last step of the hash value computation. It takes the
chaining value H,,_1 of 256 bits and the last input message block M,,_; of 512 bits, and outputs
the final hash value H,, of 256 bits.

FF is structurally equivalent to CF, and the only difference is the constants used in the
components.

FF internally uses message scheduling functions for finalization, MSF; and MSF g, a data
rotating function DR, and a chaining value processing function for finalization, CPF. They have
the following syntax.

MSFL() : {07 1}256 — ({O7 1}32 727

)
MSF () : {0,1}2%° — ({0,1}°2)72,
DR(-,-) : ({0, 1}%)™ x ({0, 1}7%)™ — ({0, 1}32)144,
CPF(?) : {03 1}256 X ({Oa 1}32)144 - {Oﬂ 1}256'

(2.14)

These functions are described below.

Components of FF
e For any X € {0,1}?%¢, MSF |, is defined as

MSF(X) = MSM[Fy, F1](X,{ CONM , ; 32) }32<j<64)> (2.15)

where Fp and Fy are F-functions defined in Sec. 224, and { CONM 1, ; (32) }32<;j<64 is the set
of constants defined in Sec.

e For any X € {0,1}2%, MSFp is defined as
MSFR(X) = MSM[Fy, F3](X,{ CONM g ; (32) } 32<j<64), (2.16)

where I and F3 are F-functions defined in Sec. 224l and { CONM g ; (32 }32<;<64 is the set
of constants defined in Sec.

23

e DR is the data rotating function defined in Sec.
e For any X € {0,1}?°¢ and Y € ({0,1}3%)!4 CPF is defined as
CPF(X,Y) = CPM[F1, Fo|(X,Y,{ CONC} (32 }es<j<136) (2.17)

where Fy and Fy are F-functions defined in Sec. 2.2.4] and { CONC (32 }es<j<136 is the set
of constants defined in Sec.

Specification of FF

Now the finalization function FF works as follows.

Step 1. Let (My (256); MR (256)) < Mm—1(512), and let X (o56) < Hy,_1 (256)-
Step 2. Let {17, ; (32)}o<j<r2 « MSF (M (256))-

Step 3. Let {Tg ; (32)to<j<r2 +— MSFR(Mpg (256))-

Step 4. Let {U; (32)}o<j<144 — DR({T% ; (32) }o<j<72: {TR,j (32) bo<j<72)-
Step 5. Let Y(o56) < CPF(X(256), 1Uj (32) fo<j<144)-

Step 6. Finally, the output is H,, (256) < Y(256) ® X(256)-

See Fig. [2.19] for a pseudocode.

24

2.3.4 Alternate Method for Computing CF and FF

The compression function CF and the finalization function FF, components of AURORA-256
hash computation method, are described in an alternative way which requires less memory space
in implementation. Firstly, three component functions RoundC, RoundM and RoundM p are
defined here for an alternate computation method.

Components RoundC, RoundM ; and RoundM r

RoundCW () : ({0,1}32)8 — ({0,1}32)8 is a round function of the structure for CP. Now we
present the computation steps of RoundC(l)(-).

RoundC’(’) (Xo, Xl, ‘e 7)(7) :
(XO;Xh e ,X7) — B.D()(o,)(l7 e ,X7)
(Xo, Xa, X4, Xo) + (F1(Xo), Fo(X2), F1(X4), Fo(Xe))
If i # 17, do the following line
(X1, X3, X5, X7) — (X1, X3, X5, X7) ® (CONCy;, CONCyir1, CONCyiyo, CONCyit3)
(X1, X3, X5, X7) « (X1, X3, X5, X7) @ (X0, X2, X4, Xo)
Output (Xo, Xl, ey X7)

Similarly, round functions RoundM j, and RoundM g for MS; and MS g are defined by replac-
ing F-functions and constants as follows.

ROUndM(I:L-)(X(),Xl, ce 7)(7) :
(X(),)(17 e ,X7) — BD(X(),)(17 e ,X7)
(Xo, X2, X4, Xo) « (Fo(Xo), F1(X2), Fo(Xa), F1(Xs))
If ¢ # 8, do the following line
(X1, X3, X5, X7) — (X1, X3, X5, X7) & (CONM 1, 45, CONM 1, 4541, CONM [, 4542, CONM [, 4;43)
(X13X37X53X7) — (X17X37X57X7) 2 (X07X2;X47X6)
Output (Xo, X1,...,X7)

RoundM Y (Xo, X1, ..., X7) :
()(0,)(17 [N ,X7) — .BD(‘XPO,‘XH7 [N ,X7)
(Xo, X2, X4, Xo) « (F2(Xo), F5(X2), F2(X4), F3(Xe))
If ¢ # 8, do the following line
(X1, X3, X5, X7) «— (X1, X3, X5, X7) ® (CONM R 45, CONM R 4541, CONM g 4i12, CONM R 4;3)
(X1, X3, X5, X7) « (X1, X3, X5, X7) © (X0, X2, X4, Xo)
Output (Xo, X1,...,X7)

Alternative Specification of CF

Now we present an alternative computation method of CF'.

Step 1. Initialize input values.

{ (Xo32), X1(32), - - - » X7(32)> Yo(32), Y1(32)» - - - » Y7(32)) < Mi(512)
(Zo32)> Z1(32)5 - - - » Zr(32)) < H; (256)

Step 2. Add constant values to the initial values.
(X1, X3, X5, X7) — (X1, X3, X5, X7) ® (CONM o, CONM 1,1, CONM , 5, CONM 1, 3)

(Y1,Y3,Y5,Y7) — (Y1,Y3,Y5,Y7) @ (CONM go, CONM g1, CONM g 2, CONM R 3)
(Zl,Zg, Z5,Z7) — (Zl, Z3,Z5,Z7) () (CONCQ, CONCl, CONCQ, CONC3)

25

Step 3. Do the first round function.

(ZOa Z17 E) Z7) — (ZO7Z1a .. '7Z7) b (X07X17X25X§7X4aX57X6aX7)
(Zo, Z1, ..., Z7) — RoundCY(Zy, Z1, ..., Z7)
(ZOaZh' . '5Z7) — (207Zh .. '7Z7) 3 (YOaY{7}/27Y3/aY4a}/5)Y67Y7)

Step 4. The following operations are iterated for j =1 to 8.

(X0, X1,...,X7) — RoundM) (Xo, X1,..., X7)

(Yo, Y1,...,Yq) — RoundMD (Yo, V1,...,Ys)

(Zo, Z1, ..., 27) — RoundC'*(Zy, Zy, ..., Z7)

(Zo, Z1,..., Z7) — (Zo, Zv, ..., Z7) ® (Xo, X}, Xo, X}, X4, X5, Xg, X7)
(Zo, Z1, ..., 27) — RoundC'®*V(Zy, 24, ..., Z7)

(Zo, Z1,..., Z7) — (Zo, Zv, ..., Z7) @& (Yo, Y], Ya,Y{, Yy, Y5, Y, Y7)

Step 5. Finally, the output is H; 1 (256) < (20, Z1,-- ., Z7) © H;.

In the above specification, X|, X}, Y] and Y{ are defined as (X7 || X}) = (X1 || X3) <4 1 and
(Y7 [Y5) = (V1| Y3) >4 1.

Alternative Specification of FF

An alternative specification of F'F' is obtained by replacing constants in the specification of CF as
CONCJ — CONCj+32, CONMLJ — CONML’JLFSQ and CONMRJ — CONMR,j+32.

26

2.4 Specification of AURORA-224

AURORA-224 takes the input message of length at most 512 x (264 — 1) = 273 — 512 bits, and
outputs the hash value of 224 bits. It uses the same padding function Pad, the compression
function CF, and the finalization function FF as AURORA-256 defined in Sec. 2.3
The difference is that AURORA-224 uses Hy = 12° as the initial value, and the output of FF
is truncated to 224 bits by the truncation function TFoo4.
The truncation function, TFag4(-) : {0,1}2%% — {0,1}*2*, first parses the input H,, (256) into
a sequence of bytes Hy, (256) = (M0 (8), M1 (8), - -»M31(8)) and drops myz, mis, ma3, and m3; to
produce the 224-bit hash value H, (204) = (my, (8) m} @) ,m’27(8)). That is, for the 256-bit input
Hm (256) — (mo (8)» myq (8)s- -+ , M3y (8))7 the 224-bit output is H’:n (224) = (m6 (8)’ m'l (8)r " ,m’27 (8))’
where
m; =m; for0<i<6
m, =mip1 for 7<i<13
m; =mipo for 14 <i <20
m; =m;43 for 21 <i <27
Now we describe the specification of AURORA-224.

Step 1. The input message M is first padded with Pad(-) in (2I0), and the result of Pad(M) is
divided into blocks My, M, ..., M,,_1 each of length 512 bits, i.e., let

(Mo (512), M1 (512 - - - » M1 (512)) < Pad(M).

Step 2. Let HO (256) = 1256, and Compute Hl (256)> H2 (256)9 - s Hm—l (256) by iterating
Hi+1 — CF(Hl,Mz)

for i =0 tom — 2.

Note that when Pad(M) has one block (i.e., when m = 1 and Pad(M) = My), then Step 2
is not executed.

Step 3. Let H,,, — FF(H,,_1, M,,—1), and the output is H/, (224) < TF224(Hp, (256))-

See Fig. 2.20] for a pseudocode.

27

2.5 Specification of AURORA-512

2.5.1 Overall Structure

AURORA-512 takes the input message of length at most 512x (264—1) = 27512 bits, and outputs
the hash value of 512 bits. It internally uses eight compression functions CFy, CFq,...,CF7, a
mixing function MF, and a mixing function for finalization MFF', where

CF(-,-) : {0,1}°12 x {0,1}°'% — {0,1}5'2 for s € {0,1,...,7},
MF(-) : {0,1}°*2 — {0,1}512]
MFF(-) : {0,1}52 — {0, 1}%12.

The compression functions CFg, CF1, ..., CF7 are defined in Sec. the mixing function MF
is defined in Sec. 253 and the mixing function for finalization MFF is defined in Sec. 254
Now we describe the specification of AURORA-512.

Step 1. The input message M is padded with the padding function Pad(-) in (ZI0), and Pad(M)
is divided into blocks My, My, ..., M,,_1 each of length 512 bits, i.e., let

(Mo (512), M1 (512)5 - - - » Mim—1 (512)) < Pad(M).

Step 2. Now let Hj(512) 0°'2, Then compute H; (512), Ha (512), - - - s Hyy (512) by iterating the
following operations for ¢ = 0 to m — 1.

Hi1 — CF; moa 8(H;, M;)
if(0<i<m—1)A(imod8=7) then Hjyq «— MF(H;1+1)

Step 3. Finally, the output is H,, (512) < MFF(H,, (512))-

See Fig. for an illustration and Fig. 2221] for a pseudocode.

2.5.2 Compression Functions: CFy, CF4,..., CF;

The compression function, CF, where s € {0,1,...,7}, takes the chaining value H; of 512 bits
and the input message block M; of 512 bits, and outputs the chaining value H;y; of 512 bits.

For each s € {0,1,...,7}, CF, internally uses two message scheduling functions MSy, , and
MS g, a data rotating function DR, and two chaining value processing functions CPr s and
CPR, s, where

() :{0,1}*%° — ({0,1}°*)™,

MSp () : {0,1}2°¢ — ({0,1}*%)72,
DR(-,-) : ({0,1}°%)7 x ({0,1}**)™ — ({0,1}°%)™4,
OPL s('a) . {0’ 1}256 X ({0’ 1}32)144 — {0, 1}256’
CPRs(--) - {0,1}%56 x ({0,1}%2)*4 — {0, 1}256.

These functions are defined below.

Components of CFy, CFq,...,CF;
e For any X € {0,1}?°¢, MS, is defined as

MSp o(X) = MSM[Fy, [1](X, {CONMp, 5 j (32) }o<j<32), (2.18)

where Fy and Fy are F-functions defined in Sec. 224, and { CONM ; ; (32 }o<j<32 is the
set of constants defined in Sec.

28

MO Ml M7
Hy —| CF, CF, |— ... CF, MF
H1 H2 H7 Hg H8
8 times
OFO CFI_’"‘_’CF’? MF —
Hy Hy Hio His g Hig
8 times
Mm_Q Mm—l
e —’CFl72 CFlfl MFF — Hm
Hm72 Hmfl Hm

Figure 2.8: AURORA-512, where [= m mod 8.

29

e For any X € {0,1}?°%, MSp , is defined as
MSR(X) = MSM|[F, F3](X,{ CONM g s ;j (32) }o<j<32)s (2.19)

where Fy and F3 are F-functions defined in Sec. 2224, and { CONM g, ; (32) }o<j<32 is the
set of constants defined in Sec.

e DR is the data rotating function defined in Sec.
e For any X € {0,1}?°¢ and Y € ({0,1}32)!4, CP[, is defined as
CPrs(X,Y) = CPM[Fy, Fo](X,Y,{CONCp , ; (32) }o<j<68), (2.20)

where Fy and F are F-functions defined in Sec. 2224 and { CONC'y ; (32) }o<;<e6s is the set
of constants defined in Sec.

e For any X € {0,1}?°% and Y € ({0,1}3?)!4 CPp , is defined as
CPrs(X,Y) = CPMI[F3, F3)(X,Y,{CONCR . ; (32) }o<j<68), (2.21)

where [, and F3 are F-functions defined in Sec. 224, and { CONCg ; ; (32) fo<j<es is the
set of constants defined in Sec.

Specification of CFy, CF4,..., CF;

Now the compression function CFy works as follows.

Step 1. Let (M (256), MR (256)) < M; (512), and (X[, (256), X R (256)) < H; (512)-
Step 2. Let {1 j (32) Yo<j<r2 +— MSL (ML (256))-

Step 3. Let {Tr ;(32)}o<j<r2 < MSR (Mg (256))-

Step 4. Let {U; (32)}o<j<144 — DR({TL ; (32) bo<j<72: {TR,j (32) Yo<j<72)-

Step 5. Let Y7, (256) < CPL (XL (256); 1U; (32) Jo<j<144)-

Step 6. Let Yi (256) +— CPRr.s(XR (256), {Uj (32) Jo<j<144)-

Step 7. Finally, the output is H; 1 (512) « (Y7 (256) © X1 (256) | YR (256) © X R (256))-

See Fig. for an illustration and Fig. [2.22] for a pseudocode.

2.5.3 Mixing Function: MF

The mixing function MF is used to mix the chaining values every after eight calls of CF,. It
takes the chaining value H; of 512 bits and outputs the updated chaining value H; of 512 bits. It
internally uses two message scheduling functions MSy g and MSg g, a data rotating function DR,
and two chaining value processing functions CPp g and CPpg g, where

MSps() - {0,1}2%° — ({0,1}°%)"2,
MSR 8() {0’ 1}256 - <{07 1}32)727

DR(:,-) + ({0,1})™ x ({0, 1}2)™ — ({0, 1}%2)144,
CPL 8()) {Oa 1}256 X ({Ov 1}32)144 - {Oa 1}2567
CP () {0,112 x ({0,1)22)144 — {01},

These functions are defined below.

30

Tro Tpp - Top— — U Up -+ Un
— Tro Try1 - Tr7 —| |~ Us Uy --- Us

o — Tr1s Tr9 - Tpas— [~ U Uiz -+ Uss

ME
Ls — Trg Tr9 -~ Tris —|DR[™ U2a Uo5 -+ Usn CP; CPp

)

o RREEEEEEE — TL,64 TL,65 oo TL771 - — Ur2g Ur2g - -+ U135

— TresTres - Tr71— [~ Uize Uz -~ Uas

YL [4n) YR A
> N
Zr, ZRr
Hip
Figure 2.9: H, 1 (512) < COF s(H; (512), M; (512))-
Components of MF
e For any X € {0,1}?%%, MS g is defined as

MS 1 s(X) = MSM[Fo, F1](X,{CONM 15 ; (32) o< j<32), (2.22)

where Fy and Fy are F-functions defined in Sec. 2.2.4] and { CONM , g ; 32y }o<j<32 is the
set of constants defined in Sec.

e For any X € {0,1}?°¢, MSp g is defined as
MSps(X) = MSM[Fy, F5](X,{ CONM R 5 j (32) }o<j<32), (2.23)

where F, and F3 are F-functions defined in Sec. 224 and { CONM g g ; (32) }o<j<32 is the
set of constants defined in Sec.

e DR is the data rotating function defined in Sec.
e For any X € {0,1}*% and Y € ({0,1}3*)!4 CP[g is defined as
CPrs(X,Y) = CPMI[Fy, Fy|(X,Y,{CONC1p s ; 32) }o<j<68) (2.24)

where Fy and F are F-functions defined in Sec. 2224 and { CONC'f, 5 ; (32) }o<j<es is the set
of constants defined in Sec.

e For any X € {0,1}?°¢ and Y € ({0,1}3%)44) CPp is defined as
CPRrg(X,Y) = CPM[Fs, F3](X,Y,{ CONCR g j (32) }o<j<68)s (2.25)

where I, and F3 are F-functions defined in Sec. 2224 and { CONC g s ; (32) fo<j<es is the
set of constants defined in Sec.

31

Specification of MF

Now we describe the specification of MF'.

Step 1. Let (X7, (256), Xr (256)) < Hi(512)-

Step 2. Let {1 j (32) fo<j<r2 +— MSL8(XL (256))-

Step 3. Let {Tr ; (32)}o<j<72 «— MSR8(XR (256))-

Step 4. Let {U; (32)}o<j<144 — DR({TL j (32) Yo<j<72, {TR,j (32) Yo<j<72)-

Step 5. Let Y7, (256) < CPrLs(XL (256), {Uj (32) fo<j<144)-

Step 6. Let Yg (256) < CPRrs(Xr (256); 1Uj (32) Yo<j<144)-

Step 7. Finally, the output is H;(512) < (Y7 (256) © XL (256) | YR (256) © X R (256))-

See Fig. [2.10] for an illustration and Fig. 2.23] for a pseudocode.

H;
—_——
X Xr
!
Tro Tpy - Tpr— — Uy Uy -+ Uz
— Tro TRy -+ Ty —| =~ Us Uy -+ Ups
. R — Tps Tpo -+ Tpais— = U U7 -+ Usg
L3 — Trg TRy -+ Tris —|DR[~ Uza Uzs -~ Usi CP q CPpy
MER,B . ’ ’
R — TreaTres - To,n— [~ UsUizg--- Uiss
— TrRe4TrRe5 - Trr1— [Uize Uz7 -+ Urs3
YL YR A
% >
Z7, ZRr

Figure 2.10: H, (512) < MF (H; (512))'

2.5.4 Mixing Function for Finalization: MFF

The mixing function for finalization MFF is used at the last computation of the final hash value.
MFF is structurally equivalent to MF', and the only difference is the constants used in the com-
ponents. It takes the last chaining value H,, of 512 bits and outputs the updated value H,, of
512 bits, which is the final hash value. It internally uses two message scheduling functions MSy 9

32

and MSg o, a data rotating function DR, and two chaining value processing functions CPp, ¢ and

CPR.,9, where
MSL79 . {07 1}256 X ({0’ 1}32)32 s ({O7 1}32)72’
MSpyo : {0,112 x ({0,1}%%)%2 — ({0,1}°%)",
DR = ({0,1}%)7 x ({0,1}2)™ — ({0,1}7%)!*4,
CPLﬁg . {O, 1}256 % ({0’ 1}32)144 X ({07 1}32)68 N {07 1}2567
CPR’Q . {07 1}256 X ({07 1}32)144 % ({0’ 1}32)68 s {07 1}256_

These functions are defined below.
Components of MFF
e For any X € {0,1}*%, MSy, ¢ is defined as

MS 1 9(X) = MSM[Fy, F1](X,{CONM g j (32) }o<j<32),

(2.26)

(2.27)

where Fy and Fy are F-functions defined in Sec. 224 and {CONM g ; (32)}o<j<32 is the

set of constants defined in Sec. [2.9]
e Similarly, for any X € {0,1}?55, MSg g is defined as

MSRo(X) = MSM[Fy, F3](X,{ CONM g g ; (32) Yo<j<32)

(2.28)

where Fy and F3 are F-functions defined in Sec. 2241 and { CONM g g ; (32) }o<j<32 is the

set of constants defined in Sec.
e DR is the data rotating function defined in Sec.
e For any X € {0,1}?°% and Y € ({0,1}3%)!4, OP[g is defined as

CPro(X,Y) = CPM[Fy, Fy|(X,Y,{CONC1 9 ;(32) fo<j<e6s),

(2.29)

where Fyy and Fy are F-functions defined in Sec. 2.2.4) and { CONC'[, g ; (32) fo<;j<es is the set

of constants defined in Sec.
e For any X € {0,1}*6 and Y € ({0,1}3?)'%, CPR g is defined as

CPRro(X,Y) = CPM[Fs, F5](X,Y,{ CONC R ; (32) }o<j<68)

(2.30)

where [, and F3 are F-functions defined in Sec. 2224 and { CONC g g ; (32) fo<j<es is the

set of constants defined in Sec. [2.9]

Specification of MFF

Now we describe the specification of MFF'.

Step 1. Let (Xz (256); Xr (256)) < Hm (512)-

Step 2. Let {17 j (32) o<j<r2 + MSL (XL (256))-

Step 3. Let {Tr ; (32)}o<j<72 < MSR9(XR (256))-

Step 4. Let {U; (32)}o<j<144 — DR({TL j (32) Yo<j<72: {TR,j (32) Yo<j<72)-
Step 5. Let Y7, (256) < CPrLo(XL (256), {Uj (32) fo<j<144)-

Step 6. Let Yi (256) < CPRro(Xg (256), {Uj (32) Jo<j<144)-

Step 7. Finally, the output is H,, (512) < (Y7 (256) © XL (256) | YR (256) © X R (256))-

See Fig. [2.24] for a pseudocode.

33

2.6 Specification of AURORA-384

AURORA-384 takes the input message of length at most 512 x (264 — 1) = 273 — 512 bits, and
outputs the hash value of 384 bits. It uses the same padding function Pad, the compression
functions CFq, CF1,..., CF7, the mixing function MF, and the mixing function for finalization
MFF as AURORA-512 defined in Sec.

The difference is that AURORA-384 uses Hy = 1512 as the initial value, and the output of
MFF is truncated to 384 bits by the truncation function TF3g4.

The truncation function, TFgs4(+) : {0,1}°'2 — {0,1}3%4, first parses the input H,, 512 into a
sequence of bytes H,, (512) = (M0 (8), M1 (8); - - - ,Me3 (8)) and drops the following bytes;

Mme, M7, M14,M15, M22, M23, 30, 11131, 11138, 11139, 1M46, 147, M54, M55, 162, 1163,

to produce the 384-bit hash value H 55,y = (110 gy, ™M) (g): - -» M7 (s))-
That is, for the 512-bit input H,, 512) = (mgs), M1 (8);---,Me3(s)), the 384-bit output is

7171(384) = (my (s)»mll (8)r " ,miu(s)), where

=m; for0<i<5h
My for 6 <i<11
= Mit4q for 12 <¢ <17
= MmMi+6 for 18 <) < 23
= M;t8 for 24 <1¢ <29
= Mi+10 for 30 S) S 35
= Mi+12 for 36 <) < 41
= Mi+14 for 42 S) S 47

S3333535%

Now we describe the specification of AURORA-384.

Step 1. The input message M is first padded with Pad(-) in (ZI0), and the result of Pad(M) is
divided into blocks My, M, ..., M,,_1 each of length 512 bits, i.e., let

(Mo (512), M1 (512)5 - - - » Mim—1 (512)) < Pad(M).
Step 2. Let HO (512) = 1512, and Compute Hl (512)5 H2 (512)5 - - - 7Hm (512) by iterating

Hi1 — CF; moa 8(H;, M;)
if (0 <i<m— 1) N (7, mod 8 = 7) then Hi+1 — MF(HH_l)

fori=0tom—1.

Step 3. Let Hm (512) — MFF(Hm (512)), and Output H;n — TF384(Hm (512)).

(384)

See Fig. 2.23] for a pseudocode.

34

2.7 Specification of AURORA-256M (optional)

2.7.1 Overall Structure

AURORA-256M takes the input message of length at most 512 x (264 —1) = 27 —512 bits, and out-
puts the hash value of 256 bits. It internally uses eight compression functions CFéw, C’F{W, cee CF;V[,
a mixing function MFM | and a mixing function for finalization MFF™ | where

CFM(.,.): {0,1}512 x {0,1}°'2 — {0,1}°'2 for s € {0,1,...,7},
MFM() : {07 1}512 - {07 1}512,
MFFM () :{0,1}°12 — {0,1}5'2,

Basically, AURORA-256M is structurally very similar to AURORA-512. CF é\/[and MF™ are
the same as CFs and MF, except for constants used in their components, while the output of
MFFM is 256 bits instead of 512 bits for MFF.

The compression functions C’Féw , (JF{W e C’Fé” are defined in Sec. Z7.2] the mixing func-
tion MFM is defined in Sec. 2273, and the mixing function for finalization MFF™ is defined in
Sec. 274

Now we describe the specification of AURORA-256M.

Step 1. The input message M is padded with the padding function Pad(-) in (ZI0). Then
Pad(M) is divided into blocks My, M1, ..., M,,—1 each of length 512 bits, i.e., let

(Mo (512), M1 (512)5 - - - » Mim—1 (512)) + Pad(M).

Step 2. Now let HO (512) — 0512. Then compute Hl (512),H2 (512)5 - - - 7Hm (512) by iterating the
following operations for ¢« = 0 to m — 1.

Hiyy — CF [oq s (Hy, M)
if (0<i<m—1)A(imod8=7) then Hy y — MF™(H;,)

Step 3. Finally, the output is H/, (256) MFFM(H,, (512))-

See Fig. 2TTl for an illustration and Fig. 226 for a pseudocode.

2.7.2 Compression Functions: CFy' CFY ... CFY

The compression function, C'Féu7 where s € {0,1,...,7}, takes the chaining value H; of 512 bits

and the input message block M; of 512 bits, and outputs the chaining value H;y; of 512 bits.
For each s € {0,1,...,7}, CF i” internally uses two message scheduling functions MS %[g and

MS% s, a data rotating function DR, and two chaining value processing functions C’P]LV{S and

CP% o These functions are equivalent to the corresponding functions in Sec. for AURORA-
512, where we use

° CONMJLV{SJ (32) for MSQ/{S instead of CONM [, ; (32) for MSp s,

. CONM%SJ- (32) for MS%S instead of CONM g , j (32) for MSR s,

° CONC%SJ (32) for C’Pﬁ/{s instead of CONC'y, g ; (32) for CPp s, and
o CONCY, ; (52 for CPY instead of CONCg, j (32) for CPps.

35

INL

Hy —{ CFY CFMiL— ... CFML o ppM
Hy Hy Hy Hg Hg

8 times

Mg Mg M15
CFY! CFMi— ... —JCF¥ MFM|— ...
Hg Hy Hy His Hyg Hig
8 times
Mip—2 My,

. —{CFM, CFM, m_ o,

Hy, o Hya Hp,

Figure 2.11: AURORA-256M, where | = m mod 8.

36

The constants, CONML 5.7 (32)7 CONMYM 15,7 (32) CONCY 15,5 (32)» and CONC%SJ (32) are all de-
fined in Sec. 2.9 Below, we present the specification, and show the pseudocode in Fig. for
completeness.

MSP(X) = MSM[Fy, Fy)(X,{ CONM{', ; 35 }o<j<s2), (2.31)
MSE (X) = MSM[Fy, Fs](X,{ CONM Y, ; 39 }o<j<s2), (2.32)
cPY(X,Y) = CPM[Fl,FO](X Y,{CONCY', ; 32 Yo<j<es); (2.33)
CPY (X,Y) = CPM[F3, Fy](X,Y,{ CONCY, ; 32 Yo<j<cs)- (2.34)

In the above specification, Fy, Fy, Fy and F3 are F-functions defined in Sec. 2.2.41

2.7.3 Mixing Function: MFY

The mixing function MF™ is used to mix the chaining values every after eight calls of CFiVI It
takes the chaining value H; of 512 bits and outputs the updated chaining value H; of 512 bits. It
internally uses two message scheduling functions MSJ,{J8 and MS %I s, & data rotating function DR,

and two chaining value processing functions CP}” s and cry r.s- Lhese functions are equivalent to
the corresponding functions in Sec. 2253 for AURORA- 512, where we use

. CONM%&j (32) for MS%/{8 instead of CONM 1, g j (32) for MSp g,

° CONM%SJ- (32) for MS%8 instead of CONM R g j (32) for MSR g,

. CONC%&J- (32) for C’P]LV{8 instead of CONC', ;j (32) for CPp s, and
. CONCjo 32) for CPRS instead of CONCR g j (32) for CPRs.

The constants, CONM " 8,5 (32) CONMRSJ(32), CONC%SJ (32), and CONC%&J» (32) are all de-
fined in Sec. 201 Below, we present the specification, and show the pseudocode in Fig. for
completeness.

MS%(X) = MSM[FOa Fl}(Xa {CONM%&]‘ (32)}0§j<32)v (2~35)
MSH(X) = MSM[FQ,Fg](X {CONM Y ; (32) bo<j<s2); (2.36)
CP}'s(X,Y) = CPM[Fy, Fyo)(X,Y,{CONC}'s ; (32 }o<j<es), (2.37)
CP%s()): [F3,F2](X Y, {CONCRSJ 32)}0Sj<68)- (2-38)

2.7.4 Mixing Function for Finalization: MFFY

The mixing function for finalization MFF™ is used at the last computation of the final hash value.
It takes the last chaining value H,, of 512 bits and outputs the final hash value H/ of 256 bits. It
internally uses a message scheduling function MS]I‘é{ 9, @ data rotating function DR, and a chaining

value processing function CPJL%7 where

MS%Q . {071}256 % ({0,1}32)32 N ({07 1}32)727
R : ({0,1}%)7 x ({0,1}°%)™ — ({0, 1}2)%4, (2.39)
CP%Q . {07 1}256 % ({O, 1}32)144 X ({0’ 1}32)68 N {07 1}256.

These functions are defined below.

37

Components of MFFM
o For any X € {0,1}%6, MS} is defined as
MSH o(X) = MSM[F, F5](X,{ CONM Y ; 30 }o<j<s2), (2.40)

where F, and Fj are F-functions defined in Sec. 2.2.4] and {CONM%QJ- (32) Jo<j<32 is the
set of constants defined in Sec. 2.0

e DR is the data rotating function defined in Sec.
e For any X € {0,1}?°¢ and Y € ({0, 1}32)44, CP%9 is defined as

CP}'o(X,Y) = CPM[Fy, Fy)(X,Y,{CONCY'g ; 30 }o<j<es), (2.41)

where Fy and Fy are F-functions defined in Sec. 224 and {CONC]LW,QJ (32) Jo<j<es s the set
of constants defined in Sec.

Specification of MFF™

Now we describe the specification of MFFM.

Step 1. Let (X(256), Y(256)) « Hm (512)-

Step 2. Let TL,j (32) < 032 for 0 S] < T72.

Step 3. Let {TRJ (32)}0§j<72 — MS%Q(}/(256))-

Step 4. Let {U; (32) }o<j<14a < DR({TL j (32) bo<j<72, {TR,j (32) Yo<j<72)-
Step 5. Let Z(256) < CP%g(X(zsﬁy {U; (32) Yo<j<144)-

Step 6. Finally, the output is H/, (256) Z(256) © X(256)-

See Fig. 2.12] for an illustration and Fig. 2.29] for a pseudocode.

38

Tro Tpy - Tpr— = Uy Uy -+ U —
— Tro Try -+ Tr7r—| [~ Us Uy --- Ups —
Trs Tpo -+ Tras— = Ug Uiy -+ Usz —
— Trs Tro -+ Tr15—|DR[~ V24 Uzs -+ Usi —CPY,

TreaTres - Tpmn— = U2gUi2g - -+ Uizs—

— TresTrRes5 - Tr71—| [Uize Urzr -+ Ura3—

JR)
"

Hy,

Figure 2.12: H/ (256) MFFM(H,, (512))- Note that Tp ; = 032 for 0 < j < 72.

39

2.8 Specification of AURORA-224M (optional)

AURORA-224M takes the input message of length at most 512 x (204 — 1) = 27 — 512 bits,
and outputs the hash value of 224 bits. It uses the same padding function Pad, the compression
function CF iw, the mixing function MFM | and the mixing function for finalization MFFM as
AURORA-256M defined in Sec. 277

The difference is that AURORA-224M uses Hy = 1°12 as the initial value, and the output of
MFFM is truncated to 224 bits by the truncation function TFss4 in Sec. 2.4

Now we describe the specification of AURORA-224M.

Step 1. The input message M is padded with the padding function Pad(:) in (ZI0). Then
Pad(M) is divided into blocks My, M1, ..., M,,—1 each of length 512 bits, i.e., let

(Mo (512), M1 (512)5 - - - » Mim—1 (512)) < Pad(M).

Step 2. Now let HO (512) — 1512. Then compute Hl (512),H2 (512)5 - - - 7Hm (512) by iterating the
following operations for ¢ = 0 to m — 1.

Hit1 — CF%nod s(H;, M;)

if (0<i<m—1)A(imod8=7) then Hy y — MF™(H;,)
Step 3. Let H, 56 — MFFY (H,, (512)).
Step 4. Finally, the output is H/ (224) < TFy4(H! (256)).

See Fig. [2.30 for a pseudocode.

40

2.9 Constant Values

This section describes the generation procedures and the lists of constant values.

2.9.1 Constant Values for AURORA-224/256

Following constants are used in AURORA-224/256;
o {CONMLJ}()S]‘<32, {CONMRJ}OSJ’<32, {CONCj}0§j<68 for CF, and
[{C'O]\UWLJ‘}32§j<647 {CONMR,J‘}3QSJ'<64, {CONCj}68§j<136 fOI“ FF.

Below, we describe the generation process of the constants. The multiplication and the inver-
sion are done in GF(2'%) with the primitive polynomial 26 + 215 + 23 + 21 + 25 + 2% + 1, which
is 0x1a831.

Step 1. Let IV, IV, maskg, maski, masks and masks be the following values.

IVy « (212 — 1)2'6 = 0x6a09
IVy « (3172 —1)2'6 = 0xbb67
maskq «— (21/3 —1)2'6 = 0x428a
mask; «— (31/3 —1)2%6 = 0x7137
masky «— (21/° —1)2'6 = 0x2611
masks «— (31/° —1)2'6 = 0x3ee8

Step 2. The following operations are iterated for ¢ = 0 to 16.

Ty < IVy - 0x0002°

Ty, < IVi - 0x0002~"

CONCM — (TO,Z‘ (S mCLSko || m K16 8)
CONC4Z'+1 — (Tl,i @® masky || Tl,i K16 8)
CONC giq9 «— (TUJ' K6 8 || To,: @ masks)
CONC ;43 «— (TLi <16 9 || T, ® masks)

Step 3. The following operations are iterated for i = 0 to 7.

CONM , 4; +— CONCg; <321
CONML,M_H — CONCS1;+1 Kso 1
CONM 1, 4i42 — CONCgi1o K32 1
CONML,4Z'+3 — CONCgi+3 K391
CONMRAi «— CONCgjps >>321
CONM R 4it1 + CONCgir5 >>32 1
CONM R 4542 < CONCgire >>32 1
CONM R 4543 < CONCgiqy7 >33 1

Step 4. The following operations are iterated for ¢ = 0 to 16.

CONC4Z'+68 — CONC4Z

CONC 45469 < CONCyiq1

CONC ;470 « CONCyit2

CONC4,’+71 — CONC41'+3 @ 0x01010101

41

Step 5. The following operations are iterated for i = 0 to 7.

CONML747;+32 — CONMLAi

CONM p, 4433 «— CONM 4541
CONM p, 4i+34 <— CONM [, 4542
CONM 1, 4i4+35 «— CONM [, 4543
CONMR741‘+32 — CONMRAZ‘

CONM R 45133 < CONM R 4i11
CONM R 45134 <+ CONM R 4i42
CONM R 4i135 — CONM R 4i43

2.9.2 Constant Values for AURORA-384/512
Following constants are used in AURORA-384/512;

o {CONM s j}o<j<32, {CONMp s jto<j<sz, {CONCL s }o<j<es;, {CONCR jlo<j<es
CF,, where s =0,1,...,7,

o {CONMp s }to<j<s2, {CONMRs jto<j<s2, {CONCL g ;}to<j<es, {CONCRs;}to<j<es
MF, and

o {CONMrp 9 }to<j<s2, {CONMRyg jto<j<sz, {CONCLg ;}o<j<es, {CONCRy9, ;}to<j<es
MFF.

These constants are generated with the procedure described below.

Step 1. Let IVP'2, TVP12 maskd'?, mask??, mask3'? and mask3'? be the following values.

TV (1112 - 3)216 = 0x510e
IV — (1312 — 3)216 = 0x9b05
masky'? «— (1113 — 2)216 = 0x3956
mask}'? — (1313 — 2)216 = 0x59f1
mask3'? «— (111/5 — 1)2'6 = 0x9d8a
maskj'? « (131/5 — 1)216 = 0xab97

Step 2. The following operations are iterated for ¢ = 0 to 16.

1542 — IVP'? - 0x0002°

TP? — IVP2 . 0x00027"

CONC'p0.4; < (Ip;° ® maskg' | T5;* <16 8)
CONCL70,4H_1 — (T15)12 D mask?m H Tlsé2 K16 8)
CONC L aiv2 — (I5F? <6 8 || THY? @ mask3'?)
CONC L 04ivs — (TT}? <16 9 || TP} @ mask3'?)

Step 3. The following operation is iterated for i = 0 to 67.
CONCRA)J' — OONCLOJ X323

Step 4. The following operations are iterated for ¢ = 0 to 7.

CONML’O,M — CONCL’())&‘ K391
CONM 1, p,4i41 +— CONCp 0 8i+1 K32 1
CONM [, ,4i4+2 +— CONCp o git2 K32 1
CONM 0 4i43 — CONCp i3 K32 1
CONM R ,4i + CONCp gita >>32 1
CONM po4i41 — CONCpogiss 32 1
CONM R0,4i+2 + CONCp o 8i16 >>32 1
CONMR7074,'+3 — CONCL,0781'+7 S>30 1

42

for

for

for

Step 5. The following operations are iterated for ¢ = 0 to 16 and for s =1 to 9.

CONC1p s 4i — CONCp 04

CONC'p s4i41 — CONCL 0 4i+1
CONCp s 4iv+2 — CONC04i42
CONC/ o 4325 — CONC1 0445 & CONS,
CONCR75)4Z' — CONCR’()A,‘

CONCR s 4i+1 +— CONCR0,4i+1
CONCR,s4i+2 «— CONCR 4it2
CONCR s 4i+3 < CONCR 0 4i+3 ® CONS,

Each CONS, is defined as CONS; = 0x01010101, CONSy; = 0x02020202, CONS3 =
0x03030303, CONS, = 0x04040404, CONS5 = 0x05050505, CONSg = 0x06060606,
CONS, = 0x07070707, CONSg = 0x08080808, and CONSg = 0x09090909.

Step 6. The following operations are iterated for ¢ = 0 to 7 and for s =1 to 9.

CONM , 5,4 — CONM [, o 4;

CONM p, s 4i+1 — CONM 1,0 4i+1
CONM p, s 4i42 < CONMp 0 4i42
CONM 1, s 4i43 — CONMp 0.4i43
CONMR,sAi — CONMR,OAi

CONM R 54i+1 «+ CONM R 0.4i41
CONM g s 4i+2 < CONM g 0 4i42
CONM g s 4i4+3 < CONM g 0 4i+3

2.9.3 Constant Values for AURORA-224M /256M
Following constants are used in AURORA-224M/256M;

(] {CONM%S7J-}0§]'<32, {CONM]\RKI’S7J-}0§]'<32, {CONC%S,]'}OSJ'<687 {CONC%[,S,J'}OSJ'<68 for
C’Fiw, where s =0,1,...,7,

o {CONM7's ;Yo<j<sa, {CONMyg Yo<j<sa, {CONCYg ;Yo<j<es, {CONCYs Yo<j<os for
MFM and

L {CONM%QJ}OSJ'<32, {CONCLM’Q’]'}OSJ'<68 for MFFM
These constants are generated with almost the same procedure as AURORA-384/512.
Step 1. Let IVM, IVM maskd!, mask}M, mask}! and mask}! be the following values.

IVM (5172 — 2)216 = 0x3c6e
TVM — (712 — 2)216 = 0xabaf
maskd! «— (5'/3 — 1)2'6 = 0xb5c0

maskM — (7'/3 — 1)2'6 = 0xe9b5
maskd! — (5'/5 —1)2'6 = 0x6135
mask}! « (7'/5 —1)2'6 = 0x79cc

Step 2. The following operations are iterated for ¢ = 0 to 16.

Ty < IVg" - 0x0002°

T} — IV{M - 0x0002~"

CONCY, 4 — (T & maskd! | T <16 8)
C’ONC’]L‘{O,MH — (Tf\/{ @ maskM || Tf"/{ K16 8)
CONCY 4iys — (TM <16 8 || T ® masky!)
CONC) ivs — (TM <16 9| T @ maski?)

43

Step 3. The following operation is iterated for i = 0 to 67.
CONCYy; — CONCY,; <323

Step 4. The following operations are iterated for i = 0 to 7.

CONM%O 4i — CONCT 55 << 1
C’ONML o CONCY | 11 << 1
CONML loirs — CONC o ity <52 1
CONM "o 4is5 — CONCT) gits <Kso 1
CONMY o 4i — CONCY) gi gy S>30 1
CONM%O,MH — CONCYlg 5145 >>32 1
CONM%O,41’+2 — CONCT g gi16 >>32 1
CONM%()AH?, — CONCT g gir7 >>32 1

Step 5. The following operations are iterated for ¢ = 0 to 16 and for s =1 to 9.

CONCL 540 (JONCL 0.4i

CONCY, 411y = CONCly 111

CONCL s,di+2 < CONCL ,0,4i42

CONCL s4it3 CONCL 0,4i+3 ® CONS s
C’ONCR s.4i CONC’RO 4

CONC%S 441 CONCR 0,4i+1
OONCst 442 CONCRjo 4i+2

CONC Ros 4its < CONC’ R.0.4i+3 © CONS

Each CONS is the same as in AURORA-384/512.
Step 6. The following operations are iterated for ¢ = 0 to 7 and for s =1 to 9.

CONML o di — CONML 0.4

CONMY .\, — CONMY, i1\
CONMK,MH — CONMJLWO,MH
CONMQ/}S Ai+3 CONMIL\/JO Ai+3
CONMY . — CONMY o

CONMY oot — CONMY .,
CONM%Q 4i+2 < CONMR?O 4i+2
CONMR,SAH—S — CONMR,0,4z+3

2.9.4 List of Constant Values

The following tables offer the list of the constant values for reference. These described values are
all required constant values for AURORA-224/256 CF, AURORA-384/512 C'F, and AURORA-
224M/256M CFM. In the following tables, the constant values are arranged from the left to the
right.

Constant Values for AURORA-224/256 CF {CONC,}o<j<es

2883f695 cab09844 (096a4cl18 cf76858f 9698ed2b £89cb476 12d4£f203 5713b743
429feaff el1fa326f 15002604 9b21lae25 42a0d5ff ed498163 2a00263b £d38a296
42deabff 3f08cObl 54002645 7e9c70d7 422257ff 8230f80c aB80026b9 Ofebcdef
43daaffe dcac6452 50012741 375b9373 402ab5ffd f3e22a7d a00224bl ab05bc3d
47cabffa e4458d6a 40052351 eb2aab9a 480a7ff5 3b8ed46b5 800a2c91 72957451
578affea 8073bb0e 00153311 89e2cfac 688affd5 09955d87 002a0cll 44f1464a
168affab 4d66aec3 00547211 a27802b9 eaB8aff57 bb07cf35 00a88ell 6194f4d8
babbce07 142fe79a 31f8de20 30cabbf0 1lad9aca7 43bb73cd 53587e42 18650c64
£22c594f 6871b9e6 abb096b7 8c3227ae

44

Constant Values for AURORA-224/256 CF {CONMp ;}o<j<32

5107ed2a 94a13089 12d49830 9eedOblf 853fd5fe c3f464df 2a004c08 36435c4b
85bdb7fe T7el118162 aB8004c8a fd38elae 87bbbffc b958c8ab a0024e82 6eb726e6
8f957ff4 c88bladbs 800ad6a2 cabb5735 aflbffd4 00e7761d 002a6622 13c59f59
2d15ff56 9acd5d86 00a8e422 44f00573 75779c0f 285fcf34 63f1bcd40 6194b7e0

Constant Values for AURORA-224/256 CF {CON MR, ; }o<j<32
cb4c7695 T7cd4e2a3b 896a7901 ab89dbal albO06aff f6ad4cObl 9500131d 7e9cb14b
al112bff 41187c06 d400135c 87£366f7 a0152ffe £f9f1153e d0011258 d582dele
a4053ffa 9dc7235a c0051648 Db94aba28 b4457fea 84caaec3 80150608 2278a325
£6457fab dd83e79a 80544708 30ca7ab6c 8d6cd653 alddb9e6 29ac3f21 0c328632

Constant Values for AURORA-384/512 CFy {CONCLo,;}o<j<6s
6858flae c2f4fab64 0eb51cc84 0b363092 9bdae3bd c06b6566 1ca23f96 3533320d
db5ff613 1563c32b3 09ec7183 9a99e75a 4975dc8f ab8f810d 2370eda9 fded459e9
d910b91f 20cec086 46e07dcc 7ef2d2a8 51eb4297 b1767817 bd68£f537 0£fd14310
e82c852e fQ9aaadbf T7adl4cfO Db7400bcc 33933af5 ddc4ca’b c50a974f 6b082fa2
2cdc75ea cf£f3fd69 8al158800 052c3d95 1242ebd4 12f0feb4d 142bb69e 0296e096
6f7ed7a9 aB869670e 2856cba2 31e35a0f 9506afb53 213d3387 50ac3lda 98f1d35b
c9c76e0f 659799c3 91f06dlb cc7897f1 7045ecb6 47c2ccel 1349d499 663cbbad
ab70d96d 82f0fe24 26920fac 03b67096 b52b8273 e0696746 7d8cl1f7 3173120f
899d344f 053d33a3 cbb02d41 98b9f75b

Constant Values for AURORA-384/512 CFy {CONCRr,0,; }o<j<és
42c78d73 17a7d326 728e6420 59b18490 dab7laec 035b2b36 e511fcb0 a9999069
aaffb09e a%9e19598 4f638c18 d4cf3ad4 4baeed7a 5c7c086d 1b876d49 ef22cf4af
c885c8fe 06760431 3703ee62 £7969543 8fbaldba 8bb3cObd eb47a9bd 7e8al1880
41642977 cdbb22ff d68a6783 bal005e65 9c99d7a9 ee2653de 2854ba7e 58417d13
66e3af51 7f9febde 50ac4004 296leca8 92175ea0 9787f5a0 albdb4f0 14b704b0
7Tbf6bd4b 434b3875 42b65d11 8f1ad079 a8357a9c 09e99c39 85618ed2 c78e9adc
4e3b707e 2cbccelb 8£8368dc 63c4bf8e 822f65b3 3el6670a Qadeadc8 3lebad23
5b86cb6d 1787f124 34907d61 1db384b0 a95c139d 034b3a37 ec608fbb 8b989079
4ce9a27c 29e99d18 5d816ale cbcfbadc

Constant Values for AURORA-384/512 CFy {CONML 0, }o<j<32
dOble35c 85e9f4c9 1ca39908 166c¢6124 aabfec27 2a786566 13d8e306 3533cebb
b221723f 419d810c 8dc0fb98 fdebab50 d0590abd f£35548bf £f5a299e0 6e801799
59b8ebd4 9fe7fad3 142b1001 0ab87b2a defdafb2 50d2celd 50ad9744 63c6Eb4dle
938edcl1f cb2f3386 23e0da37 98f12fe3 56elb2db 05el1fc49 4d241f58 076cel2c

Constant Values for AURORA-384/512 CFy {CONMR,0,;}o<j<32
cdab7lae 6035b2b3 0ebllfcb 9a999906 adbaeed7 db5c7c086 91b876d4 fef22cfd
a8f5al4b d8bb3cOb deb47a9b 07e8a188 99c99d7a eee2653d e2854ba7 358417d1
092175ea 09787f5a 0albdb4f 014b704b ca8357a9 909e99c3 285618ed cc78e9ad
3822f65b a3e16670 89adeadc 331ebad2 da95cl139 7034b3a3 bec608fb 98b98907

Constant Values for AURORA-224M/256M CFy” {CONCT, ;Yo<j<es

89ae91c3 4cfab05a 6e3c5d5b 9f4adc83 cd1c2387 6£f0a4079 dc7819e9 7f0dff73
4478470e T7ef2b868 Db8f1908d 8f2eee8b fe8lbeb4d 760e4460 414b2a74 T773fe677
23427d69 72703a64 8296f7b7 8b37e209 30f5ca7a 704f0566 3585e400 £533e036
179badbd ab4802b3 5ba2c36e fa993531 59477813 1bd3990d 87ec8db2 cde48baa
c4ffc08e 9086cc86 3£f71100a 66£f200ff 57be811d 01347el7 7ee2834b 03d19144
d90d3293 49eda75f cd6c0df8 11404994 6cb5ab6526 1999d3af 9Yad9b8af 58a029e0
aecbfae4 cla3e9d7 051b7a30 2c5051da 83cafbc9 fdbefdeb 0a36573f 16286dc7
d9d4eb93 37a8e221 146c¢0d21 3bbca7dl 6de8d727 52a3e944 28d8b91d 2d76c2da
adal9ee7 Db43e74a2 61187954 16bb2447

45

Constant Values for AURORA-224M/256M CFy" {CONCE, ;}o<j<os

4d748elc 67d582d2 T7le2eadb fab6ed4lc 68ellc3e 785203cb e3cOcfd4e £86ffb9b
23c23872 £795c343 c78c846d 7977745c f40df5a7 0722303 0ab953a2 b9ff33bb
1la13eb49 9381d323 14b7bdbc 59bf104c 87aeb3dl 82782b33 ac2f2001 a99f01b7
bcdd22e8 2a40159d dd161b72 d4c9a98f ca3bc09a de9cc868 3£646d94 6£245d56
27fe0476 84366434 fb888051 379007fb bdf408ea 09a3f0b8 f7141abb 1e8c8a68
c869949e 4f6d3afa 6b606fc6 8alb6ccab 62d32933 ccce9d7d db6cdcb7c c5014£02
762fd725 0difdebe 28dbd180 62828edl 1eb57aed4c edf7a75f 51b2b9f8 b1436e38
cea75c9e bd471109 a3606908 ddeb3e89 6f46b93b 951f4a22 46c5c8e9 6bb616d1
6d0cf73d alf3ab515 08c3caa3 1b5d92238

Constant Values for AURORA-224M/256M CFy" {CONM[", ;Yo<j<s2
135d2387 99f560b4 dc78bab6 3e95b907 88f08elc fde570d0 71e3211b 1ebdddi7
4684fad2 e4e074c8 052def6f 166fc413 2f3748ba 42900567 b74586dc £5326a63
89ff811d 210d990d 7ee22014 cde401fe b21a6527 93dbdebe 9ad81bfl 6281b329
5d8bf5c9 8347d3af 0a36f460 58a0a3b4d b3ad9d727 6f51c442 28d81lad2 77794fa2

Constant Values for AURORA-224M /256M CFy” {CONME, ;}o<j<s2
e68el11c3 Db785203c ee3cOcf4 Dbf86ffb9 7f40df5a 3b072230 20ab953a bb9ff33b
187aeb3d 382782b3 1ac2f200 7a99f01b aca3bc09 8de9cc86 43f646d9 66f245d5
abdf408e 809a3fOb bf7141ab 81e8c8a6 362d3293 dccce9d7 cdbcdch7 2c5014f0
cleb7aed4d fedf7a75 851b2b9f 8b1l436e3 b6£f46b93 2951f4a2 946cbc8e 16bb616d

46

2.10 Pseudocodes

The pseudocodes of the specifications of the AURORA family are described in this section.

MSMIF, F'}(X(256), {Y} (32) Jo<j<s2)
000 (Xo,Xl,...,X7)<—X

020 (ZOaZh-"aZ7)<_(X07X1a"-7X7)
030 fori< 1to7do

100

120 2647265,...,271)<—(X0,X17...,X7)
130 return {ZJ (32)}OSJ<72

010 (X1, X3, X5, X7) — (X1, X3, X5, X7) @ (Yo, Y1,Y2,Y3)

040 (XQ,Xl, ,X7) — BD(Xo,Xl, . ,X7)

050 (X0, Xa, X4, Xo) « (F(Xo), F'(X2), F'(X4), F'(Xs))

060 (X1, X3, X5, X7) — (X1, X3, X5, X7) ® (Yai, Yait1, Yaivo, Yaits)
070 (X1, X3, X5, X7) (X1, X3, X5, X7) @ (X0, X2, X4, X6)
080 (Zgz7 Zgz_;,_l, .. Zgz+7) ()(07 Xl, . 7)(7)

090 (Xo,X1,..., Xs) — BD(Xo, X1, ..., Xr)

(

(Xo, X2, Xy, Xo) « (F(Xo), F'(X2), F(X4), F'(X6))
110 (X4, X3, X5, X7) — (X1, X3, X5, X7) @ (Xo, X2, X4, Xg)

(

Figure 2.13: A pseudocode of MSM : {0,1}2°¢ x ({0,1}32)32
Sec. 223l F and F’ are functions over {0, 1}32.

N ({07 1}32)72.

BD is defined in

CPM[F, F'|(X (256), 1Y} (32) Jo<ji<144, {W (32) Jo<j<68)
000 (Xo,Xl,...,X7)<*X

030 for i+ 1to 16 do

140 return Z(ps¢)

010 (X1, X3, X5, X7) — (X1, X3, X5, X7) @ (Wo, Wy, Wy, W3)
020 (X(),Xl,...,X7) — (Xo,Xl,...7X7) D (Y(),Yi,...,

Y7)

040 (Xo,X1,...,X7) « BD(Xo, X4,...,X7)

050 (Xo, X2, Xu, Xo) < (F(Xo), F'(X2), F'(X4), F'(Xe))

060 (X1, X3, X5, X7) (X1, X3, X5, X7) & (Wai, Waig1, Waiyo, Waigs)
070 (X1, X3, X5, X7) — (X1, X3, X5, X7) @ (X0, Xo, X4, Xs)

080 (Xo,Xl,...,X'y) (Xo,Xl,...,X7) (Ygi,YSiJrl,...

090 (Xo,X1,...,X7) <« BD(Xp, X4,...,X7)

100 (Xo, X2, Xu, Xe) < (F(Xo), F'(X2), F'(X4), F'(Xe))

110 (X17X3;X57 7) (X13X3aX57X7) 2] (XO,X27X47X6)

120 (Xo,Xl,..) (X(),X17...7X7)@(Y136,Y137,...,Y143)

130 Z «— (Xoll Xl [- 1l X7)

,Ysigr)

Figure 2.14: A pseudocode of CPM : {0,1}%%% x ({0,1}32)144 x

defined in Sec. 223} F and F’ are functions over {0, 1}32.

47

({O7 1}32)68

— {0,1}?55. BD is

BD(Xq (32), X1 (32)5 - - - » X7 (32))

000 fori<« 0to7do

010 (@45, Taig1, Taiv2, Taivs) — X;
020 for ¢+ 0 to 31 do

030 x;(i) —

040 fori«+ 0to 7 do

050 Xi— (2 ziLiJrl [xiuurz | 9321#3)
060 return (XO (32)> Xl (32)5- -+ X7 (32))

Figure 2.15: A pseudocode of BD : ({0,1}32)% — ({0,1}32)%. = is defined in Fig. 23

DR({ X (32) Yo<j<72,1Yj (32) fo<j<72)

000 for i+« 0 to 8 do

010 (Z16i> Z16i41, - - - Z16i47) < PROTL(Xgi, Xgit1, ..., Xgit7)
020 (Z16i+8> Z16i49: - - - » Z16i+15) «— PROTR(Ygi, Ygiy1,- ., Ygit7)
030 return {ZJ (32)}'0§j<144

Figure 2.16: A pseudocode of DR : ({0,1}32)7 x ({0,1}3%)7 — ({0,1}??)!4%. The functions
PROTL and PROTR are defined in (2.8)) and (29]), respectively.

AURORA-256(M)

000 (Mo, My,...,My—1) < Pad(M)
010 Hy « 026

020 fori<— 0tom —2do

040 H,,— FF(Hpy—1,Mp-1)

050 return H,, (256)

Figure 2.17: A pseudocode of AURORA-256. The padding function, Pad(-), is defined in (Z.I0)),
CF is defined in Sec.2.3.2] and FF is defined in Sec. 233

000
010
020
030
040
050
060
070

CF(H; (256, M; (512))

(MLv MR) — MZ

{Tr ;Yo<j<ra « MSL (M)

{Tr,jto<j<r2 — MSRr(MR)

{Uj}o<j<1aa < DR({T1 j}o<j<72: {TR,j}o<j<72)
Y « CP(X,{Uj}o<j<144)

Hi+1 —Y D X

return H; 1 (256)

Figure 2.18: A pseudocode of CF : {0,1}?% x {0,1}512 — {0,1}?%6. MSy, MSg, DR, and CP
are defined in (211]), (Z12)), Sec. ZZH and in I3, respectively.

48

000
010
020
030
040
050
060
070

FF(Hp,—1 (256), Mm—1 (256))

(Mp,Mg) < My, 1

X — Hm,1

{Tr,j}o<j<r2 < MSF(My)

{Tr,;}o<j<r2 — MSFR(Mg)

{U;j}o<j<1aa < DR({T j}o<j<72: {TR,j}o<j<72)
Y « CPF(X,{Uj}o<j<144)

H,—YaoX

return H,, (256)

Figure 2.19: A pseudocode of FF : {0,1}?%% x {0,1}°'2 — {0,1}?%%. MSF, MSFgr, DR, and
CPF are defined in (2I5), 2I6]), Sec. 2228 and in (2I7]), respectively.

AURORA-224 (M)

000
010
020
030
040
050
060

(]\407 Ml, ey Mm—l) «— Pad(M)
HO - 1256
for i «— 0tom —2do
HiJrl — CF(H“MZ)
Hm = FF<Hm717Mm71)
H1/n «— TF224(Hm)
return H/ (224)

Figure 2.20: A pseudocode of AURORA-224. Pad, CF, and FF are the same as AURORA-256

and defined in Sec.

000
010
020
030
040
050
060
070

AURORA-512(M)

(Mo,Ml, e 7]\4771_1) — Pad(M)
HO — 0512

for i < 0tom —1 do

H,, — MFF(H,,)
return H,, (512

Hiy1 CFi mod 8(Hi,Mi)
if (0<i<m—1)A (imod8=7) then
Hiyy « MF(Hiyq)

Figure 2.21: A pseudocode of AURORA-512. The padding function, Pad(-), is defined in (ZI0),
CF, is defined in Sec. 252 MF is defined in Sec. 253l and MFF is defined in Sec. 22541

49

000
010
020
030
040
050
060
070
080
090
100

CF(H; (512, M; (512))

(Mp, MRg) «— M;

(XL,XR) — H;

{T'r ;}o<j<r2 — MSp o(Mp)
{Tr,j}to<j<r2 — MSgs(Mg)
{Uj}o<j<iaa — DR({TL j}o<j<r2, {Tr,jo<j<72)
Yy« CPr (X1, {Uj}o<j<144)
Yr < CPRs(Xpr,{Uj}o<j<144)
Zp Y, 0 X

Zp — Yr® Xr

Hiyy — (Zp,ZR)

return H; (512

Figure 2.22: A pseudocode of CF : {0,1}512 x {0,1}%12 — {0,1}*'2. MSy s, MSg s, DR, CP s,
and CPpg s are defined in (ZI8), (ZI9), Sec. 22235 220), and in [22]), respectively.

MF(H; (512))

000 (XL,XR) <—H,L'

010 {T%rj}o<j<r2 «— MSLs(XL)
020 {Tr }to<j<r2 — MSps(Xr)
030 {Uj}o<j<iaa < DR({TL j}o<j<72,{TRr,j}o<j<72)
040 Yy « CPpg(Xr,{Uj}o<j<144)
050 Yr «— CPrs(Xr,{Uj}to<j<144)
060 ZL — YL D XL

070 ZR — YR) XR

080 ,E[Z — (ZL,ZR)

090 return H; (512

Figure 2.23: A pseudocode of MF : {0,1}°'2 — {0,1}5'2. MS| s, MSgs, DR, CPL s, and CPRs

are defined in (222), (Z23)), Sec. ZZH [224), and in (Z25]), respectively.

MFF(HTYL (512))

000 (X1,Xgr)— Hp

010 {Trj}o<j<r2 «— MSLo(XL)
020 {Trj}o<j<72 < MSRo(XR)
030 {Uj}o<j<iaa < DR({T1 ;}o<j<72:{Tr j}o<j<72)
040 Yy <« CPro(Xr,{Uj}o<j<144)
050 Yr < CPro(Xr,{U;j}o<j<144)
060 ZL — YL D XL

070 ZR — YR D XR

080 Hm<—(ZL,ZR)

090 return H,, (512

Figure 2.24: A pseudocode of MFF : {0,1}°'? — {0,1}°'2. MS 9, MSgrg9, DR, CPp 9, and
CPpry are defined in [2.27), 2.28), Sec. 2.5 ([2.29), and in (230)), respectively.

50

AURORA-384(M)

000 (M(),Ml,...,Mm_l)HPad(M)
010 H, « 1°12

020 fori<— 0tom—1do

030 Hii1 < CF;mod s(H;, M)
040 if (0<i<m—1)A(imod8=7) then
050 Hi+1 — MF(HH_l)

060 H,, — MFF(H,,)
070 H! « TF3g4(Hp)

080 return H, (384)

Figure 2.25: A pseudocode of AURORA-384. Pad, CF,, MF, and MFF are the same as
AURORA-512 and defined in Sec.

AURORA-256M (M)

000 (Mo, M,...,My,—1) < Pad(M)
010 Hy « 0°12

020 fori<— 0tom—1do

030 Hi — CFM L o(H;, M)
040 if (0<i<m—1)A (imod8=7) then
050 Hiyy «— MFM(H;p)

060 H! — MFFM(H,,)

070 return H, (256)

Figure 2.26: A pseudocode of AURORA-256M. The padding function, Pad(-), is defined in (210,
CFM is defined in Sec. 7.2 MF™ is defined in Sec. 773, and MFFM is defined in Sec. 2741

CF Y (H; 512), Mi (512))

000 (MLaMR) <_Mz

010 (Xp,Xg)< H;

020 {T%;}ocjcra — MSY (M)
030 {Tr;}tocjcr2 — MSE (Mg)
040 {Uj}o<j<iaa < DR({TL j}o<j<r2, {Tr,j o<j<72)
050 Y — COP7 (X1, {Uj}o<;j<144)
060 YR — CP%S(XR,{UJ‘}QSJ‘<144)
070 ZL — YL (&3] XL

080 Zr+— Yr® Xp

090 Hi+1 — (ZL,ZR)

100 return Hiyq (512

Figure 2.27: A pseudocode of CF1" : {0,1}°12x {0,1}"12 — {0,1}°12. MS}',, MS} ., DR, CP}’,,
and C’P%S are defined in (Z31)), (Z32)), Sec. 223 [Z33), and in (Z34)), respectively.

51

000
010
020
030
040
050
060
070
080
090

MFM (H; (519))

(X1, Xg) < H;

{T1,j ocjcr2 — MST's(X 1)

{Trj}o<j<r2 — MSEs(XR)

{U;j}o<j<raa < DR({T% j}o<j<72:{TR,j}o<j<72)
YL — CP%S(XLv{Uj}O§j<144)

Yi — CPRs(XR, {Uj}o<j<144)

Zp — YL 0 X

Zr— Yr® Xp

H, — (Z1,ZR)

return H; (519

Figure 2.28: A pseudocode of MFM : {0,1}512 — {0,1}°'2. MS%& MS%I,& DR, OP%g, and
CP%B are defined in (Z30)), (Z30), Sec. 2221, ([2.31), and in ([Z38), respectively.

MFFY (H,, (512))

000 (X,Y) < Hy,

010 for j « 0 to 71 do

020 TL,]‘ — 032

030 {Trj}tocjcra — MSE(Y)

040 {Uj}o<j<ias < DR({TL j}o<j<r2,{TR,j}o<j<72)
050 Z < CPJLM,Q(Xa {Uj}0§j<144)

060 H!, —Z®X

070 return H!, (256)

Figure 2.29: A pseudocode of MFFM : {0,1}°'2 — {0,1}°!2, MS%Q, DR, and C’Pg/{9 are defined

in (2400, Sec. 225 and in (241]), respectively.

000
010
020
030
040
050
060
070
080

AURORA-224M(M)

(MQ, Ml, ey Mmfl) — P(ld(M)
Hy « 1512
fori<—0tom—1do
Hitq — CF?/Imod s(Hi,Mi)
if (0<i<m—1)A (imod8=7) then
Hi 1 — MFM(H;)
H' — MFFM(H,,)
H! — TFa4(H!))
return H/ (256)

Figure 2.30: A pseudocode of AURORA-224M. The padding function, Pad(-), is defined in (210,
CFM is defined in Sec. I8 MF™ is defined in Sec. 773, and MFFM is defined in Sec. 2741

52

2.11 AURORA Examples

This section describes example vectors of the AURORA hash algorithm family. Table gives
three examples for the messages My, Ms, and M3 defined below for each hash function.

Let the message M; be the 24-bit ASCII string “abc”, which is equivalent to the following
binary string:

01100001 01100010 01100011.
Let the message My be the 448-bit ASCII string

“abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq”.

Let the message M3 be the binary-coded form of the ASCII string which consists of 1,000,000
repetitions of the character “a”.

53

Table 2.2: AURORA Examples.

AURORA-256
Message Hash Value
My 3e0c31cl 8ef5c404 33844fac 2d4acdf4 9e390962 797821a4 9e3553f3 8189917e
My 21621069 e64ec4ba eccf140a d881c684 44c30081 32a3b2d0 e€9a1d961 d2dc034f
Ms ec8cedeb 3£d1bd3b c6de6702 b6ed25e8 d80f5efa b5433912 446aaefc db026b5E
AURORA-224
Message Hash Value
My 50fddclc 77601c2c c01cc258 eccc6al0 37646235 860da74b 6e0280af
Moy 05874948 064d42ca e0ffa686 45034160 8d571731 £9581ca8 b8eal890
Ms 7977bc32 b66d7b05 6b215153 1545668d 5£3d1c6c 42a48334 5ab31£70
AURORA-512
Message Hash Value
My 6ad4cf6dl 18619abd e8c920d5 9806e483 cc90616f 8d1b4db6 b98abab7 00c4ecd7
85eaab639 45bb65el 52df4901 al1c36£78 9cb587f09 49c8e76a a0a8d7de 20f£8aale
M,y cbf432c3 01103535 £0cf£0027 efe2b0c6 2046414e 6128ec83 bbdObcct 7425£908
ab061438 6dab7647 8£f91cd42 1£4a0015 7b2fab27 d81328e7 76be3262 7352ef0c
M3 577e573e d9bfbc31 a80bcea8 2d1e4441 89d31fe0 7cdab7d3 a2c8ad00 9800feae
431e456b 85184399 5c12cbeb 6a7£7272 55880411 375£08al 4841fb96 86d390e4
AURORA-384
Message Hash Value
My cb7a330f 33abb5bec 98698f49 4aceb996 3dcec8e2 bdfal2fl £8db22fc 18b5591e
a02f267e bdaf1639 49133bf3 b59e94c2
Mo £16bb878 ddee85ef 51994078 6laeceelc b23c63fb 6498£38d fbecfdle c£24805f
8b28£018 656610f1 26ad1400 0a3f3ab6
Ms c18722£8 d9e0fel10 de818d07 e8b66734 c23532ee 7d1d9968 18£60ab0 3950b416
cb89c086 8263eb84 3b4264d1 44c2180d
AURORA-256M
Message Hash Value
M, 46cbdbab c£dc333b 7cfb4242 8£e59345 a0882acb c10c5694 9c248501 b156c457
My 3c3353d9 67d30005 deO2caeb e3b1a205 11e3b3a8 3d9048ee 5694df40 2bdc9588
Ms cd97ab1f 79cb722a c2c33a46 62502b10 a13565b4 1£662699 11b9b438 £9fe81fb
AURORA-224M
Message Hash Value
My d64eaab8 02030670 3e7d6301 74bd2f9b 607al1e95 b6620ba2 5d2a3248
M, 587879d0 6eebblda 87b6de94 06e0dbdf 24eb5fbad d98bc0dd 1257ad26
Ms c78f12a4 308821ab 3d312fdb 9df£6408 5496a44e alaeebdb a734166¢

54

Chapter 3

Design Rationale of AURORA

This chapter describes design rationale of the AURORA hash function family. The design of
AURORA is divided in two parts: one is a part of fixed-input-length compression functions and
the other is a domain extension transform which utilizes the compression function as a building
block to implement a variable-input-length hash function. In this chapter, we describe the design
rationale in a top-down approach, from the domain extension to the compression function for
AURORA-256, AURORA-512, and AURORA-256M, then explain the components in the common
building blocks.

We describe the design rationale for AURORA-256, AURORA-512, and AURORA-256M as
representatives of the AURORA family. However, the design rationale of AURORA-256 is ap-
plicable to AURORA-224, because AURORA-224 is the same as AURORA-256 except for the
initial value and truncation of final hash value. Similarly, the design rationale of AURORA-512
is applicable to AURORA-384, and also the design rationale of AURORA-256M is applicable to
AURORA-224M.

3.1 AURORA-256

3.1.1 Domain Extension

AURORA-256 adopts the strengthened Merkle-Damgéard (sMD) transform with a finalization
function which is different from the compression function in the transform. The domain extension
of AURORA-256 is shown in the above of Fig. 31l

Most of widely-used hash functions employ the strengthened Merkle-Damgard transform be-
cause it has been proven to be collision-resistance preserving [35], [I5]: if the compression function
is collision-resistant (CR), then so is the hash function. However, current usages of hash functions
make it obvious that CR no longer suffices for the security goal for hash functions, because hash
functions are often used to instantiate random oracles as well. Coron et al. [12] introduced a
formal definition of “behaving like a random oracle” for hash functions using the indifferentiabil-
ity framework, which was originally proposed by Maurer et al. [32]. They showed that the sMD
transform is not indifferentiable from a random oracle.

We chose the sMD transform with the finalization function, because it preserves CR and indif-
ferentiability (PRO) of the underlying compression function. The collision resistance preservation
(CR~Pr) is ensured by the MD strengthening [35]: the input message is padded by the padding
function Pad(-) in AURORA. CR-Pr can be proven similarly to the proof in [35]. The pseudoran-
dom oracle preservation (PRO-Pr) is due to the finalization function. The finalization function
works to envelope the internal MD iteration as the enveloping mechanism used in NMAC/HMAC
constructions [5] and the EMD transform [6]. PRO-Pr can be easily proven from Lemma 5.1 in
[6], which is core to the proof that EMD is PRO-Pr.

The structure of the finalization function FF' is the same as the structure of the compression
function CF except for the constants. By using a different set of constants between them, it

55

Mo M1 Mm1

512 512
\
Ho CF CF o .| FF o
\ 6 ., 256

256 256

Mm—l:‘

512\ : 512\)

MSR MSFr
Hi CP — Hi+1 Hmz CPF —> Hm
256 256
~{us]
CF F

s]

F

Figure 3.1: AURORA-256: Domain extension and compression function.

is expected that FF behaves as a different function from CF. On the other hand, FF can be
efficiently implemented by using the same module as CF.

3.1.2 Compression Function

The AURORA-256 compression function CF uses two message scheduling functions MS; and
MS R, and the chaining value processing function CP, as shown in the below of Fig. Bl It is
regarded as the Davies-Meyer construction [34) p.340]. We chose this construction because it is
possible to input a longer message than a chaining value to achieve higher throughput, while in the
Matyas-Meyer-Oseas and Miyaguchi-Preneel constructions [34] p.340] a message and a chaining
value must be the same size. Although the Davies-Meyer construction has a negative property
such that fixed points are easily found [36] [45] [1I7], we attached more importance to achieving
higher throughput.

Considering recent attacks on hash functions exploiting simple message scheduling [55] 50,
57, we chose to design more secure (and more heavy) message schedule like Whirlpool [3] and
DASH [8]. Each components of the message scheduling function (MSy, MSg) is based on a 256-
bit permutation using blockcipher design techniques. To achieve both of security and speed, the
message scheduling function is composed of two 256-bit functions, not one 512-bit function, because
generally constructing a 512-bit ideal primitive requires more than double cost of constructing a
256-bit ideal primitive.

The finalization function FF uses two message scheduling functions MSF; and MSF i and
the chaining value processing function CPF. The structure of the finalization function FF is the
same as the structure of the compression function CF except for the constants.

3.2 AURORA-512

3.2.1 Domain Extension — Double-Mix Merkle-Damgard transform

In order to achieve an efficient 512-bit hash function, a novel domain extension transform, called the
Double-Mix Merkle-Damgard (DMMD) transform is introduced. The DMMD transform consists
of double lines of compression functions and whole state mixing functions inserted every 8 blocks
as in Fig. The DMMD transform enables an efficient collision-resistant construction for double

56

8 blocks

[r [:'~ ; s

L
Ho { 256 Lh 256 2 | ME 256 26 | MEE| 26 5 Hm
) - f R
256 256 256 256 256 256

Figure 3.2: Double-Mix Merkle-Damgéard (DMMD) transform.

length hash functiondl, which outputs 2n-bit hash values using component functions with n-bit
output. We adopted this approach because (1) the same compression function can be used in all
the AURORA family, and because (2) the message scheduling functions can be shared between
two compression functions by making the best use of the structure of the AURORA compression
function.

The previous designs for secure (i.e., collision-resistant) double length hash functions include
Lucks’ double-pipe hash [31] and Hirose’s construction [25]. The double-pipe hash uses two com-
pression functions f : {0,1}?" x {0,1}™ — {0,1}" in parallel, i.e., f has a 2n-bit chaining value
and an m-bit message as inputs and an n-bit chaining value as output. Similarly, Hirose’s con-
struction uses a secure blockcipher E : {0,1}""™ x {0,1}" — {0,1}" twice, i.e., E is an n-bit
blockcipher with (n + m)-bit key length. The DMMD transform consists of smaller compression
functions f; : {0,1}™ x {0,1}" — {0,1}™ with an n-bit chaining value and an m-bit message
as inputs and an n-bit chaining value as output. Generally, it is possible to construct a secure
component with small input size at lower cost than a component with large input size. Although
the DMMD transform additionally requires the mixing function which is called only once every
eight blocks, this approach can achieve an efficient double length hash function.

Security of the DMMD transform. The collision resistance (CR) and preimage resistance
(Pre) of the DMMD transform can be achieved with appropriate assumptions on the underlying
components (see Sec. for the proofs).

The pseudorandom oracle preservation (PRO-Pr) can be proven similarly to the EMD [6]
Lemma 5.1]. The PRO-Pr of the DMMD transform is due to the mixing function for finalization
MFF, which works to envelope the internal iterated compression functions.

Shared message scheduling between two 256-bit compression functions. In AURORA-
512, the compression function CF; consists of two compression functions with 256-bit output
(denoted as “256-bit compression functions”) f; and f;11, as shown in Fig. Each of the
256-bit compression function consists of two message scheduling functions and the chaining value
processing function. Since the message scheduling can be shared between two 256-bit compression
functions, the cost of the 512-bit compression function CF; is reduced to less than double cost of
the 256-bit compression function. In the case of AURORA-512, the cost for the message schedul-
ing functions/the chaining value processing function ratio is about 1:1, the 512-bit compression
function CF; can be implemented with only about 1.5 times cost of the 256-bit compression
function.

Mixing functions. In the DMMD transform, the mixing function is inserted at intervals of
several calls of the compression functions. The purpose of the mixing function is to mix the two
n-bit chaining values. The number of blocks the mixing function is inserted effects the security
bound. In AURORA-512, the mixing function MF is inserted every 8 blocks.

1They are also called as double-block-length (DBL) hash functions, but we use the term “double length hash
functions” following [37].

57

A
Mo M1 M~ Ms Mm1
512 512
Ho CFo CF1 o CF7 MF CFo o CFi1 MFF|_4 Hm

512 512 . 512 512 512 512 512

Mi

512 \ l:
MR
CPr 917
256 256 256
Hi MS Hi+1 Hi

256

Hrm- Hm
- SEae cr et
256 L'J 256 256 256 256
CFi MF MFF

Figure 3.3: AURORA-512: Domain extension and compression function.

Independent instances of compression functions. In order to prove that the DMMD trans-
form has collision resistance, each of the (eight) compression functions between the mixing func-
tions is expected to behave as an independent function. To specify independent compression
function instances with limited implementation cost, we use the same components for all compres-
sion functions with different sets of constants. For the security proofs of the DMMD transform,
see Sec.

3.2.2 Compression Function

As described in Sec. [322.I] the compression function for AURORA-512 is based on two 256-bit
compression functions, which are the same as the AURORA-256 compression function. One 256-bit
compression function consists of two message scheduling functions MS; and MSg and a chaining
value processing function CPp; the other 256-bit compression function consists of two message
scheduling functions MSy and MSpg and a chaining value processing function CPg. By sharing
the message scheduling functions, the AURORA-512 compression function CF consists of MSy,
MSg, CPr and CPg (See the below left in Fig. [33).

The mixing function MF and the mixing function for finalization MFF have a different interface
from the compression function CF;. In other words, there is no message input to MF and MFF,
and a chaining value is input to both of MS and CP (See the below middle and right in Fig. B.3)).
However, MF and MFF are composed of the same components as the compression function CF;,
except for constants. This design enables us to use the same module in software and hardware
implementations.

3.3 AURORA-256M

3.3.1 Domain Extension

AURORA-256M, which outputs 256-bit hash values, is an optional instance with multi-collision
resistance (“M” means multi-collision resistance). AURORA-256M has the same structure as
AURORA-512 except the final mixing function. Therefore, it has the almost same performance
as AURORA-512, which is only about 50% additional cost to AURORA-256, i.e. less than double
cost of AURORA-256. Thus AURORA-256M achieves multi-collision resistance very efficiently.

58

It is known that many iterated hash functions including the Merkle-Damgard construction and
its variants allow Joux’s multi-collision attack [26], Kelsey-Schneier’s second preimage attack [28],
and Kelsey-Kohno’s Herding attack [27]. In particular, Kelsey-Schneier’s second preimage attack
on n-bit iterated hash functions finds a second preimage for a message of 2 message blocks with
about 2"~ #+1 work. (Note that the security requirement for SHA-3 regarding the second preimage
resistance is approximately n — k bits for any message shorter than 2 bits, so we understand that
multi-collision resistance is not a mandatory requirement.)

We include AURORA-224M/256M in the AURORA family for the use in the applications
where multi-collision resistance and/or second-preimage resistance for extremely long messages is
considered important. However, we submit AURORA-224/256 as the formal SHA-3 candidates
and submit AURORA-224M/256M as optional instances, because (1) AURORA-224/256 are more
efficient than AURORA-224M/256M and (2) NIST encourages submitters to submit only one
algorithm for each hash size.

3.3.2 Compression Function

The compression function and mixing function for AURORA-256M are the same as those for
AURORA-512 except for the constants. Thus AURORA-256M can be implemented with the
same module as AURORA-512.

3.4 Components and Constants

The compression functions of all the AURORA family are composed of the common building
blocks: the message scheduling module (MSM) and the chaining value processing module (CPM).
This section shows the design rationale of the components and constants used in MSM and CPM.

3.4.1 AURORA Structure

As is known in blockcipher design and analysis, security evaluation tends to be difficult or infeasible
as the block/input size increases, because the required computational complexity increases. To
facilitate analysis, choice of the structure and its components is important. We chose a 256-bit
permutation based on byte-oriented operations to construct the structure for both of the message
scheduling module (MSM) and the chaining value processing module (CPM). We call it the
AURORA structure, which is shown in Fig. B4l It can be regarded as a combination of SPN and
a generalized Feistel structure.

The AURORA structure itself is novel, but it follows the traditional blockcipher design strategy.
There are four 32-bit-to-32-bit F-functions in parallel in one round. The F-function consists of a
substitution layer and a permutation layer, where four S-boxes and a 4 x 4 matrix multiplication
in GF(28) are operated. Details are written in Sec. In order that the hash function family
AURORA has desirable security properties including the collision resistance and indifferentiability,
it should be guaranteed that the underlying compression function has no differential paths with
high probability that are exploitable in collision-finding attacks or distinguishing attacks. The
compression function consists of an underlying 256-bit blockcipher with two message scheduling.
Since it is computationally infeasible to estimate maximum differential probability of the overall
compression function C'F : {0,1}%%% x {0,1}512 — {0,1}255 we designed so that each of the 256-bit
permutation from the 256-bit input X to the 256-bit output Z in MSM and CPM (For X and
Z, see Sec. 2211 and [Z22]) has no differential paths with high probability under the assumption
that “subkeys” (i.e., constants in MSM and expanded messages in CPM) are independent and
uniformly distributed.

In choosing the structure, we estimated maximum differential characteristic probability ob-
tained by numbers of active S-boxes, and compared estimated performance given by the number
of required F-functions among several candidates including the generalized Feistel structure and
its variants. As a result of consideration discussed in Sec. [£.2.3] we chose 8-round AURORA

59

225 -’
— I — =
7 ?'?’;: —
e <4

Byte Diffusion (BD)

=

Figure 3.4: AURORA structure.

structure for the message scheduling module and 17-round AURORA structure for the chaining
value processing module.

Since (1) AURORA’s message scheduling module is designed to be secure by itself by using
blockcipher design techniques, and (2) AURORA is based on byte-oriented operations including
the S-box and the matrices in GF(2%) while SHA-2 makes use of logical operations on 32-bit or
64-bit words, the design strategy is significantly different from SHA-2. Therefore, it is expected
that a possibly successful attack on SHA-2 is unlikely to be applicable to AURORA. Furthermore,
byte-oriented operations including the S-box and the matrices in GF(2%) are suitable for a wide
range of platforms including 8-bit processors and constrained hardware implementations.

Byte Diffusion function BD. The byte diffusion function BD is adopted to enhance diffusion
and to avoid preserving wordwise structure. For example, there exist 16-round trivial impossible
differential paths in the AURORA structure if BD is replaced with the traditional wordwise
permutation (c.f. There exist 17-round trivial impossible differential paths in the 8-line generalized
Feistel structure). On the other hand, full bytewise diffusion has downsides including a decrease
in efficiency and a reduction of effect by the DSM techniques (for details, see the design rationale
of diffusion matrices described later in this section). We examined the effect of several variants of
diffusion on differential characteristic probability to determine the byte diffusion. As a result, we
chose the diffusion function where half of the data (i.e. the 2nd, 4th, 6th and 8th words) are input
to the bytewise diffusion which is the same as the ShiftRow transformation in the AES [22], and
the other half (i.e. the 1st, 3rd, 5th, and 7th words) are input to the 32-bit wordwise permutation
similar to that in the generalized Feistel structure.

3.4.2 F-function

The F-function consists of a substitution layer and a permutation layer, where four non-linear byte
substitutions (S-boxes) and a 4 x 4 maximum distance separable (MDS) matrix multiplication over
GF(28) are operated. The S-boxes provide confusion, and the matrix multiplication provides local

60

diffusion in the F-function. The structure and the components of the F-function are chosen to
facilitate analysis and to utilize the well-established techniques for blockcipher design and analysis.
AURORA uses four F-Functions Fy, Fi, F5, and F3 with different diffusion matrices. Each
of the building blocks CPy, CPgr, ME}, and MER uses two different F-Functions chosen out of
four (see Table[32]). We chose four diffusion matrices so that the Diffusion Switching Mechanism
(DSM) [52] works to improve the security against differential and linear attacks.
The details of selection of the S-box and the diffusion matrices are described below.

S-box

We explain design criteria and procedure for choosing the S-box of AURORA to show that there
exist no “trap-doors” in it. The design criteria of the S-box are:

e Immunity against known attacks, and
e Suitability for efficient hardware/software implementations.

To meet the design criteria above, we chose a byte substitution based on an inversion in the finite
field GF(2%), because it provides optimal security in terms of maximum differential/linear prob-
ability etc. and optimization techniques for hardware/software implementations are well studied.
The AES [22] also employs an S-box based on an inversion in the finite field GF(2®), however,
there is room for both of area/throughput optimizations in hardware implementations. Thus we
decided to choose a different S-box from the AES.

The S-box of AURORA is based on the inversion in the finite field GF((2*)2) defined by
an irreducible polynomial 22 + z 4+ {1001} for which the underlying GF(2*) is defined by an
irreducible polynomial 2’4 +2'+1. These irreducible polynomials were chosen to optimize hardware
implementations. The S-box is constructed by the following three steps:

Step 1. Apply the affine transformation over GF(2): f,
Step 2. Take the inverse in GF((24)?), then
Step 3. Apply the affine transformation over GF(2): g

The affine transformations f and g are applied to hide the algebraic structure (such as alge-
braically simple relations) in the finite field GF((24)?). Considering implementation cost, the
affine transformations f and g were chosen so that the following conditions are satisfied.

Let f(x) = My -x+cy and g(x) = My -x+c4, where My and M, are non-singular 8 x8 matrices
in GF(2), and ¢y and ¢, are constant vectors in GF(2) (See (22 and 23) in Sec. [Z24).

Conditions on M; and M,
1. The Hamming weight of each row/column vector of M, and M, is 2 or less.

2. The Hamming distance between the 1st and the 5th row vectors in My and M, is 1. Similarly,
the Hamming distance between the 2nd and the 6th row vectors, the 3rd and the 7th row
vectors, and the 4th and the 8th row vectors in My and M, is 1, respectively.

3. The Hamming weights of the 5th, 6th, 7th, and 8th row vectors are 1.

The numbers of candidates of My and M, satisfying the conditions above are 40320, respectively.

Conditions on ¢y and ¢,
1. The Hamming weight of ¢y and ¢, is 4.

2. The Hamming weight of the upper 4-bit of c¢ and ¢4 is 3, and the Hamming weight of the
lower 4-bit of ¢y and ¢, is 1, respectively.

61

Table 3.1: Security properties of the S-box.

maximum differential probability 2-6
maximum linear probability 26
minimum degree of Boolean polynomial 7

minimum number of terms in polynomial over GF(28) | 252
length of cycle 255

The number of candidates of c; and ¢4 satisfying the conditions above is 17, respectively.

From all the possible 40320 x 40320 x 17 x 17 combinations of (Mg, My, cf, ¢4) satisfying
the conditions above, we chose the first candidate that satisfied the security properties? shown in
Table Bl according to the pseudocode below:

Select S-box (i.e. My, My, ¢y, cq)
000 for Myindex «+ 0 to 40319 do

010 for Myindex « 40319 down to 0 do

020 for cyindex «+ 0 to 16 do

030 for c4index « 0 to 16 do

040 if satisfy the conditions in Table B

return (Myindex, M index, crindex, ¢4index).

Note that ¢; and ¢, are indexed by the values which can be represented as the concatenation of
its individual bit values of the 8-bit vector in the order, respectively. M; and M, are indexed
by the values which are generated by concatenating 8 8-bit row vectors from the most significant
byte, respectively.

As a result, the candidate with M index= 0, Myindex= 40319, cyindex= 2, c4index= 5 was
chosen.

Diffusion Matrices

AURORA employs four different diffusion matrices Mgy, My, My and M3 to improve the immu-
nity against differential (and linear) attacks by using the Diffusion Switching Mechanism (DSM).
The concept of DSM was first proposed by Shirai and Shibutani in 2004, followed by extended
works [51], 52 53], 50] and used in the blockcipher CLEFIA [54]. This technique is applicable to the
AURORA structure. By using plural different matrices, we can prevent difference cancellations
which can happen at the XOR, operations in the structure. As a result the guaranteed number of
active S-boxes is increased.
Let Bs(M) be the branch number of matrix M, which is defined as follows:

Definition 1 Let z € {0,1}P" represented as x = [xox1...%p_1] where z; € {0,1}", then the
bundle weight wy,(x) is defined as wy(x) = §{x;|z; # 0}. Let P : {0,1}" — {0,1}9". The branch
number of P is defined as

B, (P) = Ian;g{wn(a) + wy(P(a))}

To utilize the DSM technique, AURORA uses two pairs of diffusion matrices (My, M), and
(M, M3) which satisfy the conditions I and II. Note that the elements of the matrices are in
GF(2%).

2The condition for the minimum number of terms in polynomial over GF(28) was not included in the selection
conditions in the pseudocode, but the selected candidate satisfied this property.

62

Table 3.2: Diffusion matrices used in each building block of AURORA family.

AURORA-224/256 building block MSy, MSr CP
F-function F0>F1 FQ,Fg FlaFO
matrices Mo, My | Mg, M3 | M1,My
AURORA-384/512 building block MS, MSr CPy, CPr
F-function FQ,Fl FQ,Fg F17F0 F3,F2
matrices Mo My | Mg, M3 | My ,My | M3z, M
AURORA-224M/256M | building block | MS} MSH cPy crPyY
F-function Fo,F1 FQ,Fg Fl,FO F37F2
matrices Mo, My | Mo M3 | My,My | M3, M

Condition I (MDS)

Bs(Mg) = Bs(My) = 5 (3.1)
Bs(Ms) = Bs(M3) = 5 (3.2)

This is an optimal branch number for 4 x 4 matrices in GF(28), and the matrices satisfying this
condition are called the MDS matrices.

Besides the condition I, the branch numbers of the concatenated matrices Mo| My, 75/\/1071| t/\/lfl,
M3|Ms, and *M5 ! |t M5! should be optimal.

Condition IT (DSM)

Bs(Mo|My) = Bs("My['MiY) = 5 (3.3)
Bs(M2|M3) = Bs("M;'|'Mz") = 5 (3.4)

We call the pair of the matrices satisfying these conditions the “DSM pair”. (Mg, M;) is a DSM
pair.

Actually, (Mg, Mj) is chosen according to BI) and B3)). Mz and M3 are obtained by
cyclically shifting each column of My and M, respectively. It is easily proven that (Mg, M3) is
a DSM pair, i.e. 32) and (B4) hold for My and M3 obtained in this way. Moreover, it is also
shown that (Mg, Ms) and (M;, Mz) are DSM pairs. Therefore, the DSM technique works not
only in the single building block but also across the building blocks such as CP, MSy, and MSg.
Table shows diffusion matrices used in each building block of the AURORA family.

Since there are huge number of matrices satisfying the conditions I and II, we chose (Mg, M)
considering implementation cost. Among circulant matrices with a low Hamming weight, we chose
the pair of matrices which can be implemented efficiently in hardware, i.e., to minimize the XOR
gate counts and the maximum delay. We chose z® + 2* + 23 4+ 22 + 1 as the primitive polynomial
in representing for the field GF(2%). My and M3 are obtained by cyclically shifting each column
of My and M, respectively.

3.4.3 Data Rotating Function

The outputs from the message scheduling functions are XORed to the data in the chaining value
processing function via the data rotating function DR. The function DR is adopted to incorpo-
rate bitwise operations with minimum additional cost and to prevent generic attacks exploiting
byte/word-wise structure of the chaining value processing function and the message scheduling
functions.

3.4.4 Truncation Functions

In AURORA-224, the 224-bit hash value is obtained by truncating the 256-bit final hash value
by the truncation function TF9ss. Similarly, in AURORA-384, the 384-bit hash value is obtained

63

Table 3.3: Initial values and parameters in constant generation procedure.

AURORA-256 IVy = (212 —1)21% | maske = (2173 — 1)216 | masky = (21/° — 1)216
vy = (312 —1)21% [mask; = (3173 —1)216 | masks = (31/° — 1)216

AURORA-256M | IV = (5172 — 2)21¢ | masky = (5172 —1)2¢ | masky = (51/° — 1)21¢
IVy = (7Y2 = 2)218 | mask; = (7Y/3 — 1)216 | masks = (71/° — 1)21°

AURORA512 | IV, = (1172 — 3)21 | maske = (11773 — 2)210 | masky = (11175 — 1)210
IV, = (13172 = 3)216 | mask; = (13172 — 2)216 | masks = (1315 — 1)216

by truncating the 512-bit final hash value by the truncation function TF3g4. These truncation
functions do not just drop right-most bytes like the SHA-2 family, but drop bytes equally from
every 64-bit block to make effective use of all the outputs from the F-functions in the last round
of the compression function. See also Sec.

3.4.5 Constant Generation
Role of Constants in the AURORA family

AURORA-224/256, AURORA-384/512, and AURORA-224M/256M, use 3, 4, and 4 sets of con-
stants, respectively, as listed in Sec. 294

The constants play an important role in security. They are used to make each module of CPM
and MSM an independent function. In AURORA-256, it is expected that the finalization function
FF behaves as an different function from the compression function CF by using a different set
of constants. In AURORA-512 and AURORA-256M, it is expected that each of 8 compression
functions, the mixing function, and the mixing function for finalization behaves an independent
function from each other by using a different set of constants.

Design of Constant Generation Procedure

In AURORA, all the constants can be generated by the constant generation procedure. This
strategy is more advantageous than storing all the independent random constants, especially in
constrained environments where available memory is limited.

The constant generation procedure is designed to generate pseudorandom sequences by using
simple operations such as XOR, bit-rotations, and so on. The design strategy is similar to the
constant generator of the blockcipher CLEFIA [54]. The four 32-bit constant values used in each
module of CPM and MSM in one round are generated from 16-bit values Ty ; and 17 ;. Tp,; and
Ty, are updated every round by multiplication by x or 2! in GF(2!6), respectively, where the
primitive polynomial is #16 + 2% + 213 + 21 + 2% + 2% + 1 (=0x1a831). This primitive polynomial
is also used in CLEFTA, and the choosing strategy is as follows. The lower 16-bit value is defined
as 0xa831= (= /101 — 4) - 216). “101” is the smallest prime number satisfying the primitive
polynomial condition in this form.

We set IV and IV; (the initial values of Ty ; and T3 ;) and the masking values maskoy, masky,
masks, masks as the first 16 bits of the fractional parts of the square/cube/fifth roots of prime
numbers 2, 3, 5, 7, 11, and 13 as Table [3.3] shows. This is an evidence that there is no trapdoor
in these values.

We selected the amounts of rotation (rg,r1,7r2,73) = (8, 8, 8, 9) in Step 2 in the generation
procedure of the constants, which is described in Sec. 29 by checking whether the generated
sequences pass the statistical test suites: the mono bit test, the poker test, and the runs test [I8].
In details, we checked the pseudorandomness of the first 20,000 bits of the following sequences for
all the combinations of the amounts of rotation (rg,r1,7r2,73):

64

e Sequences of constants for AURORA-224/256
- a sequence generated based on Ty ;: { CONC4;,CONC4;12,CONC4ita, ...}
- a sequence generated based on T ;: {CONC4i41,CONC4i43,CONC4iys, ... }
- a sequence of constants used in CP: { CONC4;,CONC4;41,CONCuas42, ...}
- a sequence of constants used in MSy: {CONM 1 .4;,,CONM ,.4;41,CONM , 4512, ... }
- a sequence of constants used in MSgr: {CONM g 4;, CONM g 4i+1,CONM R 4512, ... }
- a sequence of constants used in CPF: { CONC 4168, CONC4i+69,CONCuit70, ... }
- a sequence of constants used in MSF: {CONM r 4i432, CONM 1, 4i433, CONM [, 4434, ... }
- a sequence of constants used in MSFr: { CONM g 4i4+32, CONM g 4i+33,CONM R 4i434, ... }
e Sequences of constants for AURORA-384/512 in a similar manner to above
e Sequences of constants for AURORA-224M/256M in a similar manner to above
From the combinations of (rg, 71,72, r3) which passed all the statistical tests above, we selected
considering software implementation cost: i.e. we selected (rg,r1,72,r3) with the smallest sum of
distance from either 0, 8, or 16. As a result, we selected (rg,r1,72,73) = (8, 8, 8, 9).

3.4.6 Initial Value

We believe that the security provided by the structure of the AURORA family does not depend on
the value of the initial value, so any value can be used as the initial value. We chose the constants
such as all-0 or all-1, because we don’t need additional area to memorize the specific constants.

All of AURORA-256, AURORA-512, and AURORA-256M use the same all-0 constants. We
don’t identify any security problem, because each module used in AURORA-256, AURORA-
512, and AURORA-256M are different due to different matrices and constants. Similarly, all of
AURORA-224, AURORA-384, and AURORA-224M use the same all-1 constants, but we don’t
identify any security problem.

65

66

Chapter 4

Security of AURORA

4.1 Expected Strength

For AURORA-n, n € {224,256,384,512} and AURORA-nM, n € {224,256}, each hash function
is expected to satisfy preimage resistance of approximately n bits, second preimage resistance of
approximately n — k bits for any message shorter than 2% bits, and the collision resistance of
approximately n/2 bits. Several attempts to attack the AURORA family by the above attack
scenarios are described in Sec. .3 THA33l

Moreover, all members in the AURORA family provide resistance to length-extension attacks

(see Sec. A34)).

Resistance against multicollision attack is achieved in AURORA-224M/256M (see Sec. 3.5]).

Also, any m-bit hash function specified by taking a fixed subset of the function’s output bits
is expected to meet the above requirements with m replacing n.

If one of AURORA-n and AURORA-nM is used with HMAC to construct a PRF [23], the
PRF resists any distinguishing attack that requires much fewer than 2*/2 queries and significantly
less computation than a preimage attack (see Sec. L2.]).

If AURORA-n or AURORA-nM is used in the randomized hashing scheme [39], it provides n
bits of security against the following attack. 1) An attacker gets a randomized hash of M; and
randomization value 1 that has been randomly chosen without the attacker’s control, 2) Find M,
and 79 that yield the same randomized hash value. Since AURORA hash functions are secure hash
functions, it can be expected that the randomized hashing using AURORA is a secure scheme.

4.2 Security Argument

4.2.1 Security of HMAC using AURORA

HMAC-AURORA-224/256 specified in Sec. 6.2 employs CF and FF as their compression functions
and its domain extension is the same as the MD transform. Fig.dTlshows the structure of HMAC-
AURORA-224/256. According to the discussion in Sec. £23] CF and FF are expected to be
pseudorandom functions (PRFs) when keyed via the IV. They are also expected to be PRFs when
keyed via its data input. HMAC using the MD transform was proved to be a PRF when keyed
via the IV assuming that the underlying compression function is a PRF when keyed via the IV
and when keyed via its data input [4]. Therefore HMAC-AURORA-224/256 is expected to be a
good PRF [4].

Fig. 2 shows a structure of HMAC-AURORA-384 /512 specified in Sec. It can be regarded
that the iterated compression function of HMAC-AURORA-384/512 consists of the following 17
compression functions.

67

CFMFF}(X,CV) = MFF(CF\(X,CV)),

CFMFFL(X,||...||Xs) = MFF(CF7(Xg, CF6(Xs,...,CF1(Xo,CV)..))),
CFMF*(Xyl|...||Xs) = MF(CF7(Xs, CFg(Xs5, ..., CF1(Xo,CV)...))),
CFMFF)(X,CV) = MFF(CFy(X,CV)),
CFMFFY(Xol|..||X7,CV) = MFF(CF7(X7, CFs(Xs, ..., CFo(X0,CV)...))),
CFMF°(Xyl|...||X7,CV) = MF(CF7(Xy, CFg(Xs, ..., CFo(Xo,CV)...)))

NMAC using the MD transform was proved to be a PRF when keyed via the IV assuming
that the underlying compression function is a PRF when keyed via the IV. HMAC-AURORA-
384/512 can be a PRF when keyed via the IV if it satisfies that (1) the 17 compression functions
used in the iterated compression function of HMAC-AURORA-384/512 is PRFs when keyed via
the IV, (2) MFF is a PRF when keyed via the IV, and (3) keys K}y and K{,;, are chosen
at random. First, since all 17 compression functions employ MFF or MF as the final function,
they can be regarded as PRFs when keyed via the IV. Second, the MFF can also be a PRF
when keyed via the IV. Finally, if the inputs of two CF(-, Hy)s, K;n and Koyt are chosen at
random, the outputs K,y and K{;, will be almost random when Hy is fixed. Thus HMAC-
AURORA-384/512 is expected to be a good PRF when keyed via the IV. Also by the similar
manner, HMAC-AURORA-224M/256M is expected to be a good PRF.

Kin Mo M1 Mm1 Kourt

Figure 4.2: HMAC-AURORA-384/512.

68

4.2.2 Security Proofs of DMMD Transform

In this section, we present the security theorems and their proofs on important security properties
of the Double-Mix Merkle Damgard (DMMD) transform.

e We derive the success probability of the collision finding adversary against the DMMD
transform, as a hash function, in the random oracle model, and

e we show that the DMMD transform is preimage resistant if MFF is preimage resistant.

Collision resistance of the DMMD transform. We first restate the transform to fix the
notation. Let fo, fo, ..., fic1, fi—1 : {0,1}m*t" — {0,1}", Fy : {0,1}*" — {0,1}*", and F} :
{0,1}2" — {0,1}¢ be functions. The DMMD transform internally uses fo, foreoos fii1, fio1, Fo,
and F;. Two initial values Hy, .F:TO € {0,1}™ are fixed constants. Without loss of generality, we
assume it takes an (already padded) message M = (My,...,M,—1) € ({0,1}"™)* as input. The
block length, u, may vary across the messages. As we assume that the padding is properly done,
the last block, M,,_1, contains the length of the original message, and therefore 1 > 1. The output
is H,4+1 € {0,1}°. It works as in Fig.

Algorithm DMMD/o-fo-fi-sfim.Fo.Fy (),
fori«—0tou—1do
(Hiv1, Hit1) < (fi mod 1(Mi, Hi), fi moa 1(Mi, Hy;))
if(0<i<p—1)A(imodl=1-1) then

(Hi+1a f{iﬂ) — FO(Hi+17 ﬁiﬂ)

H;L+1 — Fl(H#,H#
return H,, 1

Figure 4.3: Algorithm of DMMD/o-fo-fi-t.fi-t.Fo. Py

Now we describe our collision finding adversary A;. A; has oracle access to fo, fo, cos fiot, fl,l,
Fy, and Fy, which are all random oracles, and outputs M, M’ € {0,1}* such that M # M’. A
makes ¢ queries to each of fmfo, .. .,fl,l,fl,l,FO, and Fy. We say A; wins if DMMD(M) =
DMMD(M'). A; may access the oracles in an arbitrarily order.

Now A;’s advantage is defined as

AdVCDOI{/IIMD(Al) _ Pr(A{07f07---,fL—17fl—17F07F1 Wins),

where the probability is taken over the choices of fo,fo, . .,fl_l,fl_l,Fo,Fl and Ap’s coin (if
any). A; is assumed to know DMMD(M) = DMMD(M"’) holds when A; outputs M and M.

Function G. We next define a function G, which corresponds to “one loop” of the DMMD
transform. It internally uses fo,fo, e fiot, fl,l and Fy. It takes two initial values HO,fIO S
{0,1}", and a message M = (My,...,M,_1) of at most [blocks (i.e., p < I) as inputs, and
produces the output (H,, H,) € ({0,1}")2. It works as in Fig. E4

Algorithm Qfo’fo""f“l’f“l’Fo((Ho,ﬁo)a M):
(Ho, Ho) < Fo(Ho, Ho)
for i <~ 0topu—1do

(Higr, Hiyr) — (fi(Mi, Hy), fi(M;, H;))
return (H,, H,)

Figure 4.4: Algorithm of gfo’fo”'*flfl’f“l’FU((HO, I:IO), M), where M = (Mo, ..., M,_1) and p <.

69

We next describe our collision finding adversary A, against G. A, has access to [+ 1 ora-
cles, (fo,fo), A (fl_l,fl_l), and Fy. (fi(-,),ﬁ(, -)) takes (M, H, I;T) as input, and the output
is (h,il) = (fi(M, H),fZ-(M7 ﬁ)) The 20 + 1 functions, fo, fo,. .., fi_1, fi_1, and Fy are ran-
dom oracles. A, may access the oracles in an arbitrarily order, and outputs ((H,H), M) and
((H',H'), M’ such that ((H,H),M) # ((H',H’), M"), where M and M’ are at most | blocks.
A, makes 2¢q queries to each of (fo, fo), cos (fio1s fl,l), and ¢ queries to Fy. We say Ay wins if
G((H, ﬁ),M) = g((H’,f{’),M’). Ay’s advantage is defined as

AdvZ" (Ay) = Pr(AYo ol i) o gy

where the probability is taken over the choices of fy, fo, o fist, fl,l, Fy and Ay’s coin (if any).
Ay is assumed to know G((H, H), M) = G((H', H'), M’) holds when Ay outputs ((H, H), M) and
((H',H"),M").

Function . We next describe the function 7. It internally uses fo, fo, coos fiet, fl_l. It takes
two initial values Hy, Hy € {0,1}", a message M = (My,...,M,_1) of at most [blocks (thus

p < 1) as inputs, and produces the output (H,, fIH) € ({0,1}™)%. It works as in Fig.

Algorithm Fo-fo-fiwv-fimx ((Hy, Hy), M):
fori«—0topu—1do

(Hig1, Hir) — (fi(My, Hy), fi(M;, H;))
return (H,, H,)

Figure 4.5: Algorithm of ffO’fO""fl*hflfl((Ho,fIO),M), where M = (My,...,M,_1), and p < 1.

F is the same as G without the initial computation of Fy. We note that, trivially, F is not
collision resistant as a 2n-bit compression function. However, by making a restriction on the
chaining values, then it is possible to show its collision resistance.

Let S = {S1,...,5}, S; € {0,1}", be a multi-set of strings. For any integer K > 1, we say
that S is K-coll if there are K indices 1 <143 < --- <ig < ssuch that S;, =--- = 5;, holds. The
strings (Si,, ..., S,) is said to be a K collision. We say S is K-COLL if S is K-coll but it is not
(K + j)-coll for all j > 1. If S is not K-COLL, then we say S is K-COLL-free, which means that
S may have a K — 1 collision but does not have K (or more) collisions.

Let K > 1 and s > 1 be fixed integers and let Ho = {(Ho, Ho), ..., (He_1, He_1)}, (Hi, H;) €
({0,1}™)2, be a fixed set of strings such that

{ the multi-set HE = {Ho, ..., Hs_1} is K-COLL-free, and (41)

the multi-set HY = {Ho,..., H,_1} is K-COLL-free.

Note we assume that (Hy, Hy), the fixed initial value for the DMMD transform, is included in
Ho. Now we describe our collision finding adversary As against F. Az has access to [oracles,
(fo,fo), ce (fl,l,fl,l). The 2! functions, fo, fo,-.., fi—1, fi_1, are random oracles. As; may
access the oracles in an arbitrarily order, and outputs ((H, H), M) and ((H', H'), M’) such that
((H,H),M) # ((H',H'"),M’), where M and M’ are at most I blocks. As makes 2¢ queries
to each of (fo, fo),-.,(fi_1, fii1). We say As wins if F((H, H), M) = F((H',H'), M"), where
(H,H),(H',H') € Ho must hold.
Now Aj’s advantage is defined as

AdVCfOll(Ag) = Pr(Agfo’fo)""’(f’_l’f’_l) wins),
where the probability is taken over the choices of fo, fo, R /I fl,l and Aj3’s coin (}f any). As
is assumed to know F((H,H),M) = F((H',H'), M') holds when A3 outputs ((H, H), M) and
((H',H'),M").

70

We next describe another adversary A4. Ay tries to make a collision between G and F. Now
Ay has access to [+ 1 oracles, (fo, fo), ey (f1m1, fl_l), and Fy, as As. A4 may access the oracles
in an arbitrarily order, and outputs ((H, H), M) and M’, where M and M’ are at most [blocks in
lengths. A4 makes 2¢q queries to each of (fo, fo), ey (fim1, fl,l), and ¢ queries to Fy. We say Ay
wins if G((H, H), M) = F((Ho, Hy), M), where (Hy, Hy) is the fixed initial value of the DMMD
transform.

Now A,’s advantage is defined as

AdVCg(?}l:(Azl) _ Pr(Az(lf()’fO)w“s(fl—l7fl—1)7F0 Wins),

where the probability is taken over the choices of fy, fo, e fizt, fl,l, Fy and Ay’s coin (if any).
Ay is assumed to know G((H, H), M) = F((Ho, Hp), M') holds when A4 outputs ((H, H), M) and
M.

Now we have the following result.

Theorem 1 (Collision resistance of the DMMD transform) Let Ay, As, As, and Ay be
adversaries, described as above. Then we have

q2

Adviiup (A1) < Advy" (A2) + AdvR" (43) + Advg(Aq) + SorT"
Proof. Let A} be an adversary, exactly the same as Aj, but outputs M and M’ such that
DMMD'(M) = DMMD'(M') and M # M’, where DMMD' is the same as DMMD but without
the final F; function. First, we claim that

q2

Adviinm (A1) < Advi (A]) + Ser 1

(4.2)

since without finding a collision against DMMD’, A, is forced to find a collision against F}, i.e.,
a random oracle of ¢-bit output.

Let cut(-) : ({0,1})* — ({0,1}™)* be a function that takes a message M = (My,..., M, _1)
as its input. The output is defined as follows.

e if pmod I = 0, then return the last [blocks (M,_;,...,M,_1).

e else return the last p mod I blocks (M,,_(, mod 1)s-- > Mu—1)-

Now there are three cases for the length of messages that A} outputs. Let M = (M, ..., M, 1)
and M' = (Mg, ..., M}, ;) be the messages;

e Casel: (umod!#O0)A(u>DA(W modl#0)A(w >1), or (uwmodl=0)A(u modl=0),
or (pmodl=0)A (¢ modl#0)A (1 >1).

e Case 2: (umodl#0)A (<A modl#0)A(y <l).

e Case 3: (umodl=0)A (¢ modl#0)A (i <1),or (pmodl#0)A(u>1)A(u modl #
0) A (1 <1).

In case 1, Az can simulate A}’s oracles and by computing DMMD(M) and DMMD(M’), A,
obtains the desired (H, H), (H', H'), and cut(M) and cut(M’) correspond to the messages that As
outputs. Similarly, in case 2, A3 can output ((Ho,ﬁo),M) and ((Ho,ﬁo),M’), where (Ho,ﬁo) is
the fixed initial value of the DMMD transform. In case 3, A4 can compute (H, H) by computing
DMMD(M), and cut(M) and M’ itself are the messages that A4 outputs.

We note that A} makes ¢ queries to f; and g queries to fi, while As, A3, and A4 make 2¢q
queries to (f;, fi) oracle. Therefore Ay, A3, and A4 can simulate A)’s oracles. o

We next show that As and A4 are essentially equivalent to Az. We show the following result.

71

Lemma 1 (Relation between Ay, A3, and Ay) Let Ay, Az, Ay be the adversaries, described
as above. Then we have

2K 2
q +q

coll coll
Adv" (42) < AdvE"(Ag) + ey + ey

and
2¢" 7
on(K—1) + 22n+1"

AdvyE(Ag) < AdvE" (43) +

Proof. A, has a random oracle Fy, where the F function is followed. Now since the output of
Fy is a 2n-bit truly random string, we may give all answers to As, before Ay has oracle access to
(fo, fo), -+, (fi—1, fi—1). That is, we let Ay know the response before making queries, and let As
choose the corresponding input values. Clearly, this does not decrease the success probability of
Ay. Now we give g random strings to Ay. Let {(Hy, Hy), ..., (Hy, Hy)Y, (Hi, H;) € ({0,1}™)2, be
the ¢ random strings. Now since we have

Pr({Hy,...,H,} contains K collision) < ¢ /2n(K—1),
Pr({H,,...,H,} contains K collision) < ¢ /2n(K-1),
Pr({(H1, H4),...,(H,, H,)} contains 2 collision) < ¢?/22n+1

we have
Ad coll A < Ad coll A 2qK q2
Vg (A2) < AdvE (43) + on(K—1) T Sanr1
By the same argument, we have a bound for Ay4. O

Therefore, the bound in Theorem [I] can be re-written as

Advl (A)) < 3AdvE(Ay) + 0 L @
VDMMD A1) = VrE A8 T onk=1) T 92 T gerl

To show that the DMMD transform is secure against collision attacks, it is enough to show

that finding a collision among the chaining values for F is a difficult task. To further relax the

assumption, we present another adversary Ag.

Adversary Ag. We describe our collision finding adversary Ag against F. Ag is exactly the
same as Ag, but the output of Ag is ((H,H), M) and ((H’,H’), M’) such that ((H,H), M) #
((H',H'), M"), where M and M’ are at most [blocks, and |M| = [M’|.

Notice that the restriction on the output of As is that M and M’ are at most [blocks in
lengths, i.e., |[M| # |M’| is allowed.

We have the following result.

Lemma 2 (Relation between A3 and Ag) Let A3z and Ag be the adversaries, described as
above. Then we have)
coll coll (21(] + 1)
AdvyP"(As) < AdvZ (4g) + ST
Proof. There are two cases that Az wins, case |M| = |M’| and case |M| # |M’|. Consider
the case where A3 wins with M and M’ such that |[M| = pum and |M'| = p/m, but u # '
Then Az must have found the collision between the outputs of the (f,—1, fu—1) oracle and the
(fur—1, fur—1) oracle, i.e., a collision between 2n bit independent random strings, or the output of
the (fu_1, fu_1) oracle is (Ho, Hy), the fixed initial value for the DMMD transform. Since there
are [intermediate values, and since A3 makes 2q oracle calls, we have the bound. 0O

Next, we further relax the assumption.

72

Adversary A;. We describe our collision finding adversary A7 against F. A7 is exactly the same
as Ag, but it takes p < [as the input, and the output of A7 is ((H, I:I),M) and ((H’,ﬁ’),M’)
such that ((H, H), M) # ((H',H'), M"), where M and M’ are exactly u blocks. Notice that the
output message length of Ag may be adaptively chosen during the oracle access, A7 has to output
1 blocks of messages.

We have the following result.

Lemma 3 (Relation between Ag and A7) Let Ag and A; be the adversaries, described as
above. Then we have

AdvE(Ag) < TAAVE" (A7).

A proof is based on the fact that, if Ag succeeds, then A7 with some input u=1,...,[should
also succeed.
Overall, the bound on A; is thus

32lg+1)> 4¢" ¢ ¢
92n+1 on(K—1) + 92n T oc+1"

Advish o (A < 3IAAVE (A7) +

To show that the DMMD transform is secure against collision attacks, it is enough to show
that Ade}E’H(A7) is small enough. To show this, we consider another adversary A’ that works
exactly the same as A7, but is restricted in the order of oracle access. A% has to access to oracles
(fo, fo), -+, (fi—1, fi—1) in this order.

Before showing that A% has a small success probability, we present the analysis on the com-
pression function which will be used in the analysis of AZ.

Collision resistance of the compression function. The compression function of the DMMD
transform itself is not collision resistant as a 2n-bit compression function. However, if we make
the assumption on the chaining values that the adversary can use, then it is possible to show its
collision resistance.

Let K’ > 1 and s > 1 be fixed integers and let H = {(S1,T1), ..., (Ss, Ts)}, (Si, T;) € ({0,1}™)2,
be a set of strings such that

e the multi-set H¥ = {S,..., S5} is K'-COLL-free, and
e the multi-set H' = {T1,...,T,} is K'-COLL-free.

Now we consider the following adversary Ag that has access to an oracle (fo(-,-), f1(-,-)) that,
on input (M, U, V), returns (X,Y) = (fo(M,U), f1(M,V)). Both fy and f; are random oracles.
We consider Ag with the following constraint: For the i-th query (M;,U;,V;) that As makes,
(U;, V;) has to be chosen from the set H. Let ¢’ be the number of queries that Ag makes.

Let us define a multi-set £;, 0 < i < ¢/, as follows. L£; is the multi-set of (M,U,V, X,Y) such
that Ag knows (X,Y) = (fo(M,U), f1(M,V)) for some (M,U, V) where (U, V) € H, after the i-th
query (thus Lo = 0).

We also define multi-sets U; and V;, 0 < i < ¢/, as follows. U; is the multi-set of (M, U, X) such
that Ag knows X = fo(M,U) for some (M,U) where U € H®, after the i-th query. Similarly, V;
is the multi-set of (M, V,Y) such that Ag knows Y = f;(M,V) for some (M,V) where V € HT,
after the i-th query.

We next define the following associate multi-sets of £;, U;, and V;:

° ,CZM’U’V consists of (M, U, V) such that (M,U,V, X,Y) € L; for some (X,Y).
. L{Z-M’U consists of (M, U) such that (M, U, X) € U; for some X.
° VZ»M’V consists of (M, V) such that (M,V,Y) € V; for some Y.

73

We also use ACZX’Y, LX LY UX, and VY, which are defined in an obvious way.

On making a query, Ag may use the same (5}, T};) several times, but we assume it does not make
pointless queries. That is, Ag never makes a query (M1, U;1, Vig1) if (Miy1,Uit1) € Z/IZ-M’U and
(M1, Viga) € VMV,

Let K > 2 be a fixed integer. We say Ag wins if, after making ¢’ queries,

o £} is K'K-COLL,

. E}I/, is K’ K-COLL, or

o £ is 2-COLL.

We show that Ag has a low probability in winning the game.

Lemma 4 (Collision resistance of the compression function) Let Ag be the adversary, de-
scribed as above. Assume Ag makes at most ¢ queries. Then we have

q/QK/ N QqI(K/)QK 6q’K’ N 2q/K
22n on on on(K-1)"

Pr(AéfO’fl) wins) <

We present four lemmata to prove Lemma [
Let win;, 0 <4 < ¢/, be the event that Ag wins at the i-th query, and win; be its complement
event. Then we have

Pr(AY* ") wins) < Z Pr(wing41 | wing A -+ A wing).
0<i<q'—1

For notational simplicity, let WIN; be the event win; A - - - A win;. We then have

Pr(A{>" wins) < > Pr(c, is K'K-COLL | WIN,) (4.3)
0<i<g’'—1
+ > Pr(L), is K'K-COLL | WIN;) (4.4)
0<i<qg’'—1
+ > Pr(£) is 2-COLL | WIN,). (4.5)
0<i<q’—1

We first have the following lemma that shows the upper bound on ([@3]).

Lemma 5
VK

> Pr(£Y, is K'K-COLL | WIN,)

0<i<q’ —1

= on(K—1)"

Proof. From the assumption on H, for the (i + 1)-st query (M;4+1,Uit1, Viy1) that As makes,
we see that at most K’ colliding elements are added to £X. Suppose that As makes a query
(Mi+17Ui+1a ‘/;4_1) such that (Ui-i-lv‘/i-‘rl) = (Sj,T]'), where

*S5j=5,=-=35;

K/—2)

o (Mi11,8) = (Miy1,85,) =+ = (Mi11, S guM?, and

K’—Z)

o (Miy1,Ty), (Miy1,Ty,), -, (Mig1, Ty, ,) € 1ZeRS

Then, K’ — 1 < K’ colliding elements will be added to £X, but not more. Note that the added

K3 —
value, X;11, is itself a random n-bit string (even under the condition that WIN;). Therefore, in

74

order to produce a K’'K collision, Ag has to produce a K collision among the random strings
returned by the oracle. Since at most ¢’ random values are returned by the oracle, we have

VK
X / TN q
> Pr(£), is K’K-COLL | WIN;) < ST
0<i<q’'—1
and we have the claimed bound. O

By exactly the same argument, we have the following lemma for ([Z4]).

Lemma 6
VK

> Pr(£),, is K'K-COLL | WIN,)

0<i<q —1

= on(K—1)"

Before analyzing Pr(ﬁfi’}/ is 2-COLL | WIN;), we define the events bad? and bad)’, 0 <i < ¢,
as follows.

e We say badZU occurs if, the i-th query (M;, U;, V;) satisfies (M;,U;) & Uij\f’lU where (U;,V;) =
(Se,Ty), and there exists (M;, U;, X;) such that

- (M;,Uj, X;) € Ui,
- U; =Sy,
- Mi == Mj, S@ 75 Sg/, Tg == Tgl, and Xi == Xj.

e Similarly, we say badzy occurs if, the i-th query (M;, U;,V;) satisfies (M;,V;) & Vil\i[’lv where
(U;, Vi) = (Se, Te), and there exists (M;, V;,Y;) such that

- (M;,V;,Y;) € Vi,
— V] :TZI7
- Mi = Mj, Sg = Sg/, Tg 7§ Tg/, and Yl = YJ

We show that these bad events rarely occur.

Lemma 7 X K
Pr(bad}) < o and Pr(bad}’) < o

Proof. We first consider Pr(bad). We claim that there are at most K’ choices for (M;, Uj, X;).
To see this, our HT contains only K’ — 1 collisions, and let (S1,7%),...,(Skx/—1,Tx'—1) be the
elements of H such that 77 = --- = Tk:_1. Now we see that the probability of badlU is maximized
when Ag has already obtained fo(M;, S1), ..., fo(M;, Sk/—2), and let U; = Sk/—1. In this case,
Ag has K’ — 2 < K’ target values for a collision. Now since the returned value X; is a random
n-bit string, we have the claimed bound.

By a similar argument, we have Pr(bad)) < K'/2". O

Note that if bad? (or bady) occurs, then Ag has succeeded in making LZX’Y 2-COLL at the
i-th query (if (M;,U;,V;, X;,Y;) € L;), or can obviously succeed at the (i+1)-st query by making
(M;,U;,V;) (if (M;,U;,V;,X;,Y;) € L;). Without loss of generality, we assume that Ag makes

the 2-COLL occur at the (i + 1)-st query if bad? (or bad}’) occurs and (M;,U;, V;, X;,Y;) & L.
We have the following lemma on Pr(ﬁfi‘}/ is 2-COLL | WIN;).

Lemma 8) (512)
: e _ 2K 2(K')’K 6K
Pr(£:y is 22COLL | WING) < S5+ =+ <.

(0]

Proof. From the assumption on H, for the (i + 1)-st query (M;41,U;t1, Vit1) that Ag makes, at
most 2K’ elements are added to EZX’Y. Suppose that Ag makes a query (M;11,U;11,Vi41) such
that (Ui+17‘/i+1) = (Sj7Tj), where

8, =5;, ==,

a0
o I =Ty = =Ty, ,,

o {j1,. s irr—atN{ly,... . b2} =10,

o (Miy1,8;) = (Miy1,S;,) =+ = (M1, Sjp,) UMY,

(Mi+17 541)7 ey (Mi+17 SZK/,Q) S ui]w’U7

(] (Mi+1,Tj1),...,(Mi+1,Tj S VZ»IVI’V7 and

K/—Z)
M,V
o (Miy1,T;) = (M1, Ty,) == (M1, Ty, ,) €V, 0.

Then, (2K’ — 3) < 2K’ elements will be added, but not more. Therefore, the size of LZX’Y is at
most 2K'i.

We divide the elements that are added to £, into the following three multi-sets, Type;, Types,
and Types:

e Type, consists of (M,U,V, X,Y) such that X and Y are both randomly chosen at this query.

e Type, consists of (M,U,V,X,Y) such that Ag already knows X, and only Y is randomly
chosen at this query. Note that the added elements share the same random Y.

e Typey consists of (M,U,V,X,Y) such that Ag already knows Y, and only X is randomly
chosen at this query. The added elements have the same random X.

If the (i 4+ 1)-st query (M1, Usy1, Vig) satisfies (Miy1, Uipr) € UMY and (M1, Vigl) € VY,
then the element in Type; is added, and elements in Type, and Type; may also be added to
L;. Similarly, if the (i + 1)-st query satisfies (M;11,U;41) € Z/{iM’U and (M;y1,Vig1) € ViM’V,
then only elements in Type, are added to £;, and if the (¢ + 1)-st query satisfies (M;4+1,U;+1) &
Z/{Z-M’U and (M;y1,Viq1) € Vijw’v, then only elements in Type; are added. Ag does not make
a query (M;y1,Uiv1, Vig1) if (Mi41,Ui41) € L{Z-M’U and (M;y1,Viq1) € Vl-M’V. Therefore, when
(M,U,V,X,Y) is added to L;, X or Y (or both) are randomly chosen. Also, observe that Type,
has at most one element, and Type, and Type; have at most K’ elements, respectively.

Let Type;.x’y be a short hand for the multi-set of (X,Y") such that (M,U,V, X,Y) € Type, for
some (M,U, V).

Now 2-COLL can occur in the following cases:

Case 1: Typef’y N EiX’Y # (. In this case, there are at most 2K’i elements in Lf(’y for the
collision, and each elements will collide with probability 1/22". We thus have

2K'q

22n °

Pr(Type; " N LYY #0 | WIN,) <

Case 2: Typey " NLXY 40, or Typey ™ N LYY #0.

Consider Type?’y N EZX’Y # (. We know that at most K’ elements are added to £;. Let

(M€17 U€17w17X€17n1)

(MEK/7U6K/7WK/7X£K/7Y2K/)

be corresponding elements, where Yy, =--- =Y}, , is a random n-bit string.

76

Now for each (My,,Us,, Vi, X¢;,Ys;), there are at most K'K elements in EZX’Y for the colli-
sion, as £X has most one K’K collision that share the same Xy, with (M, U, , Vi, X, Ye,).
Therefore, at most K’ elements are added, each added element has at most K’'K elements
in £; for a collision, and each elements collide with probability 1/2", and we thus have

(K')2K

Pr(Typey " N LY 40 | WIN,;) < 50

Similarly, we have the same bound for Type?’y N ElX’Y # .

Case 3: Type;” NTypes " # 0, or Type;” NTypey” # 0.

Consider Typef7y N Type?’y # (). The elements in Typef(’y and Type?’y share the same
Y. Since X in Type‘lx’y is randomly chosen, and Typeg(’y has at most K’ elements, we have

!

— K
Pr(Typef{’Y N Typeg(’y # 0| WIN;) < o

Similarly, we have the same bound for Typef{’y n Type? YL,

Case 4: Typef’y ﬂType?’Y # (). We may have 2-COLL only if the randomly chosen Y for Type,
collides with the Y in Type?’y, or the randomly chosen X for Type; collides with the X in
Typeg(Y Since Type, and Types have at most K’ elements,

— 2K
Pr(Type; " NTypes” # 0 | WIN;) <

Case 5: Two elements in Typeg(’y collide, or two elements in Type?’y collide. Now in order for
two elements in Type?’y to collide, badZU has to occur. Therefore, from Lemma [7]

/

E— K
Pr(Two elements in Typeg(’y collide | WIN;) < —.

271
We have the same bound for Type?’y.
Overall, we have
XY . N 2K'i 2(K')’K 6K’
Pr(£i+1 is 2-COLL | WINl) § 92n + on + 2771,
and this completes the proof. O

Now we present the proof of Lemma [4

Proof (of Lemma M)). Lemma [f gives the bound on (£3]), and Lemma [6] gives the bound on
#4). Lemma [8 shows that ([£3]) is at most

3 2K'i | 2AK')’K | 6K’

> Pr(£) is 2-COLL | WIN;) < o o
0<i<q'—1 0<i<q’'—1
q/2K/ N 2q/(K/)2K N 6¢ K’
— 22n on on ’
and therefore, we have the claimed bound. O

7

Collision resistance of F against A7. Now we return to A7. We first recall its definition.
Let K > 1 and s > 1 be fixed integers and let Hy = {(Ho, Ho), ..., (Hs—1,Hs—1)}, (H;, H;) €
({0,1}™)2, be a fixed set of strings such that

e the multi-set H)! = {Hy, ..., Hs_1} is K-COLL-free, and
o the multi-set HY = {Hy,..., H,_,} is K-COLL-free.

The adversary A% takes p < as the input. It has access to [oracles, (fo, fo), vy (fiz1, fz—1), in
this order, that is, A} first makes queries to (fo, fo) and then (f1, fl), until (fi-1, fl_l) (but the
last | — p oracles are irrelevant). (fi(-,-), fi(-,-)) takes (M, H, H) as the input, and the output
is (h,iz) = (fi(M, H),fi(M, ﬁ)) The 2! functions, fo, fo, ..., fi_1, fi_1, are random oracles. Al
outputs ((H, H), M) and ((H', H'), M") such that ((H, H), M) # ((H', H'), M"), where M and M’
are both p blocks. We say A} wins if F((H, H), M) = F((H', H'), M"), where (H, H), (H',H') €
Ho must hold.
Now we restate the advantage of A%, which is defined as

AdV?II(A;) _ Pr(A,(Y.f[)va)w-w(flfl;]El—l) WinS),

where the probability is taken over the choices of fy, fo, o fist, fl,l and A%’s coin (if any). A7
is assumed to know F((H,H),M) = F((H',H'), M) holds when A} outputs ((H,H), M) and
(', 1), M),

We have the following result.

Theorem 2 (Collision resistance of F against A%) Let A% be a collision finding adversary,

described as above, that makes 2q queries to each of (fo, fo), ooy (fim, fl_l). Then for any integer
K>2,
o APRKHY 4gK2H2 12gKHT [9K+1gK

+ +

coll /
AdV]_- (A7) < 22n on on on(K—1) °

Proof. Let H;, 1 < i <, be a multi-set consists of all the strings of (M, H, H,h, iz) such that
AL knows (h, h) = (fioa(M, H), fi_1(M, H)). H"", H}, and H! are also defined in the natural
way.

For notational simplicity, let E; be the event that

(H" is K" -COLL) v (K} is K*t'-COLL) v (H?ﬁ is 2-COLL),

and E; be its complement event.
We have
4K 4qK3 12K 2K+1gK
22n on on on(K—1)

AdvE(AL) < Pr(E; | Ey) <

for p =1 from Lemma [by letting ¢’ « 2¢ and K’ «— K. In general, for 1 < <[, we have

4q2Ki 4qK2i+1 IZin 2K+1qK

N FEoAN---ANFE;_1) <
PI‘(El | EO A A E'L—l) = 2271 on on + 2n(K—1) .

Therefore, we have

AdvR (A7) <Pr(E) < Z Pr(E; | Eo A+ NEi1)

4 2Ki 4 K2i+1 12 Kz 2K+1 K
q + q T q q

IN

5 22n on on on(K-1)
4q2Kl+1 4qK21+2 12qu+1 Z2K+1qK
< + + TELLE
22n omn on on(K-1)
This completes the proof. O

78

Analysis of adaptivity. Here we consider two consecutive compression functions of the DMMD
transform. Obviously, the adversary can “connect” the chaining value if the output the first
compression function is used as the input of the second compression function. Consider otherwise,
i.e., the adversary does not use the output of the first compression as the input of the second
compression function. In this case, we show that the adversary has a low chance in connecting
the chaining values.

Let K’ > 1 and s > 1 be fixed integers and let H = {(S1,T}),- .., (Ss, Ts)}, (Si, T3) € ({0,1}™)2,
be a set of strings such that

e the multi-set H¥ = {S,...,S5,} is K'-COLL-free, and
e the multi-set HT = {T1,...,Ts} is K’-COLL-free.

We consider the following adversary Ag that has access to two oracles (fo(,-), fi(+,+)) and
(fQ(a)afS(a)) thata on input (M7 U7 V)7 returns (Xa Y) (fO(Mv U) (M7V)) or on input
(m,u,v), returns (z,y) = (fa(m,u), fs(m,v)). fo,..., fs are random oracles.

Let us define multi-sets £;, Z;, and a set Z7, 0 < i < ¢/, as follows. £; is the multi-set of
(M,U,V,X,Y) such that Ag knows (X,Y) = (fo(M,U), f1(M,V)) for some (M,U,V) after the
i-th query to the (fo, f1) oracle (thus Lo = @), and Z; is the multi-set of (m,u, v, x,y) such that
Ag knows (z,y) = (f2(m,u), fs(m,v)) for some (m, u,v) after the i-th query to the (fy, f1) oracle.
Note that we count the number of queries to the (fo, f1) oracle when we consider Z;. Z] is the set
of (u,v) induced by Z;, i.e., Z is Z;"", but the same bit strings are treated as one element.

We consider Ag with the follovvlng constraint: For the i-th query (M;, U;,V;) that A9 makes
to the (fo, f1) oracle, (U;,V;) has to be chosen from the set H. Suppose that Ag made ¢ queries
to the (fo, f1) oracle. L; is thus now defined. At this point suppose that Ag makes the j-th query
(mj,uj,v;) to the (fa, f3) oracle. Now (u;,v;) must not be chosen from £
makes ¢’ queries to (fo, f1) and ¢’ queries to (f2, f3)-

We say Ag wins at the (i + 1)-st query (to the (fo, f1) oracle) if

. We assume Ag

LIV N (@) =0 and (L57\ L5) 0 (T #0,

and we say Ag wins if there exists 0 < ¢ < ¢’ — 1 such that Ag wins at the (i + 1)-st query.
We show that Ag has a low probability in winning the game.

Lemma 9 (Success probability of Ag) Let Ay be the adversary, described as above. Assume
Ag makes ¢’ queries to each of (fo, f1) and (fa2, f3) oracles. Let K > 2 be any integer. Then we
have
2/ K'K 24 (K')?K

on + 22n '

Pr(AéfO’fl)’(fz’fg) wins) < Pr(A(fO’fl) wins) +

Proof. As we have seen in the proof of Lemma [§ the size of £, is at most 2¢'K’. Let

(Mla Ul)‘/laXhYl)

(MZq’K’a U2q’K’; VZq’K’aXQq’KH}éq’K’)

be L. Also, we observe that the size of 7/, is at most ¢'. Let

(u17 Ul)

(ug',vg)

be the set Z},. We consider the event (Efj_f L£XYYNT, # 0 instead of (Efj_}/ LXYN(T)Y # 0
since these events are equivalent. For 1 < j < 2¢'K’, let Qx, be the size of the set {i]1<i<

q',u; = X}, and let Qy, be the size of the set {i | 1 <4 < ¢',v; = Y;}. Now we assume that £2§

79

is K’ K-COLL-free, and E};, is K/ K-COLL-free, since otherwise Ag wins the game. Observe that,
in this case, Qx, + -+ Qx, 0 < ¢K'K and Qy, +---+ Qv < ¢ K'K hold.

Now we fix 1 < j < 2¢'K’, and consider (M;,U,,V;,X,,Y;). For (M;,U;,V;,X,;,Y;), we see
that either X; or Yj, or both are randomly chosen. Then the probability that Ag wins with this
(M;,U;,V;, X;,Y;) is at most

Qx, + Qy; n q
on 22n’
since if X; is randomly chosen, and Ag knows that the oracle will return Y}, then the probability
that Ag wins is Qy; /2", or if Y} is randomly chosen, and Ag knows that the oracle will return Xj,
then the probability that Ag wins is Qx, /2", or the probability is q' /22" if X; and Y; are both
randomly chosen. Now we have the claimed bound since

Qx, +Qv;, ¢ 2/K'K 2(¢)°K’
Z on + ZTTL - on + 2n
1<j<2¢'K’

Collision resistance of F against A;. We now consider the collision resistance of F against
A;. We have the following theorem.

Theorem 3 (Collision resistance of F against A7) Let A; be a collision finding adversary,
as previously described, that makes 2q queries to each of (fo, fo),---, (fi—1, fi—1). Then for any
integer K > 2,

12q2K2H—1 36qK2l+2 l2K+2qK
< +

AdV;_S)H(A7) 22n on on(K-1) °

Proof. Let H;, 1 <i <, be a multi-set consists of all the strings of (M, H, I;T, h, iz) such that
A7 knows (h,h) = (fi—1(M, H), fi—1(M,H)). For 0 < i <1[1—2, let D; be the event that

(H! is Ki+1-COLL) v (Ml , is K*-COLL) v (H"" is 2-COLL)

3

\/(As()fiafi)x(fi+lvfi+1) wins with K’ — Kvi-|-1)7
and D; be its complement event.
Observe that we have
0<i<l—2

since without Ag winning the game, A7 is the same as A%.
We have

1°K 49K3 n 12gK 2K+1gK 49K? 44¢K3

<
PI'(D()) - 922n on on on(K—1) on 922n

from Lemma [by setting ¢’ = 2q and K’ = K, and

4°K? 4qK° N 12gK? 2FK+1gK 4qK3 4¢KP

Pr(Dl ‘ ‘DO) S 22n on mn 2n(K71) on 22'IL '

Now in general, for 0 <i <1 —2, Pr(D; | Do A --- A D;_1) is at most

4q2Ki+1 N 4qK2i+3 12in+1 2K+1qK 4in+2 4qK2i+3
922n on + on 2n(K71) on + 22n :

80

b(;und on Advgjﬁl/l[MD(A;) q
K =4 2‘4{266+22qu+2(§g4+2(i:21 2188
K=5 2?1;50 + 2;% + 230609 + 2(5-51 2200
K=6 %JW%JFJWJr% 2199

Table 4.1: Numerical examples of the bound on Advismiyp (A1) for I = 8 and n = 256. The
numbers in g column denote the minimum number of ¢ that the bound reaches 1, ignoring the
last term. Since the bound holds for any K, A; needs at least O(22°1) queries.

Therefore, we have

Z PI‘(DI |EO VAR /\bz’—l)

0<i<i—2
T 42 Kit+1 4g K 2i+3 19 Kit+1 9K +1,K 4gKi+2 4o K 2i+3
= Z ! 2n + ! n + qn + n(K—ql) + ! n + ! 2n
0<i<i—2 2 2 2 2 2 2
4q2Kl 4qK2l+1 12qu (l _ 1)2K+1qK 4qu+1 4qK2l+1
- 922n on + on on(K-1) on + 922n .

Now we have the bound since
4P2K! | AqKPTL 12qKY (1 - 128K 4qKT N 4g K21

Adv.c??u (A/7) + 22n + on on on(K-1) on 22n
4q2Kl+1 4qK2l+2 12qu+l Z2K+1qK
— 922n on on + on(K-1)
4q2Kl 4qK2l+1 12qu (l _ 1)2K+1qK 4qu+1 4qK2l+1
+ 922n + on on on(K-1) + on + 22n
< 12q2K2l+1 N 36qK2H-2 Z2K+2qK
— 22n on on(K-1) °
This completes the proof. 0O

Overall, the bound on A; is thus

32lg+1)? 4d® P ¢
22n+1 on(K—1) T 92n + 9c+1

Advish D(Ay) < 3IAdvEY(47) +

64l2q2K2l+1 108lqK2l+2 l22K+4qK q2
— 22n + on on(K—1) + 9c+1°

If we set [= 8 and n = 256,
PKY gK'8 9K+10gK ¢

coll
Advpywp (A1) < 92n—12 " 9n—10 + on(K—1) * 2c+l
B q2K17 qus 2K+10qK q2
T 9500 + 9246 + 9256(K —1) + 9c+1”

See Table [£.1] for examples of concrete values.

We note that although the bound does not reach the level of collision resistance for a 2n bit
hash function, for a reasonable size of K, say 4 or 5, the bound is much better than the standard
birthday bound, and also, the bound does not necessarily imply the existence of the actual attack.
Besides, there are many places in our proofs that the success probability is overestimated. We
believe that the actual attack against the DMMD transform is much harder than the bound
indicates. Indeed, finding a collision for short concatenating hash functions is recognized as a
hard problem, and it is highly unlikely that the attack will be found on the DMMD transform.

81

Preimage resistance of the DMMD transform. It is simple to show that the DMMD
transform is preimage resistant if ; (which corresponds to MFF') is preimage resistant. We follow
the notation in Fig. 3l A preimage finding adversary against DMMD is an adversary that is given
a hash value h € {0,1}¢, outputs a (padded) message M € ({0,1}™)* such that DMMD(M) = h.
Similarly, a preimage finding adversary against F} is given a hash value h € {0,1}¢, and outputs
(H,H) e ({0,1}'™)2 such that F\(H, H) = h.

We have the following result.

Theorem 4 (Preimage resistance of DMMD) If there exists a preimage finding adversary
against DMMD, then there exists a preimage finding adversary against Fy.

Proof. Suppose that h € {0,1}¢ is given to the preimage finding adversary, A, against F;. Now
the preimage finding adversary, B, against DMMD is run with h € {0,1}¢ as its input. From the
assumption, B outputs M € ({0,1}™)* such that DMMD(M) = h. Now A computes DMMD(M)
by itself. Let (H, H) be the input value of F} that is obtained during the computation, and A
outputs (H, H). O

4.2.3 Security Properties of AURORA structure
Guaranteed Active S-boxes in AURORA structure

By the recent evolution of research on attacks on hash functions [55, 66, [57], it becomes very
important to know the immunity against differential type attacks to design a new hash function.
Moreover, in the traditional blockcipher based design strategy of hash functions, the compression
function assumes that the underlying blockcipher behaves like an ideal blockcipher. Thus designers
should design a strong blockcipher which holds enough strength against differential cryptanalysis as
a matter of course. In this section, a permutation used in AURORA called “AURORA structure”
is investigated, and security aspect with regard to differential cryptanalysis is discussed.

From the specification of AURORA, it can be seen that MSM and CPM employ 8-round and
17-round AURORA structure, respectively. The AURORA structure is based on an 8-bit S-box,
matrices and a byte diffusion BD design, and all components are byte-oriented. Thus, it is natural
for evaluating the immunity against differential cryptanalysis by counting the minimum number
of active S-boxes of AURORA structure using a blockcipher evaluation method [50, 51, 53, [64].

We used a simulation program to count the guaranteed numbers of active S-boxes in the
structure. The counting method treats a byte data as either 0 or 1 in truncated form, and then
tries to find a truncated differential path which holds the minimum number of active S-boxes
for a target round in an exhaustive way [50]. During the search, the DSM conditions are used
to judge whether given truncated paths are valid or not, and behavior of BD is also taken into
consideration.

Table[d2shows the obtained guaranteed numbers of active S-boxes for each round of AURORA
structure. From the fact that AURORA employs an S-box whose maximum differential probability
is 276, we can conclude that 8-round AURORA structure does not hold characteristics whose
differential probability is higher than 27156 < 2128 Similarly, 17-round AURORA structure does
not hold characteristics with probability higher than 27336 < 27256, We explain the immunity of
AURORA against differential cryptanalysis by using the above observations.

There are several steps in recently developed differential type attacks for hash functions 1)
finding a local collision and a differential path, 2) finding sufficient conditions applied to a message
M, and 3) choosing a message M such that all sufficient conditions hold. Since there is no
established way to prevent a hash function from the above attack, we choose one approach to make
the Step 1) be difficult for an attacker by introducing non-linearity in the message scheduling part.
Consider the situation such that an attacker controls messages to find a collision of AURORA.
The attacker will succeed if he finds a collision with less than 128-bit security. But if the attacker
insert a difference into MSM , the probability of the differential that follows a specific characteristic
which is useful for finding collision is low, which is less than 27128,

82

Table 4.2: Guaranteed Numbers of Active S-boxes in AURORA structure.

’ Round \ f of Active S-boxes \ Round \ f of Active S-boxes ‘

1 0 11 36
2 1 12 40
3) 13 42
4 6 14 46
) 9 15 50
6 15 16 52
7 22 17 56
8 26 18 60
9 30 19 62
10 32 20 66

Moreover, we see that a compression function of AURORA-256 uses a 256-bit blockcipher.
The obtained numbers of active S-boxes shown in Table imply that the blockcipher is secure
enough against distinguishing attacks in differential cryptanalytic scenarios, which we believe is
more important requirement than key recovery attacks on hash functions. As a result, we conclude
that the underlying blockcipher behaves randomly with regard to the differential attack and does
not hold bad properties which are exploited by attackers in differential attack scenarios.

Output Truncation

As stated in Sec. 1] any m bits by taking a fixed subset of the AURORA function’s output bits
expected to meet the desirable security requirements. On the other hand, if we see the AURORA
structure carefully, it is noticed that dropping consecutive 32 bits at once from the output of the
structure sometimes waste the calculation effort of an F-function at the last round. Therefore, we
introduced the truncation function TF to avoid such the loss to maximize the effect of F-functions.

The output truncation function TF is applied for AURORA-256/512/256M with different IVs
to generate the output values for AURORA-224/384/224M, respectively. Due to the internal
connection of the AURORA structure, we adopted a design policy of truncation functions which
drop non-successive bytes of output of the compression function to avoid invalidating the cal-
culation effort of an F-function. Let X 56y be an output of the AURORA structure, and set
(Xo(64), X1(64), X2(64), X3(64)) < X. In this case, a truncation function should not drop any of
Xi(64) at once, because output of an F-function at the last round in CPM only affects one of X;4),
which means that the F-function is invalidated for the calculation of the output values. Therefore,
the truncation functions in the AURORA family is designed to drop byte data at discontinuous
positions.

Impossible Differentials in AURORA Structure

Impossible differential is a differential path that never exists (i.e. its differential probability is
0). The attack using impossible differentials was originally proposed for recovering a blockcipher
key [7].

In hash function cases, there is no secret key to recover, and in most cases the adversary is
allowed to know the message to be hashed. Therefore, it does not seem that impossible differential
attacks work on hash functions. However, existence of impossible differential can allow us to
distinguish a hash function from a random function. Indeed, with such a property, one can show
a non-random behavior of the hash function. For example, Sasaki et al. recovered the secret data
(password) included in the input of the hash function using an impossible differential path in MD4,
which is used in a challenge-response password authentication protocol [4§].

We searched for impossible differential paths by considering that the matrices satisfy the DSM

83

conditions (i.e. Conditions I and II described in Sec. B42). The longest impossible differential
paths that we found in the AURORA structure have 7 rounds. It can be shown that the byte
diffusion plays an important role in avoiding long impossible differential paths, because there
exist trivial 16-round impossible differential paths in the modified-AURORA structure where byte
diffusion function BD is replaced with “usual” word-wise permutation.

Furthermore, the AURORA structure has stronger resistance against impossible differential
attacks than the generalized Feistel structure: there exist trivial 17-round impossible differential
paths in the 8-branch generalized Feistel structure, and 8-round impossible differential paths in
the 8-branch generalized Feistel structure employing the byte diffusion BD.

Since the chaining value processing module employs the 17-round AURORA structure, and the
message scheduling modules employ the 8-round AURORA structure, it is expected that there is
no impossible differential in the AURORA compression function which can allow us to distinguish
the AURORA hash function from a random function.

4.3 Algorithm Analysis

This section describes a preliminary analysis of AURORA hash functions regarding collision at-
tacks, preimage attacks, second preimage attacks, length-extension attacks, multicollision attacks,
and slide attacks. In this section, “r-round AURORA-256" is used to refer to a variant of
AURORA-256 algorithm reduced to r rounds, i.e. the chaining value processing function with
r rounds and the corresponding message scheduling functions. The round function begins from
the byte diffusion function BD and ends by XORing with message words (See Fig. .0l

4.3.1 Collision Attacks

There are several known approaches for finding collisions of hash functions in the literature. We
consider possible approaches and show their results or how the design of AURORA works to
prevent the attacks. Beside the analyses below, Sec. [£2.3] describes differential cryptanalysis of
the AURORA structure, and shows that there is no differential characteristic in MSM and CPM
with high probability.

Approach I : Application of the collision attacks on MDx-SHAx family. A well-known
approach for finding collision of hash functions is to (1) find a local collision by analyzing the
chaining value processing module, (2) stack local collisions together to form a global collision
by analyzing message scheduling module and construct a differential path, and (3) boost success
probability of the attack by message modification techniques. This approach has been successful
in finding collisions on many hash functions including MD4, MD5, SHA-0, SHA-1 [I1], 56} 57, 55].

The local collision is defined as a collision for a fixed number of steps of the compression
function under the assumption that the message words from the message scheduling modules can
be chosen independently by the attacker. There exists a 2-round local collision in AURORA,
which is shown in Table 3l In the cases of hash functions with simple message schedule such as
MD4 and MD5, this local collision would be useful, because the assumption that message words
are independent almost holds. However, in the case of AURORA, this assumption does not hold
due to the complicated message scheduling modules. Therefore, the existence of a 2-round local
collision does not lead to a certain vulnerability.

In Table [4.3] notice that d; can be zero, and that at most only 8 differences are introduced in
message words. It is possible to construct longer local collisions, but more message word differences
should be involved. It tends to be harder to control.

The next step is to form a global collision by analyzing the message schedule. In the case of
AURORA, it is difficult to control the message words from the 2nd round due to the heavy message
scheduling functions. Considering the message scheduling functions, we have found collision for
up to 3-round AURORA-224/256 with complexity less than the birthday bound. The differential

84

Table 4.3: A 2-round local collision for AURORA family.

chaining value difference message word difference
round||AXo|AX 1 [AXo|AX3|AX4|AX5AXg|AX7|| AUg; AUSiJrl AUgiJrQ AUSiJr?, AUgi+4 AUgi+5 AUgiJrG AU8i+7
7 0 0 0 0 0 0 0 0 o1 0 o2 0 03 0 04 0
i+ 1 0 02 0 03 0 04 0 01 0 02 0 03 0 04 0 01
i+2]| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: 91, d2, 03, d4 are independent zero or non-zero arbitrary 32-bit values. At least one of §;’s
should be non-zero. Here the message schedule is ignored.

Table 4.4: A 3-round collision for AURORA-256.

chaining value difference message word difference
round 0 AXQ AXl AXQ AXg AX4 AX5 AX6 AX7 ATL,O ATL’I ATL’Q ATL’3 ATLA ATL’5 ATL,G ATLJ
0 0 0 0 0 0 0 0 T3 0 0 0 1 0 T2 0
round 1 AX() AXl AXQ AX‘; AX4 AXs AX(; AX7 ATR,O ATRJ ATR,Q ATRy3 ATRA ATR75 ATR,G ATR"y
T3 0 0 0 T 0 T2 0 0 0 0 x0 0 T2 0 x3
round 2 AX() AXl AXQ AXg AX4 AX5 AXﬁ AX7 ATL‘g ATL’Q ATLJQ ATL711 ATL’12 ATL’lg ATL714 ATL,15
0 0 0 0 0 0 0 0 0 0 0 T1 0 T2 0 T3
round 3 AX() AXl AXQ AX3 AX4 AXs AX@ AX7 ATR,8 ATR’Q ATR,IO ATR711 ATR,lg ATR’13 ATR’14 ATR715
0 0 0 T 0 xo 0 x3 Y1 Y1 0 0 0 0 0 0
round 4||AXo|AX1[AX2|AX3|AX4|AX5|AXg|AX7 - - - - - - - -
0 0 0 0 0 0 0 0 - - - - - - - -

characteristic is shown in Table [£4l The chaining value difference AX; is the difference in the
input chaining value X; of each round. For other symbols, see Fig.

Let a be an 8-bit non-zero value, 3 be an 8-bit non-zero value where the least significant bit
is zero, and v = 3 >>¢ 1. Then x¢, x1, T2, and x3 are defined as follows:

Zo: a 32-bit value whose 4th byte is 5 and the other three bytes are zero. (i.e. 00083)
z1: a 32-bit value whose 4th byte is v and the other three bytes are zero. (i.e. 0007)
Z9: a 32-bit value whose 3rd byte is o and the other three bytes are zero. (i.e. 00a0)
x3: a 32-bit value whose 2nd byte is @ and the other three bytes are zero. (i.e. 0000)

If we set the message difference AM;, = (z3,0,0,0,21,0,2z2,0) and AMg = (0,0,0,z1,0, 22,0, z3),
the chaining value difference becomes zero at the input of the 2nd round with probability 1. Note
that some of the message words are cyclically shifted by the data rotating function DR before
inputting to the chaining value processing function, e.g., (Us||U11) = (Tr1l|TR,3) >>61 1. To
avoid that the byte difference expands to other bytes by DR, we restrict the value of the non-zero
byte difference in xg and x; to 8 and +, respectively. Then in the 2nd round, there are differences
in three bytes which are input from message words 77 11, 17,13, and Tr 15. In the 3rd round,
the three byte differences get together to leftmost 32-bit word by the byte diffusion function BD.
Therefore, there are three active S-boxes in the left F;. Similarly, there are three active S-boxes
in the left F5 in the message scheduling function MSgk. Under the conditions above, there is a
possibility that the output differences of F; and F» cancel. (On the other side, if there are less
than five active S-boxes in F; and F5 in total, the output differences of F; and F5 never cancel
due to the DSM condition (See Sec. B.4.2)).) When the cancellation occurs, there is a collision in
the leftmost 32-bit word AXy, and there is a collision in AX; at the same time. It is expected
that one can find a cancellation in 32-bit output differences by trying 2'® message blocks due
to birthday paradox. Therefore, it is expected that one can find a collision for 3-round (out of
17-round) AURORA with a complexity of 2!¢ 3-round AURORA compression function.

This attack works for 3-round AURORA-384/512 and AURORA-224M /256 M.

85

P STHL

- T

l» €T P 2Tyl B TTHL - 0THL

L

L

0211

6T"1L *

8T1LH

117]

uoo &

uoo >4

LYN

e

uoo & muu uoo & muu uoo &

uonouny Bulnpayas abessa|N =SIN

[

YIIL

uoo >4

€17l

D

o]

L

uoo >4

1L+

D

[

0T71L ¥

uoo >4

61L

D

uonouny Buissaoo.d anfea Bulureyd :dD

[

uod >4

D

[e=]

uoo >4

D

(=]

uoo >4

uonouny Bulnpayss abessaN (SN

D

Figure 4.6: Compression function of AURORA-256 (reduced to 4-round).

86

concatenate
Mo [rond | [pemie |
truncate M
concatenate
s [rond] [pamue]
truncate
concatenate
e [rond | [pemic |
truncate l—@
concatenate
s [rond | [_pemic |
truncate l—’?
concatenate
M [rownd | [pemic |
; ; }
Grindahl Model AURORA Model

Figure 4.7: Comparison between Grindahl model and AURORA model.

Approach II : Application of the collision attack on Grindahl. Another approach for
finding collisions is a method used in the cryptanalysis of Grindahl [44]. Although it is very hard
to find a low-weight and/or small differential path for Grindahl, Peyrin succeeded in building a
truncated differential path starting from an all-difference pair of states. The points for the attack
to work on Grindahl include

1. an independent message word concatenated every round, and

2. the truncation at the end of each iteration.

The independent message word was used as control bytes and the truncation was used to erase
a truncated difference for no cost. Moreover, in the case of Grindahl, the permutation of each
round was not strong enough.

Regarding 1., in the case of AURORA, which is similar to the MDx family, the message words
which are input every round are not independent, because they are generated by non-linear round
function in a sequential manner. Therefore, it is hard to use message words as control bytes. The
difference between Grindahl model and AURORA model is shown in Fig. 7

Regarding 2., in AURORA, a truncated difference can be erased during three operations: the
MDS matrix operation, the XOR operation with a message word or the XOR operation after the
F-function. Using either of the operations takes high cost (i.e. a truncated difference can be erased
with low probability). Therefore, it does not seem that Peyrin’s attack on Grindahl [44] works on
AURORA.

Remark. The analyses above show that AURORA has a good resistance to existing collision
attacks because of its secure message scheduling. Considering the fact that there have been no
attacks on Whirlpool [3], which was designed based on a similar philosophy to AURORA, this
design strategy using secure message scheduling makes a secure hash function. On the other
hand, the MDx family (including SHA-1 and SHA-2) was designed using fast and simple message
scheduling, so it is expected that a possibly successful attack on the MDx family is unlikely to be
applicable to AURORA.

4.3.2 Preimage Attacks

Compared with a lot of work on collision resistance, the preimage resistance (i.e., one-wayness)
has not been analyzed much. However, there is a steep rise in the study on preimage resistance
recently [30} 10} 2]].

87

Approach I : Meet-in-the-middle approach. In most of the recent preimage attacks [30,
10l 2, 1], an attacker first finds a pseudo-preimage, i.e. a preimage on the compression function,
then extends it to a preimage attack on the full hash function. Therefore, we start by analysis
of the compression function.

Leurent [30] showed the first preimage attack of the full MD4 (also the first preimage attack
on a member of the MD4 family), which extensively used its simple step function and message
expansion. Therefore, it is difficult to apply the techniques used in Leurent’s attack [30] directly
to other hash functions. Aoki and Sasaki used the meet-in-the-middle technique in finding pseudo-
preimages [I] and succeeded in preimage attacks on many hash functions such as MD4/5, HAVAL-
3/4/5, SHA-0/1/2, HAS-160, and RIPEMD [47].

The key idea in the meet-in-the-middle approach in [I] is to divide the attack target into
two chunks of steps so that each chunk includes at least one message word that is independent
from the other chunk. This strategy was successful for poor message schedules where there is
low dependency between message words, but this is not the case for AURORA. For example, it
is possible to divide the compression function into two chunks because the message words from
the right message scheduling function MSpk are used in odd rounds only, and the message words
from the left message scheduling function MS; are used in even rounds only. However, since
two chunks are alternated every round, the meet-in-the-middle approach can not applied to the
full-round AURORA. The meet-in-the-middle approach in [I] works up to 3-round AURORA. A
preimage of a 3-round reduced version of AURORA-256 can be found with the complexity of about
2241 3 round AURORA-256 compression function computation. However, it is difficult to find a
preimage of the full-round faster than brute-force attack in this approach.

Approach II : Correcting impossible messages. Another approach for finding the preimage
was proposed by De Canniére and Rechberger at CRYPTO02008 [10]. The idea is to start with an
impossible expanded message that would lead to the required hash value, and then to correct this
message until it becomes valid without destroying the preimage property.

This approach has a potential to control a more complex message scheduling, but in the case of
AURORA, it is still difficult to correct message words without destroying the preimage property
due to carefully-designed message scheduling functions.

Approach III : SAT-solver approach. De et al. proposed preimage attacks on reduced vari-
ants of MD4 and MD5 using SAT-solvers [I6]. We describe the preliminary analytic results of
preimage attack of AURORA using a SAT-solver. Here, we consider two variants of reduced
version of AURORA for the attack.

The first attempt is trying to recover a preimage of 256-bit output value of a 3-round reduced
version of CF of AURORA-256, called variant A, which does not contain DR without loss of
generality. As a result, the variant A contains 3-round AURORA structure in CP and 1-round
AURORA structure both in MSy, and MSg. The preimage attack for the variant A is non-trivial,
and the preimage attack for it can be converted into a SAT problem that contains 384 variables
and 58,112 clauses including 3 to 11 literals (avg. 9.15 literals). Then, we tried to solve the
10 instances of the SAT problem using the MiniSat2 [43]. Each problem is executed on a Xeon
2.80GHz processor with 2GB memory. However, after two weeks of calculation effort by the solver,
no solutions for these problems are obtained.

The second attempt is to find the shrinking version of 3-round reduced version of CF of
AURORA-256, called variant B, which outputs 128-bit hash values in which 1-round of AURORA
structure is halved to 4 data lines. Thus only two different F-functions are included in a round of
the structure. Moreover DR is omitted, and BD only exchanges two bytes of data. In this case,
the SAT-problem contains 192 variables and 29,056 clauses including 3 to 11 literals (avg. 9.15
literals). As a result, we obtained solutions (preimages) of all 10 trials for the variant B. In the
trials, the average calculation time for these problems is about 10 hours.

1Meet-in-the-middle-approach is also used for converting pseudo-preimages to a preimage, but in this paragraph
we discuss the meet-in-the-middle approach to find pseudo-preimages (i.e. preimages in the compression function).

88

Even though these preliminary results show the resistance of only the variations of AURORA’s
compression function, but it is sufficient to believe that full CF AURORA-256 which contains 8-
round, 17-round, and 8-round structure in each module have enough immunity against algebraic
attacks using the direct application of SAT-solvers to invert to a preimage within an acceptable
duration of time. Also the other compression functions in the AURORA family and hash functions
constructed by these compression functions are expected to achieve enough strength against this
attack scenario.

4.3.3 Second Preimage Attacks

There are two major directions in second preimage attacks: one is generic long-message second
preimage attacks treating the compression function (or the underlying blockcipher) as a black box,
and the other is second preimage attacks using certain properties inside the compression function.

Compared with collision resistance, second preimage resistance has not been analyzed much,
but we consider possible approached? and how the design of AURORA works to prevent the
attacks.

Approach I : Using collision differentials. A straightforward approach for finding second
preimages is to use the differential characteristics used in collision attacks by applying the corre-
sponding message difference to the given message. If the characteristic is followed, then this will
yield a second preimage. This approach was applied to MD4 by Yu et al. [58], but is has some
limitations: one problem is that the success probability of the attack drops by fixing the message.
Another problem is that it only works for a small subset of the message space.

According to the discussion in Sec. and Sec. 371 there are no differential characteristics
that hold with high probability in AURORA, it is expected that this approach is not effective for
finding second preimages of AURORA.

Approach II : Using multi-near-collision differentials. Another approach for finding sec-
ond preimages in the literature is to use multi-near-collision differentials. The idea is to compute
the hash value for a special message, and try to correct parts of the hash value by applying ap-
propriate differences. This approach was used in the preimage attack on MD4 by Leurent [30],
in the second preimage attacks on SMASH by Lamberger et al. [29], and the (second) preimage
attacks on GOST by Mendel et al. [33].

This approach works if one can find many highly probable differential characteristics for the
same special message. According to the analysis in Sec. [£.2.3] we have not found such differential
characteristics in the compression function of AURORA. Furthermore, we have not found any
properties in the domain extension transform in the AURORA family, which can be useful in
constructing structured messages, e.g. the properties of the SMASH structure used in the second
preimage attacks on SMASH [29].

Furthermore, most of the possible known approaches for preimage attacks can be applicable to
second preimage attacks. Since no approaches discussed in Sec. are promising, it is difficult
to find second preimage by using those approaches.

Generic long-message second preimage attacks. As Kelsey and Schneier showed in [28],
there exists a generic second preimage attack on an n-bit iterated hash functions with the Merkle-
Damgard construction, regardless of the compression function used. For a message of 2F message
blocks, a second preimage can be found with about k x 231 4 gn—k+1l work,

Considering this generic long-message second preimage attack, AURORA-256 and AURORA-
512 provide second preimage resistance of about (256 — k) bits and (512 — k) bits for 2¥-block mes-
sages, respectively. AURORA-224 provides second preimage resistance of about min{224, (256 —
k)} Dbits, since a brute-force attack is faster for k& < 32. AURORA-384 provides second preimage
resistance of 384 bits, because the maximum message block size for the AURORA family is 264 —1

2A good summary of possible approaches for finding (second) preimages is written in [10].

89

Table 4.5: Second preimage resistance for 2F block messages (k < 64) (bits).

AURORA-224 |AURORA-256/AURORA-384/AURORA-512|AURORA-224M|AURORA-256M
min{224, 256 — k} 256 — k 384 512 — k 224 256

blocks, i.e. k < 64, and 384 < 512 — k. AURORA-224M and AURORA-256M have multicollision
resistance with the internal chaining value size of 512 bits, therefore, they provide second preimage
resistance of about 224 and 256 bits, respectively.

Second preimage resistance of the AURORA family is summarized in Table

4.3.4 Length-Extension Attack

Length-extension attack is the attack for hash functions. Given a hash value h(M), the attacker
obtains A(M || M') without knowing the original message M. AURORA-256 adopts the strength-
ened Merkle-Damgard (sMD) transform with the finalization function (See Figure[Bd)). It is known
that it preserves indifferentiability (PRO) of the underlying compression function [6, Lemma 5.1].
In the abstract model, this property ensures that AURORA-256 looks like an ideal random oracle
H :{0,1}* — {0,1}?°¢ and thus length-extension attack does not work. The same observation
holds for AURORA-224. The proof for the pseudorandom oracle preservation (PRO-Pr) is based
on the fact that the finalization function is used, and since we follow the same design principle in
the DMMD transform, the attack is unlikely to be applicable to AURORA-384/512/224M /256 M.

4.3.5 Multicollision Attack

Multicollision attack [26], introduced by Joux, finds the K collision on the classical iterated hash
function in time O(log K - 2™). We use the classical MD transform in AURORA-224/256, and the
attack can be mounted on them. Although the use of the finalization functions, it does not help
to increase the security against the attack. Finding K collision for AURORA-224/256 is not much
harder than finding ordinary collisions.

Joux also showed how the multicollision attack can be used to get a collision attack on the con-
catenated hash function. For the DMMD transform, it may be seen as a kind of the concatenated
hash function, while the mixing function is used. Since the mixing function inserted frequently, as
discussed in detail in Sect. [£.2.2] finding even a single collision is hard for the attacker. Therefore,
the attack is unlikely to be applicable to AURORA-224M /256M. However, finding K collision for
AURORA-384/512 is not much harder than finding ordinary collisions.

4.3.6 Slide Attacks

Slide attacks have mostly been used for blockcipher cryptanalysis. As shown in [24], the slide
attacks also form a potential threat for a certain class of hash functions, e.g., sponge-function like
structures. A slide property which is detected with significantly high probability can allow up
to distinguish a given hash function from a random oracle. Furthermore, certain constructions
for hash-function-based MACs, e.g., a MAC with prefix key MAC(K, M) = H(K||M), can be
vulnerable to forgery and even to key recovery attacks.

Slide attacks on blockeciphers [9] utilize the self-similarity of the cipher, typically caused by
a periodic key schedule. The slide attack on hash functions [24] exploits invertibility and self-
similarity in the sponge-function like structures.

We believe that the slide attacks are not applicable to AURORA based on the following con-
siderations: (1) The compression function of AURORA is not invertible due to the feed-forward
in the Davis-Meyer construction. (2) The structure of AURORA avoids too much self-similarity
both in the level of domain extension transform and in the compression function. In the domain
extension transform level, AURORA-224/256 consists of CF's and FF', which behaves differently

90

from CFs. In AURORA-384/512, CFs, MFs and MFF behave differently with different constants
and different I/0. In the compression function level, randomly chosen constants avoid a periodic
message schedule.

4.4 Tunable Security Parameters

There are two tunable security parameters in the AURORA hash function family. The first
parameter is an iteration number of round functions in AURORA structure used in MSM and
CPM used in AURORA-224/256/384/512/224M /256M . The second parameter is a method to
modify the AURORA family to be able to output digests whose length are other than 224, 256,
384 and 512 bits.

4.4.1 Number of Rounds

Recommended numbers of round are 8 for MSM and 17 for CPM as described in the specification.
The tuning is done keeping a relationship between these numbers such that ¢ = 2m + 1 where
m and ¢ are numbers of rounds for MSM and CPM, respectively. The permissible range for the
parameter is m € {8,9,10,11,12,13,14,15,16}. The greater the parameter is, the security of the
hash function increase by paying cost for the performance. We believe that m > 16 is too much
taking account of the dropping of the performance of implementations.

4.4.2 Variable Hash Size

Current specification of AURORA hash function family only supports hash sizes of 224, 256, 384,
and 512 bits. By setting the initial vectors appropriately, we can also define an alternative hash
function family which supports variable hash sizes for the range of from 1-bit to 512-bit. The hash
functions for 1-bit to 256-bit output are obtained by modifying AURORA-256, and hash functions
for 257-bit to 512-bit output are obtained by modifying AURORA-512. These hash functions are
defined as follows.

e [-bit output hash functions for 1 <[< 256.

Step. 1 Let Hp(zs6) < 1'[|0%56~.

Step. 2 Execute the AURORA-256 procedure for a message M, then obtain H,,.
Step. 3 Let (Xoe4), X1(64)> X2(64)> X3(64)) — Him-

Step. 4 Let d =[l/4| and m =1 mod 4.

Step. 5 Drop the right-most d-bit for all X; (0 <i < 3)

Step. 6 Additionally, drop the right-most 1-bit for X; (0 <:¢<m —1)

Step. 7 Output Xo||X1[|X2|[X5 as an [-bit hash value.

e [-bit output hash functions for 257 <1 < 512.

Step. 1 Let Hyz2) < 11|0°1274

Step. 2 Execute the AURORA-512 procedure for a message M, then obtain H,,.
Step. 3 Let (Xoe4), X1(64), - - X7(64)) < Hom-

Step. 4 Let d = |1/8] and m =1 mod 8.

Step. 5 Drop the right-most d-bit for all X; (0 <1i < 8).

Step. 6 Additionally, drop the right-most 1-bit from remaining X; (0 <i < m — 1).
Step. 7 Output Xo||X1||X2||X3]|X4||X5||X6|| X7 as an [-bit hash value.

91

92

Chapter 5

Efficient Implementation of
AURORA

This chapter describes our evaluation results of the AURORA family in both software and hard-
ware implementations.

AURORA can be implemented efficiently in software on various platforms from low-end 8-bit
processors to high-end 64-bit processors. On the NIST 32-bit reference platform, AURORA-
256 achieves 24.3 cycles/byte and AURORA-512 achieves 46.9 cycles/byte; on the NIST 64-bit
reference platform, AURORA-256 achieves 15.4 cycles/byte and AURORA-512 achieves 27.4 cy-
cles/byte. In hardware, AURORA enables a variety of implementations from small-area to high-
throughput implementations. In our evaluations using a 0.13um CMOS ASIC library, the smallest
area of AURORA-256 is 11.1 Kgates with throughout of 2.2 Gbps, and the highest throughput of
AURORA-256 is 10.4 Gbps with area of 35.0 Kgates; the smallest area of AURORA-512 is 14.6
Kgates with throughout of 1.2 Gbps, and the highest throughput of AURORA-512 is 9.1 Gbps
with area of 56.7 Kgates.

Detailed results of software and hardware implementations are shown in Sec. b1l and B2
respectively.

5.1 Software Implementation

This section describes the software performance results of AURORA.

5.1.1 Implementation Types

This subsection describes 5 implementation types suitable for either 32-bit or 64-bit processors: 2
types for 32-bit processors and 3 types for 64-bit processors. We only explain the implementation
methods for F' functions because the performance results are strongly affected by these methods.
First, we show the notations used in this section. Next, we present five implementation types
either for 32-bit and 64-bit processors. All of these implementation types are implemented in the
optimized code we provide. Finally, we describe how to select these implementation types in our
optimized codes.

Notations

Let (29,29, 29, 29) be an input of F-function Fy and (33, v?,49,%9) be an output of Fy. Similarly,
let (2}, 21,23, 1), (23,22, 2%, 23) and (23,23, 23, 23) be inputs of Fy, F, and F3 , respectively and
let (&, y1,v3,u3), (Y3, vy3,v3,y3) and (y3,93, v, y3) be outputs of Fy, Fy and F3 , respectively.

AURORA has the following four different 32-bit input/output F functions. Those notations
are used to explain how to implement AURORA on 32-bit processors.

93

3 0x01 0x02 0x02 0x03 S(x9)

- Y _ 0x03 0x01 0x02 0x02 S(z9)
Y 0x02 0x03 0x01 0x02 S(9)

Yy 0x02 0x02 0x03 0x01 S(9)

vs 0x01 0x06 0x08 0x02 S(xd)

F - i _ 0x02 0x01 0x06 0x08 S(x1)
ya 0x08 0x02 0x01 0x06 S(xd)

va 0x06 0x08 0x02 0x01 S(z3)

vl 0x03 0x01 0x02 0x02 S(z3)

- Y3 _ 0x02 0x03 0x01 0x02 S(?)
v3 0x02 0x02 0x03 0x01 S(x3)

v3 0x01 0x02 0x02 0x03 S(z%)

v 0x06 0x08 0x02 0x01 S(x3)

o y3 _ 0x01 0x06 0x08 0x02 S(3)
v 0x02 0x01 0x06 0x08 S(3)
vs 0x08 0x02 0x01 0x06 S(x3)

Also, we can consider that AURORA has the following four different 64-bit input/output F
functions named F™* functions which have two 32-bit input/output F-functions as internal functions
(See Fig.[50). Let (2] ..., #%) be an input of F*-function Fj and (yJ ,...,49) be an output of Fj.
Similarly, let (96(1;/7 ...,x%/), (.7;%//7 nz?) and (xa/, ..,23") be inputs of F¥, Fy and F3, respectively
and let (y§ ;.. yt), (W3, .., y%) and (y3 , ..., 43) be outputs of Fy, Fy and Fj, respectively. Those
notations are used to explain how to implement AURORA on 64-bit processors.

(X0 X1, X1 Xa) (Xay X X1 X7) (Xo» Xus Xor Xa) (K Xer Yo, X0)
32 32 2 -
32 32 32 2 P e =
| F
F F’ —_— =
32 - - 5
O Y2 ¥z %) /4R s Y Yor ¥7) Van Yo Y1 Yar Ya) (Yar Y51 Yo Y7)
WV N

Figure 5.1: F*-function.

94

e W (Moo | SED)
0 - 0 My
vy S(af)
v S(ab)
| Y (M0 S(x1)
1 - - 0 MO .
vt S(at)
us S(x)
e | Y (M0 S(a1)
2 : o 0 Mg
vi S(a?
yS: S(%:
. y3 (M5 0 S(x3)
3 o 0 Mo
vi S(a?)

Type-S1

Type-S1 is a straight-forward implementation suitable for 32-bit processors. This implementation
requires the following eight different 8-bit to 32-bit tables 10, TP, T3, T¥, Ta, T1, T3 and T4 [14].

Tp(z) = (S(x), {03} x S(x), {02} x S(x), {02} x S(x))
TP(x) = ({02} x S(), S(x), {03} x S(z), {02} x S(x))
T3(x) = ({02} x S(x), {02} x S(x), S(x), {03} x S(z))
T3 (z) = ({03} x S(x), {02} x S(x), {02} x S(x), S(x))
Ty(z) = (S(x), {02} x S(x), {08} x S(x), {06} x S(x))
Ti(z) = ({06} x S(x), S(x), {02} x S(z), {08} x S(x))
Ty (z) = ({08} x S(x), {06} x S(x), S(x), {02} x S(x))
T3 (z) = ({02} x S(x), {08} x S(x), {06} x S(x), S(x))

The following eight tables can be represented by the previous eight tables.

T§(z) = ({03} x S(x), {02} x S(x), {02} x S(x), S(z)) = T3 (x)
TE(z) = (S(z), {08} x S(x), {02} x S(x), {02} x S(x)) = Ty (x)
T3(x) = ({02} x S(z), S(x), {08} x S(x), {02} x S(x)) =T} ()
T3(x) = ({02} x S(x), {02} x S(x), S(x), {03} x S(x)) = T3 (x)
Ti(z) = ({06} x S(x), S(x), {02} x S(x), {08} x S(x)) = T} ()
TP(z) = ({08} x S(x), {06} x S(x), S(x), {02} x S(x)) =T (x)
T3(x) = ({02} x S(x), {08} x S(x), {06} x S(x), S(z)) = T5(x)
T3(z) = (S(x), {02} x S(x), {08} x S(x), {06} x S(z)) =T (x)

The tables T3, T?, TY and T¥ are used for calculating Fy. Similarly, the tables T,}, T, Ts and
T4 are for Fy, the tables T§, TZ, T3 and T§ are for Fy , and the tables T, 77, T and T3 are for
F3, respectively. Thus the outputs of F' functions can be calculated as follows:

95

o, 97,99, u3) = Tp(ag) ®T7(2}) & T3 (29) & T3 (x3)
oyt u3u3) = Tolxg) @ T (z1) ® Ty (xh) @ Ty (x3)
Wo,ut,95,43) = T5(ap) ® Tt (2) ® Ts (23) @ T (x3)
= TP(x3) ® Ty (a7) & TP (x3) & T3 (23)
Wo,v3,95,03) = To(ap) @ T7(23) & T3 (23) & T3 (x3)
= T)(z) ®Ts (a}) @ T3 (23) & Ty (23)

The required operations for this implementation are estimated as follows:

Size of table (KB): 8
Operations of Fy, Fy, F5 and Fj
of table lookups: 16
of XORs : 12

Type-S2

Type-S2 uses rotation operations to reduce the table size of Type-S1. This implementation needs
two different 8-bit to 32-bit tables. Due to the rotation operations, the number of operations is
increased. However, the table size can be reduced to 1/4 compared to Type-S1.

The tables TP, T9, TY, T, Ts, T4 can be replaced as follows:

() = TH(x)>8
TY(z) = T9(x)>>16
TI(x) = TY(x)>>24
THz) = Ty(x)>8
T)(x) = Ty(x)>16
T3 (x) Ty (z) > 24

This implementation requires the following operations.

Size of table (KB): 2
Operations of Fy, Fy, F> and F3
of table lookups: 16
of XORs : 12
of rotations: 12

Type-S3

Type-S3 is a straight-forward implementation suitable for 64-bit processors. This implementation
requires the following sixteen different 8-bit to 64-bit tables.

96

T (x) = (S(x), {03} x S(x), {02} x S(x), {02} x S(z), 0, 0, O,
Tlo/(x) = ({02} x S(x), S(x), {03} x S(x), {02} x S(x), 0, 0, 0,
TQO/(x) = ({02} x S(x), {02} x S(x), S(z), {03} x S(x), 0, 0, 0,
T:?/(x) ({03} x S(z), {02} x S(z), {02} x S(x), S(z), 0, 0, 0,
TV (z) = (0, 0, 0, 0, S(xz), {02} x S(z), {08} x S(z), {06} x S(x)
Tg?,(x) = (0, 0, 0, 0, {06} x S(z), S(xz), {02} x S(z), {08} x S(x)
Tﬁo/(ac) = (0, 0, 0, 0, {08} x S(x), {06} x S(x), S(x), {02} x S(x)
TQ/(x) = (0, 0, 0, 0, {02} x S(z), {08} x S(x), {06} x S(x), S(x)

Ty (z) = (S(x), {02} x S(x), {08} x S(x), {06} x S(z), 0, 0, 0,

Ti (z) = ({06} x S(x), S(x), {02} x S(x), {08} x S(x), 0, 0, 0,

T3 (z) = ({08} x S(x), {06} x S(z), S(x), {02} x S(x), 0, 0, 0,
Tgll(x) = ({02} x S(z), {08} x S(x), {06} x S(x), S(x), 0, 0, 0,
T41/(x) = (0,0, 0, 0, S(z), {03} x S(z), {02} x S(z), {02} x S(z)
Tg}l(m) = (0, 0, 0, 0, {02} x S(z), S(z), {03} x S(z), {02} x S(z)
Ty (z) = (0, 0, 0, 0, {02} x S(x), {02} x S(2), S(x), {03} x S(x)
T (x) = (0, 0, 0, 0, {03} x S(z), {02} x S(x), {02} x S(z), S(x)

The outputs of F* functions YO = (9 [y]9), YV = (b |yt] |y), Y2 =

and Y* = (43 ||y} ||.-.[]y3) can be calculated as follows:
Y =) et @) e @) e Ty (2f) o T (of) o TY (2) & T¢ («f
YV o= Ty e @) el (@) oTs (@) e T (¢]) e T3 (1) & Ty (x
Y = Tf@) e Y (o) e T3 (a3) oI5 (oF) o IF (af) & T8 (0F) @ T3 (a3
Y9 = Y@ e el) e T (o3) o T (oF) o T (o}) 0 T¥ (o) & T (a3
This implementation requires the following operations.
Size of table (KB): 32

Operations of Fy, FY, F5 and Fy¥
of table lookups: 32
of XORs : 28

Type-S4

Type-S4 uses two rotation operatlons to reduce the table size of Type-S3. Since T0 e
,TY" with two rotations, the table size can be reduced to half

be implemented by using TO e
compared to Type-S3.

v = e ey @) e o1 (y)
v'o= (To @heT! @ e oT (1) s> 32
Y = TE)eriel)e---oTf @)
v¥ = (Té'(xé’mTf“(xi")@ ‘o T (a3)) 3> 32

This implementation requires the following operations.

97

(5

My -

—_— — ~— —

Nw NN N NO

vz

T can
L7

Size of table (KB): 16
Operations of Fy, FY, F5 and Fy§

of table lookups: 32
of XORs : 28
of rotations: 2

Type-S5

Type-S5 aims to reduce the table size of Type-S4 by half. It requires the following four different
8-bit to 64-bit tables.

To(x) = (S(x), {03} x S(x), {02} x S(x), {02} x S(x),
S(x), {02} x S(z), {08} x S(x), {06} x S(x))
Ti(x) = ({02} x S5(x), S(x), {03} x S(x), {02} x S(x),
{06} x S(z), S(x), {02} x S(x), {08} x S(z))
To(z) = ({02} x S(x), {02} x S(x), S(x), {03} x 5(x),
{08} x S(z), {06} x S(x), S(z), {02} x S(x))
Ts(x) = ({03} x 5(x), {02} x S(x), {02} x S(x), S(x),
{02} x S(z), {08} x S(z), {06} x S(x), S(x))
YO = ((To(=d) @ Ti(2Y) © Ta(ay) @ Ty(2) &Ox££££££££00000000) @
(To(29) ® Ty (22) @ Ta(al) @ T3(2Y')) &0x00000000£ £EE££££)
yY = ((To(xé/) o1 (w%,) o Tg(xé/) P Tg(wé,)) <32)®
((To (x}l/) @ Tl(xé/) e Ty (ac(l;/) @ Tg(x%/)) > 32)
v? = ((B3@d) @ To?) @ Ti(2?) @ To(a?) &OxE£££££££00000000) &
(11(27) ® Ta(a?) @ Ty (22) @ To(22')) &0x00000000£ £EEE£ £ £)
Y = () o To(ed) o Ti(ad) @ To(23)) < 32)
(Ti(a}) & To(a3) & Ta(a3) & To(af) > 32)
This implementation requires the following operations.
Size of table (KB): 8
Operations of Ff, FY, Fy and F3
of table lookups: 32
of XORs : 28
of ANDs : 4
of shift operations : 4

Selecting Implementation Types in the Optimized Codes

We explain how to choose the implementation types described in the previous section from the
optimized codes. In default, Type-S1 for 32-bit processors and Type-S3 for 64-bit processors are
selected. When "_USE_ROT"’ is defined in preprocessor, Type-S2 for 32-bit processors is chosen.
Similarly, when *_USE_SHIFT" is defined, Type-S4 is selected and when '’SHARE_TABLE’ is
defined, Type-S5 is selected.

98

Table 5.1: 32/64-bit Processors.

Platform | Processor | Clock speed | Memory 0OS Compiler
[GHz| [GB]
A Core 2 Duo 2.4 2.0 Windows Vista Visual Studio 2005
Ultimate (32-bit) | Professional Edition
B Core 2 Duo 2.4 2.0 Windows Vista Visual Studio 2005
Ultimate (64-bit) | Professional Edition
C Opteron 2.6 16.0 Linux kernel 2.4 gee 3.2.3 (x64)
D Pentium 4 2.26 1.0 Red Hat Linux 7.3 gce 2.96

Table 5.2: 8-bit Processors.

H Platform \ Vender \ Processor \ Compiler \ IDE H
E ATMEL | megaAVR family gee-4.3.0 AVR Studio 4.1.4
(WinAVR 20080610) build 589
F RENESAS | H8/300 family, ch38 HEW 4.03.00.001
3217 Group V.6.02.00.000 (+H8/300 tool chain 6.2.0)

5.1.2 Evaluation Results

This section shows the evaluation results of AURORA-224/256/384/512 on 8/32/64-bit processors.
We omit the results of AURORA-224M/256M. As mentioned in Sec. 277 and 28, AURORA-
224M/256M is structurally very similar to AURORA-384/512, except for constants and final
mixing function. These differences affect the performance results little. Thus the evaluation
results of AURORA-224M/256M can be deduced from those of AURORA-384/512.

The number of cycles/byte for 1 byte message on each table implicate the minimum number of
clock cycles to generate one message digest. For instance, the number of clock cycles of AURORA-
224 implemented by Type-S1 (unroll) to generate one message digest of 1 byte message is 1848
cycles on the Platform A. Since there is no calculation for setting up the algorithms in the optimized
code (e.g., build internal tables), the results on the tables are precise clock cycles to generate hash
values.

32/64-bit Processors

We present the evaluation results on performance of AURORA-224/256/384/512 on 32/64-bit
processors at the present. The platforms used for the evaluation are shown in Table Bl We use
cycle counters included in ’cycle.h’ [I3]. This code provides machine dependent cycle counters.

Tables (3] £.4] and represent the evaluation results of AURORA-224, AURORA-256,
AURORA-384 and AURORA-512, respectively. All implementation types described in Sec. [B.1.1]
are evaluated for each AURORA hash function. Also, two types of loop structure 'unroll’ and
'looped’ are evaluated. In the ’'unroll’ implementation, the round functions of AURORA are
unrolled. Similarly, in the "looped’ implementation, the round functions are implemented by loop
function. Besides the results of AURORA hash functions, the evaluation results of SHA-256 and
SHA-512 implemented by Brian Gladman [42] are shown in Tables 57 and 58] by using the same
evaluation method to compare the performances.

8-bit Processors

We present the evaluation results on performance of AURORA-224/256/384/512 on 8-bit proces-
sors at the present. The platforms used for the evaluation are shown in Table Table shows

99

the evaluation results of the compression function for AURORA-224/256 and AURORA-384/512.
Tables 510 B.1T1 and [B.I3] represent the evaluation results of AURORA-224, AURORA-256,
AURORA-384 and AURORA-512, respectively.

100

Table 5.3: AURORA-224 on 32/64-bit processors.

Hash Function 1 CF call | code size
[cycles/byte] [cycles] [bytes]
message size [bytes] 1 | 10 [100 [1,000 | 10,000 - -

Platform A (Core 2 Duo (32-bit))

Type-S1 | (unroll) 1,847.4 188.4 | 36.6 | 26.2 25.3 1,5698.1 142,926

(looped) 1,860.8 190.2 | 36.8 | 26.6 25.6 1,616.9 64,996

Type-S2 | (unroll) 1,788.9 183.2 | 35.7| 253 24.3 1,5634.8 179,662

(looped) 1,929.4 195.8 | 38.1 | 273 26.3 1,662.1 60,172

Type-S3 | (unroll) 3,117.2 317.1 | 624 | 4538 44.5 2,821.4 198,002

(looped) || 2,586.0 | 265.6 | 51.8 | 37.2| 358 2,285.0 | 121,034

Type-S4 | (unroll) 2,803.6 283.9 | 554 | 41.0 39.8 2,535.4 174,070

(looped) 2,625.7 2654 | 51.7 | 37.9 36.8 2,334.0 96,262

Type-S5 | (unroll) 2,686.2 2726 | 529 | 39.0 37.7 2,396.4 163,270

(looped) 2,477.9 251.3 | 48.7 | 35.7 34.6 2,193.2 83,990

Platform B (Core 2 Duo (64-bit))

Type-S1 | (unroll) 1,270.9 125.6 | 239 | 17.3 16.8 1,066.8 | 149,072
(looped) 1,412.5 140.1 26.7 19.6 19.0 1,204.9 66,326
Type-S2 | (unroll) 1,490.4 147.8 | 28.2 | 209 20.3 1,288.1 189,792
(looped) 1,608.2 159.6 | 30.4 | 22.6 22.0 1,397.8 62,126
Type-S3 | (unroll) || L,155.4 | 119.0 | 225 | 1590 | 154 980.7 | 205,626
(looped) 1,308.2 132.7 | 25.3 18.2 17.6 1,119.1 128,490
Type-S4 | (unroll) 1,177.8 119.3 | 22.6 16.2 15.7 995.1 181,694
(looped) 1,262.2 128.7 | 24.3 17.7 17.1 1,086.2 103,718
Type-S5 | (unroll) 1,342.9 134.9 25.5 18.7 18.2 1,156.4 170,894

(looped) 1,421.3 142.8 | 27.0 | 20.0 19.4 1,233.9 91,446

Platform C (Opteron)

Type-S1 | (unroll) 2,742.1 276.1 50.2 | 36.4 35.3 2,246.4 57,305

(looped) 2,912.1 292.1 54.0 39.5 38.3 2,455.0 21,641

Type-S2 | (unroll) || 2,972.8 | 299.7 | 55.3 | 40.6 | 39.3 2,521.9 | 51,241

(looped) 3,091.9 3115 | 57.8 | 42.6 41.3 2,654.4 15,625

Type-S3 | (unroll) 2,196.4 221.9 | 40.0 | 28.9 27.9 1,773.9 83,609

(looped) 1,590.4 161.1 | 28.1 19.3 18.5 1,179.0 46,169

Type-S4 | (unroll) 2,114.6 213.8 | 38.7 | 27.7 26.7 1,702.2 70,073

(looped) 1,611.0 164.8 | 28.7 | 19.8 19.0 1,197.1 30,073

Type-S5 | (unroll) 2,173.0 2200 | 39.7 | 284 274 1,748.5 60,537

(looped) || 1,709.0 | 1733 | 30.0 | 20.1| 19.2 1,234.9 | 21,881

Platform D (Pentium 4)

Type-SI | (unroll) || 4,299.5 | 436.3 | 795 | 53.7 | 514 32798 | 59,772

(looped) 4,197.9 428.0 | 789 | 52.0 49.7 2,930.5 22,092

Type-S2 | (unroll) 5,069.7 4985 | 94.7 | 67.3 65.2 4,142.2 55,172

(looped) 5,093.4 525.4 | 100.3 | 68.8 66.6 3,236.1 16,560

Type-S3 | (unroll) 10,748.6 | 1,082.7 | 199.8 | 1484 143.9 9,155.1 127,828

(looped) 7,504.9 755.5 | 143.9 | 106.1 | 103.0 6,588.6 55,436

Type-S4 | (unroll) || 10,486.6 | 1,051.0 | 194.2 | 143.6 | 139.4 8,905.0 103,356

(looped) 7,471.2 762.0 | 142.0 | 103.7 | 100.4 6,438.1 38,536

Type-S5 | (unroll) || 10,005.3 | 1,010.8 | 188.4 | 139.6 | 135.3 8,579.3 89,528

(looped) 7,213.3 725.8 | 136.8 | 99.1 96.3 6,210.2 29,580

101

Table 5.4: AURORA-256 on 32/64-bit processors.

Hash Function 1 CF call | code size
[cycles/byte] [cycles] [bytes]
message size [bytes] 1 | 10 [100 [1,000 | 10,000 - -

Platform A (Core 2 Duo (32-bit))

Type-S1 | (unroll) 1,836.3 185.7 | 36.3 | 26.2 254 1,5698.1 142,926

(looped) 1,837.4 188.2 | 36.5 | 26.5 25.6 1,616.9 64,996

Type-S2 | (unroll) 1,770.2 179.9 | 35.0 | 25.1 24.3 1,534.8 179,662

(looped) 1,902.6 193.6 | 376 | 27.2 26.3 1,662.1 60,172

Type-S3 | (unroll) 3,069.0 3115 | 61.6 | 45.8 44.3 2,821.4 198,002

(looped) 2,544.0 259.1 50.9 | 36.9 35.8 2,285.9 121,034

Type-S4 | (unroll) 2,787.6 280.9 | 55.1 | 41.0 39.8 2,535.4 174,070

(looped) 2,585.4 260.7 | 51.2 | 37.9 36.7 2,334.0 96,262

Type-S5 | (unroll) 2,649.7 2674 | 524 | 389 37.7 2,396.4 163,270

(looped) 2,447.1 248.2 | 484 | 35.7 34.6 2,193.2 83,990

Platform B (Core 2 Duo (64-bit))

Type-S1 | (unroll) 1,235.3 123.4 | 23.6 | 17.3 16.8 1,066.8 | 149,072
(looped) 1,374.9 1375 | 264 | 19.5 19.0 1,204.9 66,326
Type-S2 | (unroll) 1,459.8 145.1 28.0 | 20.8 20.2 1,288.1 189,792
(looped) 1,5676.1 156.3 | 30.4 | 22.6 22.0 1,397.8 62,126
Type-S3 | (unroll) 1,142.2 1154 | 22.3 15.9 15.4 980.7 205,626
(looped) 1,273.7 130.1 25.0 18.1 17.6 1,119.1 128,490
Type-S4 | (unroll) 1,154.8 117.2 22.3 16.2 15.7 995.1 181,694
(looped) 1,247.7 126.0 | 24.1 17.7 17.1 1,086.2 103,718
Type-S5 | (unroll) 1,315.3 132.6 25.2 18.7 18.2 1,156.4 170,894

(looped) 1,392.6 1404 | 26.8 | 20.0 19.4 1,233.9 91,446

Platform C (Opteron)

Type-S1 | (unroll) 2,575.6 262.1 | 489 | 36.3 35.2 2,246.4 57,305

(looped) 2,792.2 280.1 52.8 | 39.3 38.2 2,455.0 21,641

Type-S2 | (unroll) || 2,848.6 | 286.9 | 54.0 | 405 | 39.3 2,521.9 | 51,241

(looped) 2,978.0 299.8 | 56.6 | 424 41.3 2,654.4 15,625

Type-S3 | (unroll) 2,074.4 209.9 | 38.8 | 28.8 27.9 1,773.9 83,609

(looped) 1,476.0 149.7 | 27.0 | 19.2 18.5 1,179.0 46,169

Type-S4 | (unroll) 2,005.7 2025 | 37.6 | 27.6 26.7 1,702.2 70,073

(looped) 1,492.9 153.5 | 276 | 19.7 19.0 1,197.1 30,073

Type-S5 | (unroll) 2,065.0 2135 | 39.0 | 28.3 274 1,748.5 60,537

(looped) 1,634.7 1559 | 28.2 19.9 19.2 1,234.9 21,881

Platform D (Pentium 4)

Type-SI | (unroll) || 4,036.5 | 4223] 77.9 | 535 | 522 32798 | 59,772

(looped) 3,963.2 403.6 | 76.6 | 52.2 49.6 2,930.5 22,092

Type-S2 | (unroll) 5,069.7 4985 | 94.7 | 67.3 65.2 4,142.2 55,172

(looped) 9,318.5 515.0 | 101.0 | 69.2 66.5 3,236.1 16,560

Type-S3 | (unroll) 10,475.5 | 1,045.4 | 196.9 | 148.2 143.8 9,155.1 127,828

(looped) 7,297.2 736.2 | 142.1 | 106.0 | 102.8 6,588.6 55,436

Type-S4 | (unroll) || 10,055.7 | 1,016.1 | 191.1 | 143.3 | 139.4 8,905.0 103,356

(looped) 7,256.2 735.6 | 139.7 | 103.5 100.4 6,438.1 38,536

Type-S5 | (unroll) 9,712.1 984.7 | 185.5 | 139.1 | 134.9 8,579.3 89,528

(looped) 6,992.4 709.0 | 134.6 | 98.9 96.3 6,210.2 29,580

102

Table 5.5: AURORA-384 on 32/64-bit processors.

Hash Function 1 CF call | code size
[cycles/byte] [cycles] [bytes]
message size [bytes] 1 | 10 [100 [1,000 | 10,000 - -

Platform A (Core 2 Duo (32-bit))

Type-S1 | (unroll) 5,709.0 5749 | 86.1 | 48.8 47.6 2,666.9 142,926

(looped) 6,160.2 628.3 | 92.5 | 52.8 51.4 2,875.5 64,996

Type-S2 | (unroll) 5,724.6 574.7 | 85.0 | 48.2 46.8 2,612.9 179,662

(looped) 5,743.4 580.9 | 86.4 | 49.0 47.7 2,666.1 60,172

Type-S3 | (unroll) || 21,527.2 | 2,153.0 | 320.7 | 187.3 183.1 10,343.1 198,002

(looped) || 8,686.9 | 8755 | 130.6 | 74.3 | 724 || 4,043.8 | 121,034

Type-S4 | (unroll) || 20,457.5 | 2,0485 | 305.3 | 178.6 | 174.7 || 9,842.3 | 174,070

(looped) 7,603.6 764.1 | 113.7 | 64.9 63.4 3,554.4 96,262

Type-S5 | (unroll) || 21,207.6 | 2,118.5 | 315.0 | 183.7 | 179.8 10,131.3 163,270

(looped) 7,270.0 732.0 | 108.8 | 62.1 60.6 3,395.7 83,990

Platform B (Core 2 Duo (64-bit))

Type-ST | (unroll) || 3,786.4 | 3780 | 554 | 31.7] 307 | 1,711.8 | 149,072
(looped) || 4,079.6 | 407.6 | 59.7 | 340 | 33.2 | 18534 | 66,326
Type-S2 | (unroll) || 4,267.8 | 426.4 | 62.6 | 35.7 | 349 | 1,962.1 | 189,792
(looped) || 4,572.6 | 456.8 | 67.2 | 384 | 375 | 2,099.1 | 62,126
Type-S3 | (unroll) || 34552 | 346.4 | 50.8 | 282 | 274 | 1,521.4| 205,626
(looped) || 4,002.3 | 403.3 | 59.1 | 33.1 | 322 1,774.7 | 128,490
Type-S4 | (unroll) || 3,506.9 | 352.0 | 51.6 | 289 | 28.1 | 1,566.7 | 181,694
(looped) || 3,694.3 | 371.2 | 54.6 | 30.7| 299 | 1,6708 | 103,718
Type-S5 | (unroll) || 3,803.9 | 382.6 | 559 | 31.8| 31.0 | 1,725.2 | 170,894

(looped) 4,057.3 404.4 | 59.3 | 33.7 32.9 1,837.9 91,446

Platform C (Opteron)

Type-S1 | (unroll) 7,943.1 796.6 | 115.7 | 65.6 63.9 3,587.9 57,305

(looped) 7,212.3 723.9 | 104.7 | 59.2 57.7 3,253.4 21,641

Type-S2 | (unroll) || 8,864.7 | 886.1 | 129.1 | 74.1| 723 | 4,060.8 | 51,241

(looped) 8,103.2 816.5 | 118.6 | 67.3 65.6 3,675.1 15,625

Type-S3 | (unroll) 8,427.3 844.4 | 122.8 | 70.1 68.4 3,844.2 83,609

(looped) 4,214.4 422.6 | 59.7 | 32.6 31.5 1,755.7 46,169

Type-S4 | (unroll) 8,938.8 895.7 | 130.9 | 75.5 73.9 4,139.6 70,073

(looped) 4,223.2 423.1 | 60.0 | 32.9 31.9 1,777.1 30,073

Type-S5 | (unroll) 7,850.4 787.3 | 114.6 | 65.4 63.8 3,577.0 60,537

(looped) || 4,380.0 | 4395 | 625 | 344 | 333 1,854.6 | 21,881

Platform D (Pentium 4)

Type-S1 | (unroll) || 13,832.6 | 1,410.5 | 204.5 | 106.5 98.3 5,483.4 59,772

(looped) || 13,475.2 | 1,342.5 | 200.5 | 111.2 | 107.9 5,811.4 22,092

Type-S2 | (unroll) || 16,059.2 | 1,600.5 | 233.7 | 135.6 | 126.2 | 7,090.0 | 55,172

(looped) || 17,817.9 | 1,778.9 | 263.5 | 150.9 | 1474 6,420.3 16,560

Type-S3 | (unroll) || 29,331.6 | 2,949.2 | 433.6 | 247.9 241.8 13,570.7 127,828

(looped) || 21,529.5 | 2,144.9 | 3164 | 181.0 | 176.5 9,930.2 55,436

Type-S4 | (unroll) || 28,286.8 | 2,839.3 | 416.8 | 237.6 | 232.0 13,046.8 103,356

(looped) || 20,501.7 | 2,051.2 | 301.4 | 171.2 167.1 9,451.8 38,536

Type-S5 | (unroll) || 26,879.0 | 2,703.9 | 395.7 | 225.2 | 219.7 12,367.1 89,528

(looped) || 20,039.9 | 2,000.5 | 295.0 | 167.4 | 162.8 9,348.4 29,580

103

Table 5.6: AURORA-512 on 32/64-bit processors.

Hash Function 1 CF call | code size
[cycles/byte] [cycles] [bytes]
message size [bytes] 1 | 10 [100 [1,000 | 10,000 - -

Platform A (Core 2 Duo (32-bit))

Type-S1 | (unroll) 5,733.8 o77.0 | 86.1 | 48.9 47.6 2,666.9 142,926

(looped) 6,166.8 619.4 | 924 | 52.9 51.5 2,875.5 64,996

Type-S2 | (unroll) 5,737.9 | 573.2 | 85.4 | 481 46.9 2,612.9 | 179,662

(looped) 5,779.8 582.3 | 86.4 | 49.0 47.9 2,666.1 60,172

Type-S3 | (unroll) || 21,441.6 | 2,147.6 | 319.8 | 186.2 | 183.3 10,343.1 198,002

(looped) || 8,647.4 | 860.0 | 1298 | 74.2 | 724 | 4,043.8| 121,034

Type-S4 | (unroll) || 20,521.7 | 2,056.0 | 305.6 | 177.5 | 174.8 || 9,842.3 | 174,070

(looped) 7,587.3 759.8 | 113.2 | 64.9 63.3 3,554.4 96,262

Type-S5 | (unroll) || 20,975.2 | 2,099.8 | 312.5 | 183.7 | 179.0 10,131.3 163,270

(looped) 7,233.3 728.5 | 108.5 | 62.1 60.6 3,395.7 83,990

Platform B (Core 2 Duo (64-bit))

Type-S1 | (unroll) 3,743.1 3721 | 549 | 314 30.7 1,711.8 149,072
(looped) 4,028.9 4015 | 59.2 | 34.0 33.2 1,853.4 66,326
Type-S2 | (unroll) 4,210.4 421.0 | 619 | 35.7 34.9 1,962.1 189,792
(looped) 4,523.4 451.6 | 66.9 | 38.5 37.6 2,099.1 62,126
Type-S3 | (unroll) 3,377.2 340.3 | 50.2 | 28.1 274 1,521.4 205,626
(looped) 3,928.2 3946 | 585 | 33.0 32.2 1,774.7 128,490
Type-S4 | (unroll) 3,440.3 346.1 | 51.0 | 28.8 28.1 1,566.7 181,694
(looped) 3,653.1 366.0 | 54.2 | 30.7 29.9 1,670.8 103,718
Type-S5 | (unroll) 3,751.1 376.4 | 554 | 31.7 30.9 1,725.2 170,894

(looped) 3,992.3 400.0 | 58.8 | 33.6 32.9 1,837.9 91,446

Platform C (Opteron)

Type-S1 | (unroll) 7,766.1 776.1 | 113.5 | 65.3 63.8 3,587.9 57,305

(looped) 7,023.7 702.6 | 102.6 | 59.0 57.7 3,253.4 21,641

Type-S2 | (unroll) || 8,639.4 | 8654 | 127.1 | 73.9| 723 | 4,060.8 | 51,241

(looped) 7,861.8 788.1 | 115.6 | 67.1 65.6 3,675.1 15,625

Type-S3 | (unroll) 8,133.3 813.6 | 119.7 | 69.8 68.4 3,844.2 83,609

(looped) 3,967.2 398.1 | 57.3 | 32.3 31.5 1,755.7 46,169

Type-S4 | (unroll) 8,744.3 875.6 | 129.0 | 75.3 74.0 4,139.6 70,073

(looped) 4,032.2 404.1 | 58.1 | 32.7 31.9 1,777.1 30,073

Type-S5 | (unroll) 7,636.7 764.4 | 112.4 | 65.2 63.8 3,577.0 60,537

(looped) || 4,161.0 | 4168 | 60.2 | 34.1| 33.3 1,854.6 | 21,881

Platform D (Pentium 4)

Type-S1 | (unroll) || 13,666.9 | 1,370.1 | 198.9 | 108.5 98.2 5,483.4 59,772

(looped) || 13,098.6 | 1,321.6 | 195.9 | 110.9 | 107.9 5,811.4 22,092

Type-S2 | (unroll) || 15,518.0 | 1,557.4 | 229.4 | 129.7 | 128.8 7,090.0 | 55,172

(looped) || 17,203.8 | 1,729.2 | 259.2 | 150.6 | 147.2 6,420.3 16,560

Type-S3 | (unroll) || 29,074.0 | 2,915.4 | 430.1 | 247.3 241.7 13,570.7 127,828

(looped) || 20,826.0 | 2,087.1 | 310.3 | 180.0 | 176.3 9,930.2 55,436

Type-S4 | (unroll) || 27,901.7 | 2,800.7 | 4134 | 237.3 | 231.9 13,046.8 103,356

(looped) || 20,095.9 | 2,030.2 | 298.1 | 171.0 166.9 9,451.8 38,536

Type-S5 | (unroll) || 26,513.4 | 2,662.9 | 391.9 | 224.8 | 219.6 12,367.1 89,528

(looped) || 19,608.8 | 1,978.8 | 291.8 | 166.4 | 162.5 9,348.4 29,580

104

Table 5.7: SHA-256 on 32/64-bit processors.

Hash Function 1 CF call | code size
[cycles/byte] [cycles] [bytes]
message size [bytes] 1 | 10 [100 [1,000 [10,000 - -
Platform A (Core 2 Duo (32-bit))
16093 | 162.2 [31.0 | 23.1] 22.5] 123021 43,802
Platform B (Core 2 Duo (64-bit))
1,376.1 | 138.6 [26.0 | 205 | 20.2] 1,198.1 | 44,452
Platform C (Opteron)
1,686.0 | 1604 [31.9 | 24.0 | 233] 1,403.0 | 13,745
Platform D (Pentium 4)
3,084.2 [311.4 [572] 425 412] 23903 | 23,668
Table 5.8: SHA-512 on 32/64-bit processors.
Hash Function CF call | code size
[cycles/byte] [cycles] [bytes]
message size [bytes] 1 [10 [100 [1,000 [10,000 - -
Platform A (Core 2 Duo (32-bit))
6,101.1 | 621.2 | 61.2 | 43.6 | 425 [51184 43,802
Platform B (Core 2 Duo (64-bit))
8051 1815 19.0] 136] 133 1,512.6] 44452
Platform C (Opteron)
22370 | 2247] 22.7] 154 149 [1,795 13,745
Platform D (Pentium 4)
15,873.8 ‘ 1,684.2 ‘ 176.5 ‘ 120.7 ‘ 107.8 H 13,269.1 ‘ 23,668

105

Table 5.9: Compression functions for AURORA-224/256 and AURORA-384/512 on 8-bit proces-

SOrs.

CF Platform 1 CF call code size | stack
[cycles/byte] | [bytes] | [bytes]
AURORA-224/256 | Platform E 446,675 6,158 204
Platform F 3,410,460 4,596 216
AURORA-384/512 | Platform E 676,814 6,158 240
Platform F 5,152,644 4,596 250
Table 5.10: AURORA-224 on 8-bit processors.
Hash Function code size | stack
[cycles/byte] [bytes] | [bytes]
message size 1 10 100 400 1,000 - -
[bytes]
Platform E 451,055 | 45,255.0 | 9,147.8 | 8,002.6 | 7,326.3 6,158 442
Platform F || 3,428,682 | 343,170.6 | 68,803.2 | 60,169.4 | 55,024.0 4,596 320
Table 5.11: AURORA-256 on 8-bit processors.
Hash Function code size | stack
[cycles/byte] [bytes] | [bytes]
message size 1 10 100 400 1,000 - -
[bytes]
Platform E 450,601 | 45,209.6 | 9,143.3 | 8,001.5 | 7,325.9 6,158 442
Platform F || 3,425,578 | 342,922.6 | 68,767.1 | 60,158.0 | 55,022.9 4,596 300
Table 5.12: AURORA-384 on 8-bit processors.
Hash Function code size | stack
[cycles/byte] [bytes] | [bytes]
message size 1 10 100 400 1,000 - -
[bytes]
Platform E 1,358,852 136,034.7 | 20,527.6 | 13,724.9 | 12,363.7 6,158 503
Platform F || 10,331,178 | 1,033,537.6 | 155,252.8 | 103,566.0 | 93,225.5 4,596 352
Table 5.13: AURORA-512 on 8-bit processors.
Hash Function code size | stack
[cycles/byte] [bytes] | [bytes]
message size 1 10 100 400 1,000 - -
[bytes]
Platform E 1,358,098 135,959.3 | 20,520.1 13,723.0 | 12,363.0 6,158 486
Platform F || 10,324,052 | 1,032,861.2 | 155,179.1 | 103,546.4 | 93,217.6 4,596 300

106

5.2 Hardware Implementation

This section describes the hardware optimization techniques and performance results of AURORA.
Since the implementations of AURORA-224 and AURORA-384 are basically same as AURORA-
256 and AURORA-512, respectively, except the initial value and truncation of final hash value, we
designed and evaluated the implementations of AURORA-256 and AURORA-512 in this section.

5.2.1 Optimization Techniques of F-functions

We introduce optimization techniques of F-functions focusing on an S-box, matrices and a pipeline
architecture in hardware implementation.

S-box

The 8-bit S-box of AURORA consists of three layers: affine transformation f, inversion over
GF((2*)?) and affine transformation g. In Fig. we show the schematic design of our S-box
implementation. The inversion is performed in GF((2%)?) defined by the following polynomials:

{ GF(2%) cplax)=at+x+1
GF((2Y?) :q(z)=2+z+ X (A={1001} € GF(2%))

For an arbitrary element a3 + a; over GF((2%)?) where ag,a; € GF(2%) and §3 is a root of ¢(z),
the inversion by + by = (agB + a1)~! (bo,b1 € GF(2%)) is computed as follows [46]:

by = aoA_l,

by = (ao + a1)A™",

A = (ag +ay)a; + \aj.
These arithmetics except an inversion over GF(2%), which is automatically generated by logic

synthesis tool according to 16 entries x 4 bits table, can be implemented using NAND logic gates
and XOR logic gates.

— (Cinverson over GF((2%?) I

A |X2X)\

S
fan)
\V

-

Figure 5.2: Schematic design of S-box implementation.

In Sec.[5.2.3] we apply not only this type of S-box implementation to all the hardware designs of
AURORA but also table-lookup S-box implementation using 256 entries x 8 bits table to Type-H1
implementation described in Sec. [5.2.2] for higher throughput.

Matrices Mgy, M1, M5 and M3

The 4 x 4 matrices Mg, My, Ms and M3 are multiplied to the outputs of S-boxes as a linear (4, 4)
multipermutation over GF(2®) which is defined by an irreducible polynomial 28 + 2* + 23 4+ 22 + 1.
An addition of two elements in GF(2%), denoted by @, is equivalent to a bitwise XOR operation of
their representations as an 8-bit binary string, which costs 8 XOR logic gates. A multiplication in

107

GF(28), denoted by x, corresponds to a multiplication of polynomials modulo #® +x% + 23 + 22 +1.
For an element a in GF(2%), {02} x a, {04} x a and {08} x a require 3, 5 and 8 XOR logic gates,
respectively.

The matrix My can be decomposed into the following form.

01 02 02 03 01 00 00 01 01 00 02 00 00 00 00 02
03 01 02 02 | | 01 01 00 0O 00 01 00 02 02 00 00 00
02 03 01 02 | ~ | 00 01 01 00 02 00 01 00 * 00 02 00 00
02 02 03 01 00 00 01 01 00 02 00 01 00 00 02 00

For an input vector (xg, 1,2, x3) and an output vector (yo, y1, Y2, ys), the multiplication by M,
can be computed through the following equations.

ag = {02} x bo = as ® o Yo = a3 D by ® bs
a; = {02} x z1 by = a3z ® Y1 =aop ® by Db
az = {02} x by = ag @ 2 Y2=0a1 Dby Dby
a3:{02}><x3 bgzal@l'g ygzaz@b;),@bz

The total number and the maximum delay of XOR gates required for multiplication by M, are
112 and 4, respectively.
The matrix M; can be decomposed into the following.

01 06 08 02 01 04 00 00 01 02 00 00 00 00 00 02
02 01 06 08 | | 00 01 04 00 00 01 02 00 02 00 00 00
08 02 01 06 |~ | 00 00 01 04 00 00 01 02 * 00 02 00 00
06 08 02 01 04 00 00 01 02 00 00 01 00 00 02 00

For an input vector (xg,x1,x2,x3) and an output vector (yo, y1, Y2, ys), the multiplication by M;
can be computed through the following equations.

GQZ{OQ}X.IO bo = a1 P xg 602{04}Xb0 Yo = asz B by ® 1
alz{OQ}xxl b1:a2®x1 01:{04}Xb1 ylzaoﬂabl@@
GQZ{OQ}X.TQ bgiag@l'g 62:{04}Xb2 yzial@b2@63
as = {02} X I3 b3 =ag D x3 C3 = {04} X bg Y3 :ag@bg@C(]

The total number and the maximum delay of XOR gates required for multiplication by M are
128 and 4, respectively.

The matrices My and M3 are composed of the common row vectors to My and M. Therefore,
the multiplications by Ms and M3 are computed by substituting elements of an output vector of
the multiplication by My and M, respectively.

Dividing F-functions for pipeline architecture

In Fig. 5.3l we show the circuits of F-functions Fy and F;. The characters f, I and g in the figure
represent the circuit of the function f, the inverse function over GF((24)?) and the function g
in the S-box S, respectively. In Sec. we apply the pipeline architecture to both Type-H3
and Type-H4 implementations of AURORA-256 and AURORA-512 in order to achieve higher
throughput. By dividing the circuit Fj into the two parts a and 8 and inserting registers between
« and 3, we can shorten the critical path of the designs and improve the maximum operating
frequency. Similarly, the circuit F} is divided into the two parts « and 7.

5.2.2 Data Path Architectures

For both AURORA-256 and AURORA-512, we designed four types of hardware implementations:
Type-H1, Type-H2, Type-H3 and Type-H4 implementation. All the implementations do not
include padding function; we assume that an input message is padded and divided into message
blocks of 512 bits. We give the data path architecture of each implementation, where all registers
represented by a box with shadow are composed of registers without enable signal.

108

Figure 5.3: Dividing F-functions for pipeline architecture.

Message Scheduling Block Chaining Value Processing Block
message
inpUt 256 256
CONM_ CONMR Los oss -1 CONC { Co1,Cos,Cos,Cor}
128 128 21 256 128 ¢
6
128 75 PROTL H 128
N
1 256 256 { Co0:ConCoaCos}
e 255 256 T2 L 00020406
{32 4;32 4"32 {32 faz 4;32 fsz {32 faz 4;32 fsz {32 4;32 {32 {32 4;32
\ BD \ BD

256 1256

3 32 3 32 3 32
55600550
32 32 32

Figure 5.4: Data path architecture of AURORA-256 Type-H1 implementation.

AURORA-256 Type-H1

AURORA-256 Type-H1 implementation processes a round of the AURORA architecture both
in one of the message scheduling module MSM and in the chaining value processing module
CPM simultaneously in one clock cycle. It requires 8 F-function circuits and takes 18 cycles for
both the compression function CF and the finalization function FF. Fig.[5.4 shows the data path
architecture of AURORA-256 Type-H1 implementation. It is divided into two blocks: the message
scheduling block and the chaining value processing block.

In the message scheduling block, a 512-bit message block is input in two cycles; the left 256-bit
My, is input at the 1st cycle and the right 256-bit M is input at the 2nd cycle. 256-bit intermediate
values of MSy, (MSF) are stored in eight 32-bit registers { Roo, . . ., Ro7} at the cycle of even order
and stored in eight 32-bit registers {Rio, ..., R17} at the cycle of odd order. On the other hand,
256-bit intermediate values of M Sr (MSFR) are stored in {Rio, ..., Ri17} at the cycle of even
order and stored in {Rqo, ..., Ro7} at the cycle of odd order. The pipeline architecture described
in Sec. [E21lis introduced into the message scheduling block; 32-bit registers are inserted between

109

M essage Scheduling Block Chaining Value Processing Block

128 128

CONC

128 {Cu,Cra}
o4 64 64
64

i {Ci0.Cr2}

Figure 5.5: Data path architecture of AURORA-256 Type-H2 implementation.

«a and (3, and between « and . The architecture cannot shorten the critical path of the whole
circuit because the longer paths exist in the chaining value processing block, but can reduce the
rate of increase in area of the message scheduling block at high operating frequency. We note that
the outputs of 8 and ~ are byte-rotated to the left and to the right, respectively, when 256-bit
intermediate values of MSg (MSFR) are processed.

In the chaining value processing block, the chaining value stored in eight 32-bit registers
{Coo,...,Co7} is loaded and set into eight 32-bit registers {Raq, ..., Ror} through the byte dif-
fusion circuit BD after being XORed with the data fed from the message scheduling block and
constant values CONC. BD can be implemented by simple wiring of byte data without any
transistors. From the 2nd cycle to the 17th cycle, the data stored in {Ry,. .., Ra7} are input
to the round function, and its output is re-stored into {Ray,..., Ro7} through BD after being
XORed with the data fed from the message scheduling block and CONC'. The data fed from the
message scheduling block pass through the data rotating function PROTL at the cycle of odd
order and PROTR at the cycle of even order, respectively. At the 18th cycle, the output of the
round function are XORed with the data fed from the message scheduling block and the chaining
value stored in {Coo,...,Cor}, and then re-stored into {Cyp,...,Co7}. The 128-bit XOR gates
required for updating {Co1, Cos, Cos, Cor} can be merged with those for CONC by appending a
128-bit 2:1 selector.

AURORA-256 Type-H2

AURORA-256 Type-H2 implementation processes a round of the AURORA architecture both
in one of MSM and in CPM simultaneously in two clock cycles, when the left 128-bit data are
processed first. It requires 4 F-function circuits and takes 36 cycles for both CF and FF. Fig.[E8
shows the data path architecture of AURORA-256 Type-H2 implementation, where the data path
width is 128 bits. A 512-bit message block is input in 128-bit blocks using 4 cycles. PROTLy
and PROTRp in the figure show the functions whose input and output are the left 128-bit of the
input and output of the data rotating function PROTL and PROTR, respectively. The number
of F-functions and XOR gates are reduced to half compared to those in Type-H1 implementation.
The pipeline architecture is introduced into the message scheduling block in order to reduce the

110

[ProTL| [PROTR| [PROTL]
256 256 256

256

A
4]
(o]

- [|Jesl | e[
\ / :

256
f32 f32 4,'32 ¢32 4,'32 4,’32 ¢32 4,'32 Atsz 2 Atsz 2 2 2 2 2
\ BD

256 256 |
2:1
256

w
-

256 256
11

2.
256
32 32 32 32 32 32 32 32
[Coof [Carl [Cogl [Cox] [Cos} [Coe] [Coc] [Cork
2 32 32 32 32 32 32 32
256

I

Figure 5.7: Data path architecture of AURORA-256 Type-H3 implementation.

rate of increase in area of the message scheduling at high operating frequency.

In a 128-bit data path architecture such as Type-H2 implementation, the byte diffusion function
BD cannot be implemented only by simple wiring of byte data; generally it requires a 256-bit 2:1
selector. In our implementations, we utilize the 128-bit byte diffusion (BD) circuit, as shown in
Fig.[E6l The 128-bit BD circuit consists of byte wiring, sixteen 8-bit registers and sixteen 8-bit 2:1
selectors, where selectors of 128 bits can be reduced. The 256-bit data, which are input into the
128-bit BD circuit in two clock cycles, are output in the order corresponding to BD by controlling
selectors.

AURORA-256 Type-H3

AURORA-256 Type-H3 implementation processes a round of the AURORA architecture either
in one of MSM or in CPM mutually in every one clock cycle. It requires 4 F-function circuits
and takes 36 cycles for both CF and FF. Fig.[54 shows the data path architecture of AURORA-
256 Type-H3 implementation. Unlike AURORA-256 Type-H1 and Type-H2 implementation, the
round function circuit is shared for MSM and CPM . The round function is processed by repeating
the following order:

MSy (MSF) — CP (CPF) — MSg (MSFg) — CP (CPF) — ---

111

Figure 5.8: Data path architecture of AURORA-256 Type-H4 implementation.

We can shorten the critical path of the whole circuit and improve the maximum operating fre-
quency by applying the pipeline architecture into the round function circuit.

The left 256-bit M7, of a 512-bit message block is input at the 1st cycle, and then 256-bit inter-
mediate values of MS, (MSF) are stored in eight 32-bit registers { Roo, . . ., Ro7}, {R10,-- -, Ri7}
or {Rao, ..., Ra7} by repeating the following order:

{Roo,...,Ror} = {Rio,...,Ri7} = {R20,...,Ror} — {Ra0,...,Ror} — -+~

The right 256-bit Mg of a 512-bit message block is input at the 3rd cycle, and then intermediate
values of MSpr (MSF R) are stored in registers by repeating the same order as MS. On the other
hand, the chaining value stored in eight 32-bit registers {Coo, . .., Co7} is loaded at the 2nd cycle,
and then 256-bit intermediate values of CP (CPF) are stored in { Ry, . .., Ro7} or {R1o,..., Ri7}
by repeating the following order:

{Roo,...,Ror} = {Ri0,...,Rir} — -~

The input and output of F-functions must be adequately selected because either the kind or
the positioning of F-functions among MSy, (MSFL), MSr (MSFgR) and CP (CPF) is different;
for intermediate values of MSp (MSFR), the output of F-functions must be byte-rotated to the
left or right. For intermediate values of CP (CPF'), both of the 1st and 3rd 32-bit line, and the
5th and 7th 32-bit line of the input and output of F-functions must be swapped. Note that the
chaining value to be fed forward is XORed into intermediate values of MSr (MSFR) through
PROTL in advance at the 35th cycle, which can reduce one cycle for updating the chaining value.

AURORA-256 Type-H4

AURORA-256 Type-H4 implementation is hybrid of Type-H2 and Type-H3 implementation; it
processes a round of the AURORA architecture either in one of MSM or in CPM mutually in
every two clock cycles. It requires 2 F-function circuits and takes 72 cycles for both CF and FF.
Fig. 68 shows the data path architecture of AURORA-256 Type-H4 implementation, where the
data path width is 128 bits. The round function circuit is shared for MSM and CPM in the same
way as Type-H3 implementation. The processing order of the round function is also the same as

112

AURORA-256 Type-H3 implementation, but it requires two clock cycles for each round function.
The pipeline architecture is introduced into the round function circuit, which can improve the
maximum operating frequency.

The left 256-bit My, of a 512-bit message block is input in 128-bit blocks at the 1st and 2nd
cycle, and then intermediate values of MSy (MSF|) are stored in registers by repeating the
following order:

{Roo, ..., Ro3} = {Rio,...,Ris} — {Roo,...,Ros} = {Rio, ..., Riz} = {Ra20,...,Raz} —
128-bit BD circuit — {Rgo, ey R33} — {]’{407 ey R43} —

The right 256-bit Mg of a 512-bit message block is input in 128-bit blocks at the 5th and 6th cycle,
and then intermediate values of MSg (MSF r) are stored in registers by repeating the same order
as MSp. On the other hand, the chaining value stored in four 32-bit registers {C1o,...,C13} and
{Coo, - .., Co3} is loaded via {Ciy, ..., Cy3} at the 3rd and 4th cycle, and then 256-bit intermediate
values of CP (CPF) are stored in registers by repeating the following order:

{Rgo, ey Rgg} — 128-bit BD circuit — {R30, [N ,R33} — {R40, ey R43} —

Note that the chaining value to be fed forward is XORed into intermediate values of MSpg
(MSFR) in advance at the 69th and 70th cycle, which can reduce two cycles for updating the
chaining value.

AURORA-512 Type-H1

AURORA-512 Type-H1 implementation processes a round of the AURORA architecture both in
one of the message scheduling module MSM and in the two chaining value processing modules
CPM simultaneously in one clock cycle. It requires 12 F-function circuits and takes 18 cycles for
the compression functions CF (0 < s < 7), the mixing functions MF and the mixing function for
finalization MFF. The data path architecture of AURORA-512 Type-H1 implementation can be
constructed by appending another chaining value processing block to that of AURORA-256 Type-
H1 implementation. In addition, two 256-bit paths from the eight 32-bit chaining value registers
in both of the two chaining value processing blocks to the message scheduling block must be
appended to process MF and MFF. The two chaining value processing blocks are basically same
except constant values and the F-functions circuits; one block arranges the F-function circuits of
Fy and Fj, and the other arranges those of F3 and F5.

AURORA-512 Type-H2

AURORA-512 Type-H2 implementation processes a round of the AURORA architecture both in
one of MSM and in two CPM simultaneously in two clock cycles. It requires 6 F-function circuits
and takes 36 cycles for CF4, MF and MFF. The data path architecture of AURORA-512 Type-
H2 implementation can be constructed by appending another chaining value processing block to
that of AURORA-256 Type-H2 implementation. In addition, two 128-bit paths from the four
32-bit chaining value registers in both of the two chaining value processing blocks to the message
scheduling block must be appended to process MF and MFF.

AURORA-512 Type-H3

AURORA-512 Type-H3 implementation processes a round of the AURORA architecture either
in one of MSM or in one of CPM mutually in one clock cycle. It requires 4 F-function circuits
and takes 56 cycles for CF4, MF and MFF': 54 cycle for message scheduling and chaining value
processing, and 2 cycles for updating the chaining value. Fig. 5.9 shows the data path architecture
of AURORA-512 Type-H3 implementation. The round function is processed by repeating the
following order:

MSL7Z‘—>CPL7Z‘—>OPR,,'—>MSR,,'—>CPL7,L‘—>CPRJ-—>-~-

113

256

faz fsz 4;32 4'/32 faz fsz 4;32 4'/32
| BD |
2 Ja

256

256 4256

1

256
2 Jn Ju 2 fn Ju 2 fn
[Rao} [Ror] [Ree) (R (R} [Res] (R} [Rer
2 Y% f32 {32 Y IR {2 fx

256

256 4256

2:1
256

% 21 |
256
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
6 {' 256
256 256

I =

Figure 5.9: Data path architecture of AURORA-512 Type-H3 implementation.

for 0 < i < 9. The pipeline architecture is introduced into the round function circuit, which can
improve the maximum operating frequency.

For CFg, the left 256-bit My, of a 512-bit message block is input at the 1st cycle. For MF
(MFF), the chaining value stored in eight 32-bit registers {Cio, ..., C17} is loaded at the 1st cycle
as the input of MSy g (MSL o). Intermediate values of MSy ; are stored in eight 32-bit registers
{Roo,---,Ror}, {R10s---, Ri7}, {Roo0, ..., Rar} or {Rsp, ..., Rsr} by repeating the following order:

{Roo, .-, Ror} — {Roo, .-, Ror} — {Roo,--.,Ror} = {Ri0,...,Ri7} — {R20,...,Ror} —
{R30,...,R37} — -~

For CFg, the right 256-bit Mg of a 512-bit message block is input at the 4th cycle. For MF (MFF),
the chaining value stored in eight 32-bit registers {Cyp, ..., Cor} is loaded via {Cio,...,Ci7} at
the 4th cycle as the input of MSgr g (MSRg,9). Intermediate values of MSp ; are stored in registers
by repeating the same order as MSy, ;.

On the other hand, the chaining value stored in {Ciy,...,Ci7} is loaded at the 2nd cycle as
the input of CPp, ;, and then intermediate values of CPp, ; are stored in registers by repeating he
following order:

{Ri0,...,Ri7} = {R20,...,Rar} = {R30,...,Ra7} — - -~

The chaining value stored in {Cyp, ..., Cor} is loaded via {Cig,...,Ci7} at the 3rd cycle as the
input of CPg;, and then intermediate values of CPg; are stored in registers by repeating the
same order as CPp, ;.

The input and output of F-functions must be adequately selected because the kind or the
positioning of F-functions among MSy, ;, MSg;, CPr,; and CPpg; is different; for intermediate
values of MSg,; and CPpg,, the output of F-functions must be byte-rotated to the left or right.
For intermediate values of CPr, ; and CPR ;, both of the 1st and 3rd 32-bit line, and the 5th and
7th 32-bit line of the input and output of F-functions must be swapped.

114

128

o e 3o

128-bit BD circuit

128 128

128

4;32 {32 2 fx

CIEIEIE]

2 Fw Fn
128

Figure 5.10: Data path architecture of AURORA-512 Type-H4 implementation.

AURORA-512 Type-H4

AURORA-512 Type-H4 implementation processes a round of the AURORA architecture in one of
MSM or in one of CPM mutually in two clock cycle. It requires 2 F-function circuits and takes 112
cycles for CF 4, MF and MFF': 108 cycle for message scheduling and chaining value processing, and
4 cycles for updating the chaining value. Fig. shows the data path architecture of AURORA-
512 Type-H4 implementation, where the data path width is 128 bits. The processing order of the
round function is the same as AURORA-512 Type-H3 implementation, but it requires two clock
cycles for each round function.

For CF, the left 256-bit M, of a 512-bit message block is input in 128-bit blocks at the 1st
and 2nd cycle. For MF (MFF), the chaining value stored in four 32-bit registers {Csg,...,Cs3}
and {Cao, ..., Ca3} is loaded via {Cso,...,Cs3} at the 1st and 2nd cycle as the input of MSp s
(MSL,). Intermediate values of MSy ; are stored in registers by repeating the following order:

{Roo, ..., Ro3} = {Rio,-..,Ri3} = {Roo,...,Roz} — {Rio,...,Ri3} = {Roo, ..., Roz} —

{RIO, ce ,ng} — {Rgo, ceey R23} — {Rgo, R R33} — 128-bit BD circuit — {R40, ceey R43} —

{R50, cee ,Rsa} - {Rﬁm cee 7R63} —
For CF, the right 256-bit Mg of a 512-bit message block is input at the 7th and 8th cycle. For
MF (MFF), the chaining value stored in four 32-bit registers {C1y,...,C13} and {Coo,...,Cos}
is loaded via {Csp, . .., Cs3} at the 7th and 8th cycle as the input of MS s (MSL 9). Intermediate
values of MSg; are stored in registers by repeating the same order as MSy, ;.

On the other hand, the chaining value stored in {Cso,...,Cs3} and {Cao,...,Cas} is loaded

via {Csp,...,Cs3} at the 3rd and 4th cycle as the input of CPp,;, and then intermediate values
of CPy ; are stored in registers by repeating the following order:

{RQQ, e ,Rgg} — {R?,()7 ceey R33} — 128-bit BD circuit — {}{407 [N 7R43} — {R50, ey R53} —
{Re0, -, Res} — -+~

The chaining value stored in {Ciq,...,C13} and {Cyo,...,Cos} is loaded via {Cs,...,Cs3} at
the 5th and 6th cycle as the input of CPg;, and then intermediate values of CPp; are stored in
registers by repeating the same order as CPp, ;.

115

5.2.3 Evaluation Results

We show our evaluation results on hardware performance of AURORA-256 and AURORA-512 at
the present. For both AURORA-256 and AURORA-512, Type-H1, Type-H2, Type-H3 and Type-
H4 implementations with S-boxes based on inversion over GF((2%)?) are evaluated. In addition,
Type-H1 implementation with table-lookup S-boxes is also evaluated in order to achieve higher
throughput. Control signals for all selectors and constant values are generated in a controller
module which is included in each implementation.

The environment of our hardware design and evaluation is as follows.

Language Verilog-HDL
Design library ~ 0.13 pm CMOS ASIC library
Simulator VCS version 2006.06

Logic synthesis Design Compiler version 2007.03-SP3

One gate is equivalent to a 2-way NAND and speed is evaluated under the worst-case condi-
tions. Table B.14] represents the evaluation results. For each implementation of AURORA-256
and AURORA-512, two types of circuits are synthesized by specifying either area or speed opti-
mization. In the addition, we investigate the condition to maximize “Efficiency” that indicates
“Throughput” per area, which we call efficiency optimization. For AURORA-256 implementations,
“Throughput” is defined as follows:

Frequency [MHz] x Block Size (512 [bits])

Throughput [Mbps] = Cycles
Yy

On the other hand, for AURORA-512 implementations, “Throughput” is defined as follows:

Frequency [MHz] x Block Size (512 [bits])
Cycles

Throughput [Mbps] = X %,
because the mixing functions MF are inserted after every 8 compression functions CFgy, CF1,
o, CF5.

We also show, for comparison, the best known results of hardware performance of SHA-2
using a 0.13 pgm CMOS ASIC library by Satoh et al. [49]. The performance of AURORA cannot
be directly compared with them because different design libraries and different logic synthesis
tools were used. However, AURORA enables a variety of implementations from small-area to
high-throughput implementations; for AURORA-256, the smallest area (11,111 gates) is about
3% smaller with about 2.06 times higher efficiency (196.1 Kbps/gate) than that of SHA-224/256
(11,184 gates, 95.4 Kbps/gate), and the highest throughput (10,352 Mbps) is about 4.37 times
higher than that of SHA-224/256 (2,370 Mbps). For AURORA-512, the smallest area (14,613
gates) is about 37% smaller with about 30% higher efficiency (81.5 Kbps/gate) than that of SHA-
384/512 (23,146 gates, 62.8 Kbps/gate), and the highest throughput (9,132 Mbps) is about 3.14
times higher than that of SHA-224/256 (2,909 Mbps).

The highest efficiency of AURORA-256 (344.3 Kbps/gate) and AURORA-512 (194.9 Kbps/gate)
is about 2.23 times and 1.83 times higher than that of SHA-224/256 (154.6 Kbps/gate) and SHA-
384/512 (106.6 Kbps/gate), respectively, which indicates that AURORA is highly efficient hash
function family in hardware implementation.

116

Table 5.14: Results on Hardware Performance of AURORA-256 and AURORA-512.

Data Path Area | Frequency | Throughput | Efficiency

Architecture | Cycles S-box [gates] [MHz| [Mbps] [Kbps/gate]

AURORA-256 | Type-H1 18 [GF((2%)%) | 18,883 194.3 5,528 292.7
(0.13pm) 24,645 287.9 8,189 332.3
20,825 252.1 7,171 344.3

Table 27,854 213.2 6,065 217.7

35,016 363.9 10,352 295.6

32,997 345.9 9,838 298.2

Type-T2 36 | GF((2%)?) | 13,446 189.2 2,691 200.1

17,797 293.9 4,180 234.9

15,523 266.2 3,786 243.9

Type-13 36 | GF((2H)?) | 15,173 260.7 3,707 244.3

23,490 464.3 6,603 281.1

17,064 360.9 5,132 300.8

Type-T4 72 | GF((2H?) | 11,111 306.4 2,179 196.1

14,255 475.3 3,380 237.1

12,257 423.6 3,012 245.7

SHA-224/256 - 72 - 11,484 154.1 1,096 95.4
(0.13pm) [49)] 15,329 333.3 2,370 154.6
AURORA-512 | Type-H1 18 [GF((2%)%) [29,235 195.5 4,943 169.1
(0.13m) 40,219 285.4 7,217 179.4
31,746 244.7 6,187 194.9

Table 42,691 213.2 5,391 126.3

56,748 361.2 9,132 160.9

48,337 317.1 8,018 165.9

Type-T2 36 | GF((2)?) | 20,685 185.7 2,347 1135

28,358 286.3 3,619 127.6

22,731 244.7 3,093 136.1

Type-H3 56 | GF((2%)%) | 19,335 236.4 1,921 99.4

25,915 455.8 3,705 143.0

22,129 406.2 3,302 149.2

Type-H4 112 | GF((2H)?) | 14,613 293.1 1,191 81.5

16,969 504.2 2,049 120.7

16,670 496.7 2,018 121.1

SHA-384/512 - 88 - 23,146 125.0 1,455 62.8
(0.13pm) [49)] 27,297 250.0 2,909 106.6

For each implementation, the 1st row and the 2nd row show the results of the synthesized circuits
by area and speed optimization, respectively. The 3rd row also shows the results by efficiency
optimization for each implementation of AURORA-256 and AURORA-512.

117

118

Chapter 6

Applications of AURORA

6.1 Digital Signature

The digital signature standard (DSS) is specified in FIPS 186-2 [20]. In this standard, the hash
function SHA-1 specified in FIPS 180-1 (FIPS 180-3) is used in many occasions including the
generation of a message digest, the generation and the verification of parameters [19]. Due to
that the same hash size of SHA-1 is not supported by the AURORA hash algorithm family, it
is not possible to directly replace SHA-1 as a member of the AURORA family. However, if we
want to use a 160-bit output hash function, an appropriate truncation function may be applied to
AURORA hash function.

Moreover, there is a draft of the digital signature standard which is available as FIPS 186-3 [21].
In the draft, usages of SHA-2 algorithm family are specified. Thus, our AURORA algorithm can
be used as a replacement of corresponding SHA-2 algorithm which has the same hash size.

6.2 Keyed-Hash Message Authentication Code (HMAC)

In FIPS 198, the keyed hash message authentication code (HMAC) is standardized [23]. From
the definition of HMAC that any hash function can be applicable in principle, any algorithm of
AURORA family can be used as a base hash function for it. The output length L and the block
length B should be selected according to the specification of a considered hash function. Table
summarizes the actual values of L and B for each AURORA hash algorithm.

Table 6.1: The values of L and B.

Algorithm L B
AURORA-224 224 512
AURORA-256 256 512
AURORA-384 384 512
AURORA-512 512 512

AURORA-224M 224 512
AURORA-256M 256 512

119

6.3 Key Establishment Schemes Using Discrete Logarithm
Cryptography

The pair-wise key establishment schemes using discrete logarithm cryptography is described in
NIST SP800-56A [40]. In this document, minimum bit length of the hash function output is
assigned according to the selected parameter set on of FA, FB, FC, EA, EB, EC, ED, and EE.
Among them FB and EB require 224-bit output, FC and EC require 256-bit output. ED and EE
require 384-bit and 512-bit output, respectively. Accordingly, AURORA algorithms can be used
when one of the above domain parameters is selected. To be concrete, AURORA algorithm is used
as a hash function H in the concatenation key derivation function or the ASN.1 key derivation
function use a hash function in the document.

6.4 Random Number Generation Using Deterministic Ran-
dom Bit Generators

NIST SP800-90 specifies the recommendation for random number generation using determinis-
tic random generators (DRBG) [4I]. There are three DRBGs that use a secure hash function.
HMAC_DRBG uses the aforementioned HMAC scheme, thus AURORA algorithms can be ap-
plied by following the rule of the HMAC. Hash_ DRBG and Dual EC_DRBG employ a derivation
function using a hash function called Hash_df which call one of SHA-1 and SHA-2 algorithms.
Accordingly, one of AURORA algorithms can be used as a replacement for one of SHA-2 algo-
rithm called in Hash_df. It may be helpful to note that the seed length for Hash DRBG is 440-bit
when using AURORA-384 and AURORA-512 , on the other hand the seed length is 888-bit when
using SHA-384 and SHA-512. This is due to the block length for these AURORA algorithms are
512-bit, not 1024-bit. However this is consistent with the specification because it is required that
minimum entropy for seed and reseed are 192-bit and 256-bit for AURORA-384 and AURORA-
512, respectively. The specified seed length 440-bit apparently exceeds these minimum required
entropy.

120

Chapter 7

Advantages and Limitations

The hash function family AURORA has the following advantages and limitations. The advantages
are the realization of the design goal of AURORA family. We believe that all advantages achieved
in one hash function family draw a line between AURORA and other hash functions.

e High and Well-balanced Performance on Variety of Platforms

To meet the requirements of SHA-3 announced by NIST [38], we defined one of our design
goal of a new hash function family that the new hash functions must achieve good perfor-
mance on a variety of platforms including software for desktop PCs, servers, micro processors
and hardware implementations for ASIC and FPGAs. This design goal was also demanded
in the AES competition, and finally selected algorithm Rijndael actually satisfied the design
goal [I4]. The consequences of the design goal can be found in the selected components such
as S-box, matrices, byte oriented architecture, reuse of common structure. As a result, we
confirmed that AURORA'’s performance on a variety of platforms is competitive with other
known hash functions. On the other hand there is limitation due to such the design goal of
AURORA. Tt is possible to design a hash function which is very fast when it is implemented
only on a specific platform by scarifying the well-balanced performance on multi platform
implementations. But as explained above, we did not aim for the excellent performance only
on specific platform.

e Sufficient Security Arguments
Moreover, as for the security evaluation, we tried to adopt well-studied components to con-
struct AURORA, otherwise newly developed components are employed if reasonable secu-
rity arguments are provided for the components. For the AURORA structure, the strength
against differential cryptanalysis and impossible differential cryptanalysis can be evaluated
in a relatively reasonable way. For the new domain extension Double Mix Merkle-Damgaad
(DMMD) transform for the longer output, the expected security proof has been provided.

e Multicollision Resistance with Low Additional Cost
Furthermore, we adopted the DMMD transform to offer multicollision resistance by com-
bining parallel compression functions and mixing functions together. As a result, we can
provide AURORA-256M, which is an almost identical hash function with AURORA-512,
and additional implementation cost from AURORA-256 is limited. This fact emphases that
the AURORA hash function family has good consistency among hash functions in the family.

121

Acknowledgments

We would like to express our deep appreciation to Asami Mizuno, Satoshi Higano, and Eiji Fujii
for their kind support for this hash design project. Thanks also to Kazuya Kamio, Tadaoki
Yamamoto and Hiroyuki Abe for evaluating performance of AURORA algorithms. We would also
like to thank Koichi Sakumoto for his support for analysis of AURORA.

122

Bibliography

[1]

2]

Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4 and full-round MD5. In
Workshop Records of Selected Areas in Cryptography — SAC 2008, pages 82-98, 2008.

Jean-Philippe Aumasson, Willi Meier, and Florian Mendel. Preimage attacks on 3-pass
HAVAL and step-reduced MD5. In Workshop Records of Selected Areas in Cryptography
- SAC 2008, pages 99-114, 2008.

Paulo. S. L. M. Barreto and Vincent. Rijmen. The Whirlpool hashing function. Primitive
submitted to NESSIE, September 2000. Available at http://www.cryptonessie.org/.

Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In
C. Dwork, editor, Proceedings of CRYPTO 06, number 4117 in Lecture Notes in Computer
Science, pages 602-619. Springer, 2006.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authen-
tication. In Neal Koblitz, editor, Proceedings of CRYPTO 96, number 1109 in Lecture Notes
in Computer Science, pages 1-15. Springer, 1996.

Mihir Bellare and Thomas Ristenpart. Multi-property-preserving hash domain extension and
the EMD transform. In JACR ePrint archive 2006/399, 2006. A preliminary version appears
in Xuejia Lai and Kefei Chen, editors, Proceedings of ASTACRYPT 2006, number 4284 in
Lecture Notes in Computer Science, pages 299-314. Springer, 2006.

Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack reduced to 31 rounds
using impossible differentials. In J. Stern, editor, Proceedings of Eurocrypt’99, number 1592
in Lecture Notes in Computer Science, pages 12-23. Springer, 1999.

Olivier Billet, Matthew J. B. Robshaw, Yannick Seurin, and Yiqun Lisa Yin. Looking back
at a new hash function. In Yi Mu, Willy Susilo, and Jennifer Seberry, editors, Proceedings of
Information Security and Privacy — ACISP 2008, number 5107 in Lecture Notes in Computer
Science, pages 239-253. Springer, 2008.

Alex Biryukov and David Wagner. Slide attack. In L. R. Knudsen, editor, Proceedings of Fast
Software Encryption — FSE’99, number 1636 in Lecture Notes in Computer Science, pages
245-259. Springer, 1999.

Christophe De Canniere and Christian Rechberger. Preimages for reduced SHA-0 and SHA-1.
In David Wagner, editor, Proceedings of CRYPTO 2008, number 5157 in Lecture Notes in
Computer Science, pages 179-202. Springer, 2008.

Florent Chabaud and Antoine Joux. Differential collisions in SHA-0. In Hugo Krawczyk,
editor, Proceedings of CRYPTO ’98, number 1462 in Lecture Notes in Computer Science,
pages 56—71. Springer, 1998.

Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-
Damgard revisited: How to construct a hash function. In Victor Shoup, editor, Proceedings of
CRYPTO 2005, number 3621 in Lecture Notes in Computer Science, pages 430-448. Springer,
2005.

123

[13]
[14]

[15]

[28]

[29]

cycle.h. available at http://www.fftw.org/cycle.h.

Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES — The Advanced Encryption
Standard (Information Security and Cryptography). Springer, 2002.

Ivan Damgard. A design principle for hash functions. In Gilles Brassard, editor, Proceedings
of CRYPTO ’89, number 435 in Lecture Notes in Computer Science, pages 416—427. Springer,
1989.

Debapratim De, Abishek Kumarasubramanian, and Ramarathnam Venkatesan. Inversion
attacks on secure hash functions using SAT solvers. In Joao Marques-Silva and Karem A.
Sakallah, editors, Proceedings of Theory and Applications of Satisfiability Testing — SAT 2007,
number 4501 in Lecture Notes in Computer Science, pages 377-382. Springer, 2007.

Richard Drews Dean. Formal aspects of mobile code security. Ph.D Dissertation, Princeton
University, January 1999.

FIPS PUB 140-2. Security requirements for cryptographic modules. Federal Information
Processing Standard (FIPS), May 25 2001.

FIPS PUB 180-3. Secure Hash Standard (SHS). Federal Information Processing Standard,
October 2008.

FIPS PUB 186-2. Digital Signature Standard (DSS). Federal Information Processing Stan-
dard, January 2000.

FIPS PUB 186-3 Draft. Digital Signature Standard (DSS). Federal Information Processing
Standard, March 2006.

FIPS PUB 197. Advanced Encryption Standard. Federal Information Processing Standard
(FIPS), November 26 2001.

FIPS PUB 198. The keyed-hash message authentication code (HMAC). Federal Information
Processing Standard (FIPS), March 2006.

Michael Gorski, Stefan Lucks, and Thomas Peyrin. Slide attacks on a class of hash functions.
In Proceedings of ASIACRYPT 2008, Lecture Notes in Computer Science. Springer, to be
published.

Shoichi Hirose. Some plausible constructions of double-block-length hash functions. In
Matthew J. B. Robshaw, editor, Fast Software Encryption, 13th International Workshop,
FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers, volume 4047 of Lec-
ture Notes in Computer Science, pages 210-225. Springer, 2006.

Antoine Joux. Multicollisions in iterated hash functions. Application to cascaded construc-
tions. In Matthew K. Franklin, editor, Proceedings of CRYPTO 2004, number 3152 in Lecture
Notes in Computer Science, pages 306-316. Springer, 2004.

John Kelsey and Tadayoshi Kohno. Herding hash functions and the nostradamus attack. In
Serge Vaudenay, editor, Proceedings of EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science, pages 183-200. Springer, 2006.

John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much less
than 2" work. In Ronald Cramer, editor, Proceedings EUROCRYPT 2005, number 3494 in
Lecture Notes in Computer Science, pages 474—490. Springer, 2005.

Mario Lamberger, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Second
preimages for SMASH. In Masayuki Abe, editor, Proceedings of the Cryptographers’ Track
at the RSA Conference 2007 — CT-RSA 2007, volume 4377 of Lecture Notes in Computer
Science, pages 101-111. Springer, 2007.

124

http://www.fftw.org/cycle.h

[30]

[31]

Gaétan Leurent. MD4 is not one-way. In Kaisa Nyberg, editor, Proceedings of Fast Software
Encryption — FSE 2008, volume 5086 of Lecture Notes in Computer Science, pages 412-428.
Springer, 2008.

Stefan Lucks. A failure-friendly design principle for hash functions. In Bimal K. Roy, editor,
Proceedings of ASIACRYPT 2005, volume 3788 of Lecture Notes in Computer Science, pages
474-494. Springer, 2005.

Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In Moni Naor,
editor, Proceedings Theory of Cryptography — TCC 2004, volume 2951 of Lecture Notes in
Computer Science, pages 21-39. Springer, 2004.

Florian Mendel, Norbert Pramstaller, and Christian Rechberger. A (second) preimage attack
on the gost hash function. In Kaisa Nyberg, editor, Proceedings of FSE 2008, volume 5086
of Lecture Notes in Computer Science, pages 224-234. Springer, 2008.

Alfred J. Menezes, Paul C. van QOorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor, Proceedings of
CRYPTO ’89, number 435 in Lecture Notes in Computer Science, pages 428-446. Springer,
1989.

Shoji Miyaguchi, Kazuo Ohta, and Masahiko Iwata. Confirmation that some hash functions
are not collision free. In Ivan Damgard, editor, Proceedings of EUROCRYPT ’90, volume 473
of Lecture Notes in Computer Science, pages 326—343. Springer, 1990.

Mridul Nandi. Towards optimal double-length hash functions. In Subhamoy Maitra,
C. E. Veni Madhavan, and Ramarathnam Venkatesan, editors, Proceedings of INDOCRYPT
2005, number 3797 in Lecture Notes in Computer Science, pages 77-89. Springer, 2005.

National Institute of Standards and Technology. Announcement request for candi-
date algorithm nominations for a new cryptographic hash algorithm (SHA-3) family.
Docket No.:070911510-7512-01, 2007. http://csrc.nist.gov/groups/ST/hash/sha-3/
index.html.

NIST Special Publication 800-106. Draft randomized hashing digital signatures (2nd draft).
National Institute of Standards and Technology, August 2008.

NIST Special Publication 800-56A. Recommendation for pair-wise key establishment schemes
using discrete logarithm cryptography (revised). National Institute of Standards and Tech-
nology, March 2007.

NIST Special Publication 800-90. Recommendation for random number generation using de-
terministic random bit generators (revised). National Institute of Standards and Technology,
March 2007.

Brian Gladman’s Home Page. http://fp.gladman.plus.com/cryptography_technology/
sha/sha2-07-01-07.zip.

The MiniSat Page. http://minisat.se/.

Thomas Peyrin. Cryptanalysis of Grindahl. In Kaoru Kurosawa, editor, Proceedings of ASI-
ACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 551-567. Springer,
2007.

Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block ciphers:
A synthetic approach. In Douglas R. Stinson, editor, Proceedings of CRYPTO ’93, volume
773 of Lecture Notes in Computer Science, pages 368-378. Springer, 1993.

125

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://fp.gladman.plus.com/cryptography_technology/sha/sha2-07-01-07.zip
http://fp.gladman.plus.com/cryptography_technology/sha/sha2-07-01-07.zip
http://minisat.se/

[46]

Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R. Rao, and Pankaj
Rohatgi. Efficient Rijndael encryption implementation with composite field arithmetic. In C.
Kog, D. Naccache, and C. Paar, editors, Proceedings of Cryptographic Hardware and Embedded
Systems — CHES 2001, number 2162 in Lecture Notes in Computer Science, pages 171-184.
Springer, 2001.

Yu Sasaki and Kazumaro Aoki. Preimage attacks on MD, HAVAL, SHA,
and others. CRYPTO2008 rump session, 2008. http://rump2008.cr.yp.to/
efa237568£229268803b82ed02e217ca. pdf.

Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro. Password recovery on challenge
and response: Impossible differential attack on hash function. In Serge Vaudenay, editor,
Proceedings of AFRICACRYPT 2008, number 5023 in Lecture Notes in Computer Science,
pages 290-307. Springer, 2008.

Akashi Satoh and Tadanobu Inoue. ASIC-hardware-focused comparison for hash functions
MD5, RIPEMD-160, and SHS. Integration, the VLSI Journal, 40(1):3-10, 2007.

Taizo Shirai and Kiyomichi Araki. On generalized Feistel structures using the diffusion switch-
ing mechanism. IEICE. Trans. Fundamentals, E91A(8):2120-2129, 2008.

Taizo Shirai and Bart Preneel. On Feistel ciphers using optimal diffusion mappings across
multiple rounds. In Pil Joong Lee, editor, Proceedings of Asiacrypt’04, number 3329 in Lecture
Notes in Computer Science, pages 1-15. Springer, 2004.

Taizo Shirai and Kyoji Shibutani. Improving immunity of Feistel ciphers against differential
cryptanalysis by using multiple MDS matrices. In Bimal Roy and Willi Meier, editors, Pro-
ceedings of Fast Software Encryption — FSE’04, number 3017 in Lecture Notes in Computer
Science, pages 260-278. Springer, 2004.

Taizo Shirai and Kyoji Shibutani. On Feistel structures using a diffusion switching mechanism.
In M.J.B. Robshaw, editor, Proceedings of Fast Software Encryption — FSE’06, number 4047
in Lecture Notes in Computer Science, pages 41-56. Springer, 2006.

Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The 128-bit
blockcipher CLEFIA. In A. Biryukov, editor, Proceedings of Fast Software Encryption —
FSE’07, number 4593 in Lecture Notes in Computer Science, pages 181-195. Springer, 2007.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In
Victor Shoup, editor, Proceedings of CRYPTO’05, number 3621 in Lecture Notes in Computer
Science, pages 17-36. Springer, 2005.

Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Ronald
Cramer, editor, Proceedings of EUROCRYPT’05, number 3494 in Lecture Notes in Computer
Science, pages 19-35. Springer, 2005.

Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search attack on SHA-
0. In Victor Shoup, editor, Proceedings of CRYPTQO’05, number 3621 in Lecture Notes in
Computer Science, pages 1-16. Springer, 2005.

Hongbo Yu, Gaoli Wang, Guoyan Zhang, and Xiaoyun Wang. The second-preimage attack
on MD4. In Yvo Desmedt, Huaxiong Wang, Yi Mu, and Yongqing Li, editors, Proceedings of
Cryptology and Network Security — CANS 2005, number 3810 in Lecture Notes in Computer
Science, pages 1-12. Springer, 2005.

126

http://rump2008.cr.yp.to/efa237568f229268803b82ed02e217ca.pdf
http://rump2008.cr.yp.to/efa237568f229268803b82ed02e217ca.pdf

	Introduction
	Specification of AURORA
	Notation
	Building Blocks
	Message Scheduling Module: MSM
	Chaining Value Processing Module: CPM
	Byte Diffusion Function: BD
	F-Functions: F0, F1, F2, and F3
	Data Rotating Function: DR

	Specification of AURORA-256
	Overall Structure
	Compression Function: CF
	Finalization Function: FF
	Alternate Method for Computing CF and FF

	Specification of AURORA-224
	Specification of AURORA-512
	Overall Structure
	Compression Functions: CF0,CF1,…,CF7
	Mixing Function: MF
	Mixing Function for Finalization: MFF

	Specification of AURORA-384
	Specification of AURORA-256M (optional)
	Overall Structure
	Compression Functions: CFM0,CFM1,…,CFM7
	Mixing Function: MFM
	Mixing Function for Finalization: MFFM

	Specification of AURORA-224M (optional)
	Constant Values
	Constant Values for AURORA-224/256
	Constant Values for AURORA-384/512
	Constant Values for AURORA-224M/256M
	List of Constant Values

	Pseudocodes
	AURORA Examples

	Design Rationale of AURORA
	AURORA-256
	Domain Extension
	Compression Function

	AURORA-512
	Domain Extension -- Double-Mix Merkle-Damgård transform
	Compression Function

	AURORA-256M
	Domain Extension
	Compression Function

	Components and Constants
	AURORA Structure
	F-function
	Data Rotating Function
	Truncation Functions
	Constant Generation
	Initial Value

	Security of AURORA
	Expected Strength
	Security Argument
	Security of HMAC using AURORA
	Security Proofs of DMMD Transform
	Security Properties of AURORA structure

	Algorithm Analysis
	Collision Attacks
	Preimage Attacks
	Second Preimage Attacks
	Length-Extension Attack
	Multicollision Attack
	Slide Attacks

	Tunable Security Parameters
	Number of Rounds
	Variable Hash Size

	Efficient Implementation of AURORA
	Software Implementation
	Implementation Types
	Evaluation Results

	Hardware Implementation
	Optimization Techniques of F-functions
	Data Path Architectures
	Evaluation Results

	Applications of AURORA
	Digital Signature
	Keyed-Hash Message Authentication Code (HMAC)
	Key Establishment Schemes Using Discrete Logarithm Cryptography
	Random Number Generation Using Deterministic Random Bit Generators

	Advantages and Limitations

