


5.2   Linear Cryptanalysis

Inspired by Biham and Shamir's work on differential cryptanalysis, Matsui invented 
linear cryptanalysis [51]. Like differential cryptanalysis, linear cryptanalysis is a 
probabilistic chosen-key attack that requires a deep understanding of the target cipher's 
inner workings. Linear cryptanalysis also uses the concept analyzing the S-box for high-
likelihood characteristics (or biases) and then following their trail through the cipher. 
And just like in differential cryptanalysis, a cipher defends itself against linear 
cryptanalysis by using a strong S-box and proving that a single input difference passes 
through enough S-boxes to foil a chosen plaintext attack [37]. The main difference 
between these two types of cryptanalysis is that linear cryptanalysis finds its high-
likelihood characteristics in a very different manner.

Linear cryptanalysis seeks to build linear approximations to any of the non-linear 
behavior in the cipher. Nearly always, this means building a linear approximation of the 
S-box. But instead of analyzing output differences that are caused by particular input 
differences, the attacker seeks to bypass the S-box's non-linearity altogether by finding an 
affine (or linear) transformation that approximates the S-box's behavior. (An affine 
transformation is a kind of Boolean function that multiplies a bit-string by a constant, and 
returns a single bit.) For an N-bit S-box, the attacker tries all possible pairings of N-bit 
constants, aff1 and aff2, and adds up the number of times when   input · aff1 = sbox
[input] · aff2   holds true.

Now, in a perfect S-box, any affine transformation would hold true exactly 50% 
of the time, meaning that no information is leaked. Real-world S-boxes, though, contain 
slight biases. Any bias is exploitable. If a certain affine transformation holds true even 
51% of the time, (or say 48.5% of the time) that is sufficient to launch a linear 
cryptanalytic attack. The smallest possible bias for a NxN algebraic S-box such as AES's 
is 50% ± 12.5%. For a random S-box, the smallest possible bias is 50% ± 21.9%.  
Clearly, then, linear cryptanalysis is a concern for virtually any cryptosystem.

With its Max LAT bias of 28, which is the best possible for a random S-box, the 
Abacus S-box's most biased entry occurs with odds of 2-2.193.  (28/(256/2) = 2-2.193 ) The 
number of active S-boxes required in order for the internal state to be resistant to linear 
cryptanalysis is 1056 / 2.193 = 481.6.  Similarly, it takes 512 / 2.193 = 233.5  active S-
boxes for a 512-bit hash output to be resistant to linear cryptanalysis. By showing that a 
single input difference has at least 482 active S-boxes, we can say that linear 
cryptanalysis is ineffective against Abacus. 

As shown in section 5.1, Abacus has 10 active S-boxes for any two-round 
differential trail. Therefore, after 49 two-round pairs (or 98 blank rounds), Abacus is 
resistant to linear cryptanalysis. (482 / 10 = 48.2.) The recommended value of 135 blank 
rounds, which produces about 670 active S-boxes, is more than adequate to make Abacus 
immune to linear cryptanalysis.

(Again, please note that increasing the  NUM_ABSORB_CLOCKS  will increase the number 
of active S-boxes, thereby making Abacus resistant to linear cryptanalysis in fewer blank 

40



rounds.)

5.3   Algebraic Attacks

Algebraic attacks, first introduced in 2002 by Courtois and Pieprzyk [22], are a 
contentious topic. Many cryptographers ridicule these attacks, or, at the very least, 
seriously doubt that they will ever be practical. But in 2008, Courtois, Bard, and Wagner 
used an algebraic attack to break the KeeLoq cipher with just 228 plaintexts [20]. KeeLoq 
is a proprietary block cipher widely-used in the automotive industry. It's what allows a 
wireless key to unlock car doors and disable alarms. Back in 1995, KeeLoq's designer 
apparently sold it for $10 million. Now it's not worth 10 dollars. Not only is the attack of 
Courtois, Bard, and Wagner fast and practical, it would enable the attacker to literally 
drive off with your car. The days of comfortably ignoring algebraic attacks are over. It 
seems likely that in the next 10 years, algebraic attacks will become the predominant 
attack.

To launch an algebraic attack, the attacker builds a (somewhat) small set of 
simple equations that completely defines the cryptosystem. Generally, there are a few 
thousand equations and a few thousand variables. These equations are algebraic, and in 
particular, quadratic multivariate polynomials. At the core of any algebraic attack is the 
set of equations that defines the S-box by mapping its input bits to its ouput bits. Simple, 
algebraic S-boxes are much easier to define, using far fewer equations and terms. Once 
the S-box is modeled, it's mechanical to define the whole cryptosystem: just combine the 
equations that define the S-box into a system of sparse quadratic equations. From there, 
the attacker solves the equations by using a few known plaintexts. Now it's possible for 
him to express all ciphertext bits as a function of plaintext bits and encrypt or decrypt as 
he pleases.

Unlike linear and differential cryptanalysis, which typically require almost absurd 
amounts of chosen plaintexts, an algebraic attack only requires a few chosen plaintexts. 
Even more impressively, the complexity of an algebraic attack grows "nearly 
polynomially" [23] with the number of rounds instead of exponentially.

Because the S-box is usually the only non-linear part of any cipher, the number of 
equations required to model it profoundly affects the complexity of an algebraic attack. 
S-boxes like AES's [24, 30], which are based on the simple inverse function over a Galois
field, and Serpent's [1], which are a tiny 4-bits, are easy to define using these sparse 
quadratic equations. Random S-boxes, on the other hand, are notoriously hard to define 
using quadratic equations [23]. In fact, the amount of work required to define the 
equations for a random S-box is double-exponential in relation to the S-box's size. By 
contrast, defining the equations for the AES S-box only requires an amount of work that 
is exponential in relation to the S-box size. 

Abacus is resistant to algebraic attacks because it has an 8-bit random S-box.
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5.4   Higher Order Differentials

Introduced by Knudsen in [46], higher order differentials are useful for attacking ciphers 
with S-boxes of low nonlinear order. A cipher that used weak nonlinear transforms (i.e. 
alternating XOR with addition) instead of an S-box would also be vulnerable to higher 
order differentials. The attack proceeds by representing the entire cipher as a system of 
Boolean polynomials of low degree. Then, the attack differentiates the Boolean 
polynomials using higher and higher order differentials. Eventually, the Boolean 
polynomial of the cipher breaks down and becomes zero. This is similar to recursively 
differentiating a polynomial in calculus: after (n+1) differentiations, an n-th order 
polynomial becomes zero. 

In practice, this attack is only useful if the nonlinear order of the overall block 
cipher is lower than the claimed security. For instance, if a block cipher claims to have 
128 bits of security but can be represented as a Boolean polynomial of degree 97, then 
that block cipher is weaker than the expected (or claimed) 128 bits – and therefore 
susceptible to a higher order differential attack.

The Abacus S-box has a nonlinear order of 7, which is maximal. Every time a 
byte passes through the S-box, it increases the overall hash function's nonlinear order. 
After a given byte has passed through the S-box once, the degree of its Boolean 
polynomial is 7. After two passes, it's 49. After three passes, it's 343. And after four 
passes, the degree is 2401. Because Abacus's internal state is 1056 bits, any Boolean 
polynomial of degree 1056 or higher would be adequate to make Abacus immune to 
higher order differential attacks. This only requires that the same byte passes through 
four S-boxes. As show in section 5.1, a single input byte difference passes through 10 
active S-boxes after 2 rounds. Some of these lookups are done in parallel, but the number 
of serial S-box lookups for a single byte difference is exactly 4 (two passes per round × 2 
rounds). Hence, higher order differential attacks don't affect Abacus after 2 consecutive 
rounds. 

5.5   Interpolation Attacks

As described in [38], the interpolation attack is similar (on a high level) to both algebraic 
attacks and higher order differential attacks. Interpolation attacks are particularly useful 
for attacking ciphers that use an S-box based on algebraic or rational functions. Such 
functions include quadratic equations and inverses over a Galois field.

In a nutshell, the interpolation attack represents a cryptosystem's input and output 
as polynomial or rational expressions of one another. At first, those expressions have a 
lot of unknown coefficients. The attack collects several known input and output pairs like 
in algebra: to solve for N unknowns, find N or more data points. Then, by using a 
standard Lagrange interpolation, the attack gradually solves for each unknown by using 
those input and output pairs. The most alarming thing about the interpolation attack 
attack is that it doesn't require very many known input / ouput pairs. All the attacker 
needs is N such pairs. Because once he does have N pairs, the expressions that map the 
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input to the output are solved for, and the attacker will be able to encrypt or decrypt at 
will. Bizarrely, this attack does not recover the key: it works around it.

The best defense against an interpolation attack is to make the number of 
unknown coefficients, N, as large as possible. At a certain point, it is infeasible for the 
attacker to find more than N pairs – for instance if N is several billion. When N has 
surpassed that value, interpolation attacks no longer work.

With its random, non-algebraic S-box, Abacus is not susceptible to interpolation 
attacks.

5.6   Slide Attacks 

Wagner and Biryukov's slide attacks [13, 14] exploit highly repetitive and cyclical round 
functions. The attack is particularly devastating against ciphers that use the same subkey 
in every round. Even if a small set of subkeys is used in a cyclical way, the slide attack 
can break the cipher faster than brute force. In essence, a slide attack will attack a 
cipher's key schedule. The lesson here is to use separate keys in each round, or at the very 
least, use the keys in a complex or irregular order.

Because block ciphers tend to use the same permutation function in each round 
[64], the only difference from round to round is the subkey. But if the cipher had other 
variables (not necessarily secret) that changed several times, each change would help to 
thwart a slide attack. For instance, the XTEA cipher [56] was designed to be resistant to 
slide attacks in two ways:  1) it uses a non-secret counter that increments after each 
round,  and 2) the key schedule is irregular due to pseudo-randomly choosing 1 of 4 
subkeys for each round.

In order for a block cipher to be vulnerable to a slide attack, it usually only has 2 
to 8 subkeys that are used in a simple, repetitive order such as: k1, k2, k3, k4, k1, k2, k3, 
k4. The slide attack creates models of the cipher's round functions – one model per 
subkey. Through using a small number of models in a fixed order, a slide attack exploits 
a clever type of birthday attack to recover key information in less than expected time.

To adapt the slide attack to hash functions, treat the hash function's input message 
like a block cipher's subkeys. Now, identify any variables in the round function. In the 
case of Abacus, there are seven main variables: the counters  ctr1  through  ctr4  , and 
the positions of  rb,  rc, and  rd.  Between these four variables, Abacus can be in 245 
possible configurations. A slide attack would have to build separate round function 
models for each of those 245  configurations – a daunting task that would render the slide 
attack useless. Furthermore, the attacker never has total control over the subkeys, because 
for every byte he feeds into the absorb function, several bytes from the rolling arrays are 
also combined with it. Between the enormous number of models required, and the hard-
to-control subkey schedule, Abacus is resistant to slide attacks.
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5.7   Related Key Attacks

Of all the block cipher attacks discussed so far, related key attacks are perhaps the most 
relevant to a hash function. With that in mind, Abacus was designed to be extremely 
resistant to related key attacks. See section 4.6 for a discussion of Abacus's resistance to 
related key attacks (in this context, the same thing as related message attacks).

6   Security: Side-Channel Attacks

The above mentioned attacks are all rather theoretical, in the sense that they apply 
to the algorithm in an abstract way, and can be done asynchronously and remotely. 
They're offline attacks, ivory tower attacks.

But there's a grittier, more streetwise kind of cryptanalysis called side-channel 
attacks [47, 48, 64]. Side-channel attacks exploit electrical, accoustical, and temporal 
side-effects of the cryptosystem as it operates in real-time. Arguably, such attacks are 
redundant (i.e. if the attacker is close enough to monitor your CPU's cacheing, then he 
can probably obtain your crypto key in other, faster ways), or even unfair (because 
algorithms are designed to be strong on paper, divorced from any physical 
implementation) [64]. Nonetheless, side-channel attacks are a reality and need to be taken 
seriously. The same algorithm, implemented in two different ways, can have vastly 
different security in the real world. (And as such, side-channel attacks are also called 
"implementation attacks".)

6.1   Timing Attacks

Certain computational operations take longer than others. Timing attacks, 
introduced in [47], monitor a piece of cryptographic software or hardware for variations 
in timing. By carefully analyzing those timing fluctuations, and through a modest 
understanding of how a given algorithm works, an attacker might be able to obtain crypto 
key data. For instance, a subroutine with lots of if-statements that act upon the 
intermediate data would be quite vulnerable. This is because the exact values of the data 
would cause different if-blocks to be entered or not entered, and the resultant timing 
fluctuations would correlate with the data that was inputted into the subroutine. 

Constant-time operations (such as XOR, and in some systems, ADD), are not 
susceptible to timing attacks. Table lookups, especially on small tables, should also be 
safe. In general, any subroutine or module should always execute with the same number 
of clock instructions, and in the same amount of time. Operations that are notorious for 
non-constant time execution, and therefore vulnerable to timing attacks, are: conditional 
logic (ifs, while loops, for loops), branching (jumps, breaks, gotos), variable bitwise 
rotation, division, multiplication, and large memory access calls.

The core of Abacus's absorb and squeeze phases is a series of table lookups (the 
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S-boxes) and XORs (when bytes are fed into the S-box, and during the MDS step). 
Neither of these are susceptible to timing attacks. 

The counters, however, use modular addition, which is non-constant time on 
some systems. Thankfully a simple solution exists: just feed the counter into a lookup 
table that emulates modular addition over the desired field size. The lookup table would 
simply take a value c, and return (c+1) mod fSize, where fSize is the field size (i.e. 251).

At first glance, the rolling arrays might also seem problematic. The most efficient 
way to implement them is to use large arrays that increment their pointer after each clock. 
When several hundred (or several thousand) clocks have elapsed, the contents from the 
end of the array get copied to the beginning of the array, and the pointer is reset. This 
inherently requires conditional logic.

But because the position of the rolling arrays is neither secret nor data dependent, 
it doesn't really matter if the attacker can deduce those positions. Likewise for the 
counters: they are not secret or data dependent.

6.2   Power Analysis

As with timing attacks, different computational operations can consume different 
amounts of power (electricity). Attacks that exploit these fluctuations in power are called 
power analysis attacks [48]. All computational operations take electricity. Dig down deep 
enough, and it's always circuits and gates and electrical current. Since all software runs 
on microprocessors, and since a microprocessor is just a complex integrated circuit, any 
algorithm that's implemented in software ultimately consumes power. And in the case of 
special purpose hardware, the circuits and gates are even more apparent. By 
eavesdropping on power consumption, an attacker can deduce information about the 
algorithm's internal state. He simply looks for spikes and valleys (sometimes very small 
ones) in power usage that are directly caused by the secret input data and it goes through 
different execution paths.

Conveniently, nearly all of the same precautions that make an algorithm resistant 
to timing attacks will also help to make it resistant to power analysis attacks. Avoid 
conditional statements, branching, multiplication, division, large table lookups, and 
variable rotation. As discussed in section 6.1, Abacus uses XORs and table lookups, 
which are (somewhat) resistant to power analysis attacks. 

The question is, exactly how resistant? This seems to be an open question. 
Differential power analysis [48] is quite powerful, and can detect even minute 
fluctuations in power – perhaps even down to a single bit of a single XOR. In the end, the 
best ways of protecting against power analysis attacks seem to be unrelated to the 
algorithm. They are: adding noise to the signal to confuse the attacker; adding dummy 
registers that balance power consumption by making it near-constant; and most 
obviously, shielding the emitted power so that it is harder to monitor [69]. 
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6.3   A Final Word on Side-Channel Attacks

At this point, power analysis attacks and timing attacks are still rather new. It is 
not exactly clear how to design around them. By the classification system proposed to 
categorize AES candidates [73], Abacus is pretty resistant to side-channel attacks 
because it only uses XOR and table lookups for its sensitive operations. But according to 
some pessimistic research [19], virtually every algorithm is vulnerable to power analysis 
attacks. It could be a moot point: I'm of the mind that before side-channel attacks could 
compromise a real-world cryptosystem, rubber hose cryptanalysis (i.e. seduction and 
torture) would get the job done first. 

7   Security Claims

Abacus has a secret internal state. Even if two different messages did cause a collision on 
the internal state, the attacker would have no indication of this until the hash output was 
generated. But a collision on the hash output does not imply a collision on the internal 
state: it's quite possible that the internal state differs but randomly happened to generate 
the same output. Hence, the attacker can never be sure when he caused a collision on the 
internal state, or merely on the output.

Before any hash output is generated, Abacus has many blank rounds which ensure 
that at least one full avalanche occurs. Hence, two messages that differ by just 1 bit 
would result in internal states that differ by about 512 bits.

As discussed in section 3.1, Abacus's avalanche effect is virtually as strong going 
backward as it is going forward. So even if the internal state was somehow obtained, the 
attacker would have great difficulty recovering any useful preimage information from it. 
The strong backward avalanche ensures that any slight difference in his guesses would 
cause the internal state to immediately diverge and start towards an avalanche.

Abacus is resistant to both differential and linear cryptanalysis, as discussed in 
sections 5.1 and 5.2. Therefore, any chosen plaintext attack would not yield meaningful 
correlations in the internal state. And as argued in section 4.6, Abacus is resistant to 
related message attacks, thereby ensuring strong collision resistance and preimage 
resistance.

Finally, even if there were some kind of meaningful correlation in the internal 
state after performing the blank rounds, statistical tests show that Abacus's hash output is 
very nearly decorrelated after just 5 blank rounds, and fully decorrelated after 37. Hence, 
the hash output is capable of masking defects or correlations (however unlikely they may 
be) in the internal state.

With all of the above arguments in mind, I claim: For a hash output size of n bits, 
Abacus has preimage resistance of 2n,  second preimage resistance of 2n, and collision 
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resistance of 2n/2. (These claims do not apply if the attacker is using one-of-many attacks 
or precomputations, because an ideal hash function is not resistant to such attacks.) 
Furthermore, I claim that Abacus is resistant to fixed points, multicollisions, herding 
attacks, length extension attacks, local collisions, and related message (related key) 
attacks.

8   Performance

As the SHA-3 contest progresses, NIST would behoove itself to encourage experts to 
optimize the various candidate algorithms. Speaking for myself, I am not an expert in 
hardware design, smartcard programming, or software optimization. A talented engineer 
in any of those fields could almost certainly beat my performance estimates. For anyone 
who tries, I thank you in advance. 

Please note that in this document, the words "clock" and "clocks" refer to the 
operation of advancing Abacus's internal state via rotating the rolling arrays and 
incrementing the counters. I will use the terms "clock cycle" or "clock cycles" to refer to 
timing estimates for  hardware and software.

8.1    Parallelism

Many of the steps in Abacus can be done in parallel. In particular, the four XORs 
at the beginning of the absorb and squeeze phases can be done in parallel. Then, the first 
pass of S-boxes can be done in parallel. After those S-boxes, the XORing by the counters 
can be done in parallel. The MDS step itself can be done in parallel (meaning that the  
mds4()  function's four output bytes are calculated simultaneously instead of 
sequentially). The second pass of S-boxes is also parallelizable. And when clocking the 
internal state, the  rotate()  function can rotate all three rolling arrays in parallel, while 
simultaneously all four counters can be incremented in parallel. An implementation that 
did all of these operations in parallel would be at least four times faster than one that did 
these operations serially.

This parallelism would be most beneficial in hardware, where the circuits could 
have truly parallel execution paths. In software, some parallelism could also be realized, 
because modern compilers are pretty good at executing two constant-time instructions in 
a single clock single.

Below, a diagram illustrates which steps can be performed in parallel during the 
absorb phase. The squeeze phase (not shown) would be similar, but with two additional 
parallel steps: 1) XORing  ra[0]  with  rb[0],  and rc[0]  with  rd[0],  prior to the 
third S-box pass,  and 2) the third S-box pass itself.
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8.2   Efficient MDS Implementation

In section 2.8, a simple method for computing the MDS step is shown. That 
method is elegant because it requires only a few bytes of memory, and the instructions 
clearly show how the finite field multiplication is performed. Hardware implementations 
would most likely use a similar solution: combine XOR, bit shifting, and some 
conditional logic to emulate multiplication by 2 and 3 in the finite field.

But when memory is not a concern, there is a faster way to implement finite field 
multiplication. Precompute two lookup tables, each of size 256 bytes. One table stores all 
of the values for multiplication by 2, and the other table stores all of the values for 
multiplication by 3. These tables can be called "ff_mult boxes". Below, example code in 
C is given.

    unsigned int  i;
    unsigned char hibit, m2;
    unsigned char ff_mult_box2[256];
    unsigned char ff_mult_box3[256];

    // FF MULT by 2
    for (i = 0; i < 256; i++)
    {
        hibit = i & 0x80;
        m2 = i << 1; // LSH by 1 is equiv. to mult by 2
        if (hibit != 0) { m2 ^= 0x1b; } // 0x1b is the FF
        ff_mult_box2[i] = m2;
    }

    // FF MULT by 3
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    for (i = 0; i < 256; i ++)
        ff_mult_box3[i] = ff_mult_box2[i] ^ i;

Abbreviated versions of these tables are shown below. It can be argued that 
building a lookup table for multiplication by 3 is not strictly necessary, because 
multiplication by 3 can be done on-the-fly by XORing  ff_mult_box2[x]  with  x  
itself.  While that is certainly true, a second lookup table for  ff_mult_box3  does save 
one XOR per lookup, and hence 4 XORs per MDS step.

    unsigned char ff_mult2_box[256] = {
        0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 
        0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e, 
        ...   ...   ...   ...   ...   ...   ...   ...

        0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5, 
        0xeb, 0xe9, 0xef, 0xed, 0xe3, 0xe1, 0xe7, 0xe5
    };

    unsigned char ff_mult3_box[256] = {
        0x00, 0x03, 0x06, 0x05, 0x0c, 0x0f, 0x0a, 0x09, 
        0x18, 0x1b, 0x1e, 0x1d, 0x14, 0x17, 0x12, 0x11, 
        ...   ...   ...   ...   ...   ...   ...   ...
        0x0b, 0x08, 0x0d, 0x0e, 0x07, 0x04, 0x01, 0x02, 
        0x13, 0x10, 0x15, 0x16, 0x1f, 0x1c, 0x19, 0x1a
    };

Finally, the fastest option is also the most expensive (in terms of memory). Build four 
8x32 bit lookup tables. Each table effectively multiplies the same input byte by an entire 
column of the MDS matrix (refer to section 2.8 for that matrix.)

    // Declare the four 8x32 lookup tables:
    unsigned int bmult1231[256];
    unsigned int bmult1123[256];
    unsigned int bmult3112[256];
    unsigned int bmult2311[256];

    // Build each 8x32 table from one column from the MDS matrix
    for (i = 0; i < 256; i ++) {
        bmult1231[i] = i | (ff_mult_box2[i]<<8) |
                       (ff_mult_box3[i]<<16) | (i<<24);
        bmult1123[i] = i | (i<<8) | (ff_mult_box2[i]<<16) |
                       (ff_mult_box3[i]<<24);
        bmult3112[i] = (ff_mult_box3[i]) | (i<<8) |
                       (i<<16) | (ff_mult_box2[i]<<24);
        bmult2311[i] = (ff_mult_box2[i]) | (ff_mult_box3[i]<<8) |
                       (i<<16) | (i<<24);
    }

8.3   Efficient Rolling Array Implementation
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Rolling arrays can be implemented in three main ways. Depending on both the platform 
and the objectives, one of these three may be preferable to the others.

In-place rotation.  Simple and inuitive, in-place rotation works well for memory 
constrained environments. The rolling arrays can be implemented in-place by using a 
FOR loop, which rotates the array to the left by one. The only overhead memory required 
for this is two bytes: a temporary variable, and a loop counter. An example of in-place 
rotation over an array of size 37 is shown below, using C pseudocode.

    tmp = rc[0];
    for (i = 1; i < 37; i++) { rc[i-1] = rc[i]; }
    rc[36] = tmp;

Caterpillar arrays.  Caterpillar arrays are very fast in software because they take 
advantage of the abundant RAM that modern computers have. First described in [11], 
caterpillar arrays are several times larger than a rolling array's "logical size". (i.e. The  rc 
rolling array has a logical size of 37, but its  caterpillar array might be 400 bytes.) Store 
the caterpillar array's offset in a pointer. After each clock, assign the entry from 
caterpillar_array[0] to caterpillar_array[n], where n is the array's logical size. Then, just 
increment the caterpillar array's pointer by 1. Eventually, when the pointer reaches the 
end of its allocated space, reset it to zero and copy the whole array back down to the start 
of the caterpillar array. Below, an example is given in C pseudocode.

rc[37] = rc[0];
rc++;
if (rc == end_of_array_rc)
{

rc = start_of_array_rc;
for (int j = 0; j < 37; j++)

rc[j] = end_of_array_rc[j];
}

In the above example, the rolling array has a logical size of 37. There  
start_of_array_rc  pointer keeps track of where the allocated array actually begins. 
Over the course of many clocks, the  rc  pointer can stray hundreds or thousands of 
positions away  start_of_array_rc.  The  end_of_array_rc  pointer keeps track 
of where the allocated memory runs out. Note that in the above example,  
end_of_array_rc  is actually 37 places earlier than the true end of the buffer, to allow 
for efficient copying. For example, if the  rc  caterpillar array is 400 bytes, then  
end_of_array  would be defined as  start_of_array_rc + (400-37).

The benefits of this implementation are twofold: 1) the rotating can be done is just 
two simple operations of assigning a value and incrementing a pointer,  and 2) the values 
in the rolling array can be referred to with direct addressing (i.e.  rc[24])  instead of 
variable addressing (i.e.  rc[(j+24) % 37]).  For these two reasons, caterpillar arrays 
are by far the fastest implementation in software.

The fastest implementation I wrote uses caterpillar arrays of the following sizes:  
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rb[30], rc[300], rd[400]. It is not clear why these sizes yield faster results than other 
sizes.

Variable addressing.  Like in-place rotation, varible addressing is an in-place operation. 
However, variable addressing is faster because it does not require FOR loops. Instead, a 
few extra variables are needed, as well as some modular additions. 

Variable addressing uses index counters to iterate over the array. For example, 
consider  rc , which has 37 bytes. One index counter would keep track of the update 
position, and another index counter would keep track of the tap position. To initialize 
these counters, do the following:

rc_upd_idx = 0;
rc_tap_idx = 24;

Then, after each clock, increment these index counters in the following way:

rc_upd_idx = (rc_upd_idx + 1) % 37;
rc_tap_idx = (rc_tap_idx + 1) % 37;

Each rolling array would require its own set of  index counters. In the body of the 
absorb or squeeze routine, the code would look something like this:

ra             = sbox[ra             ^ rd[rd_tap_idx]] 
rb[rb_upd_idx] = sbox[rb[rb_upd_idx] ^ rc[rc_tap_idx]] 
rc[rc_upd_idx] = sbox[rc[rc_upd_idx] ^ rb[rb_tap_idx]] 
rd[rd_upd_idx] = sbox[rd[rd_upd_idx] ^ msg[i]]

Alternatively, each rolling array could use just one index counter: the update 
index. Then, calculate the tap index on-the-fly, in relation to the update index. For 
example:  (rd_upd_idx + 58) % 89  would be equivalent to  rd_tap_idx.

8.4   Efficient Counter Implementation

Modular addition is slow on many platforms. And since Abacus uses prime 
numbers that are not a power of 2, the modulo operation is even slower. Luckily, a much 
more efficient method of implementing the counters does exist.

For each of the modulus values (233, 239, 241, 251), build a "mod box", which is 
a lookup table of size k. Each mod box takes an input, x, and returns (x + 1) mod k. 
Essentially, this is a speeed/memory trade-off. By using more memory in the form of 
lookup tables, the counter increments can be sped up greatly. This approach also prevents 
timing attacks and power analysis attacks, because table lookups are a constant time 
operation. An example mod box where k = 7 is shown in C pseudocode below.

unsigned char modbox7[7] = {1, 2, 3, 4, 5, 6, 0};
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This technique works well in software because RAM is cheap. But on a memory 
constrained device, such as a smart card, these mod boxes would not be very desirable: it 
might be a better compromise to use conditional logic to bypass the modulo operator 
altogether. C pseudocode illustrates this idea below.

ctr1++;    ctr2++;    ctr3++;    ctr4++;
if (ctr1 == 233) {ctr1 = 0;}
if (ctr2 == 239) {ctr2 = 0;}
if (ctr3 == 249) {ctr3 = 0;}
if (ctr4 == 251) {ctr4 = 0;}

While optimizing Abacus, I found that the conditional logic technique, show just 
above, is nearly as fast as using the mod boxes.

8.5   Memory Requirements

At a bare minimum, Abacus requires 136 bytes of memory to store its internal state (132 
bytes for the registers, 4 bytes for the counters.) This assumes that the S-box can be 
stored as a constant table, or hard-wired

But if the S-box must also be in RAM, then Abacus requires 392 bytes of memory 
(136 bytes for the internal state + 256 bytes for the S-box).

The MDS step can be sped up by storing the finite field multiplication results in 
one or two tables of sizes 256 bytes. This would cost an additional 256 or 512 bytes of 
memory. And the fastest option, which is building the four 8x32 lookup tables, would 
cost 4096 bytes of memory.

For efficient counter implementations, lookup tables (i.e. mod boxes) can be used 
for each modulus size. Each table would require k bytes of memory, where k is the 
modulus. The cost to store all four mod boxes is 233 + 239 + 241 + 251 = 964 bytes.

Depending on how the rolling arrays are handled, the memory requirements can 
vary substantially. In-place rotation costs an additional two bytes. Variable addressing 
costs 4 or 8 bytes. Caterpillar arrays, however, can cost up to several thousand bytes of 
memory.

Table 1:  Isolated Memory Costs for Abacus

Feature Bytes
 Internal State  36
 Loop counters, temp variables  6
 The S-box  256
 One 8x8 MDS Lookup Table  256
 Two 8x8 MDSLookup Tables  512
 Four 8x32 MDS Lookup Tables  4096
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 Caterpillar Arrays  500-4000
 Mod Boxes for Counters  964

Table 2:  Combined Memory Costs for Abacus

Features Bytes
 Internal State, Loop ctrs & temp vars  142
 Internal State, S-box, Loop ctrs & temp vars  398
 Internal State, S-box, Loop ctrs & temp vars, One 8x8 MDS Lookup table  648
 Internal State, S-box, Loop ctrs & temp vars, Two 8x8 MDS Lookup tables  904

 Internal State, Loop ctrs & temp vars, S-box, Caterpillar arrays  898-
4398

 Internal State, S-box, Mod boxes for counters  1356
 Internal State, S-box, Four 8x32 MDS Lookup tables  4488
 Internal State, S-box, Caterpillar Arrays, Four 8x32 MDS Lookup Tables  5538

8.6   NIST Reference Platform

As specified in the SHA-3 federal register notice [32], the NIST Reference Platform is a 
2.4 GHz Intel Core 2 Duo processor, with 2 GB of RAM, running 32- and 64-bit versions 
of Windows Vista Ultimate. 

I conducted my tests on two different personal computers (i.e. "machines"). The 
first machine, which I'll refer to as "NIST Reference Platform", is a 2.1 GHz Intel Core 2 
Duo T8100 processor with 4 GB of DDR2 RAM, running 64-bit Windows Vista Home 
Premium, SP1. Due to the processor speed difference (i.e. 2.1 GHz vs 2.4 GHz), I scaled 
up all of my results by a factor of 14.28. (I did not scale the calculations based on RAM 
or Windows version because it's doubtful that either would have an effect on the hash 
function's performance.)

And then, to get a 32-bit perspective, I ran the same tests on a 1.79 GHz Pentium 
4, with 768 MB of RAM, running Windows XP, SP 2. (Throughout this section I'll refer 
to this machine simply as "Pentium 4").

Table 3:  Hashing Speed of Abacus on a Personal Computer

Optimized 32-bit code.  Machine / Compiler Mbits / 
Sec Est. Clock Cycles/Byte

 Pentium 4 / Visual C++ 6.0  191  75.0
 Pentium 4 / Visual Studio .NET 2003  200  71.6
 NIST Reference Platform / Visual C++ 6.0  431  44.5
 NIST Reference Platform / Visual Studio .NET 2003  523  36.7

Optimized 64-bit code.  Machine / Compiler Mbits / 
Sec Est. Clock Cycles/Byte

 Pentium 4 / Visual Studio .NET 2003  95 150.7
NIST Reference Platform / Visual Studio .NET 2003  282 68.0
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I obtained these results by running an optimized 32-bit version of Abacus 
(compiled with Visual C++ 6.0) on each machine, and then by running an optimized 64-
bit version of Abacus (compiled with Visual Studio 2003 .NET) on each machine. The 
test itself was simple: make Abacus absorb a 512-bit string (i.e. 64 message 8-bit blocks) 
390625 times (that comes out to 200 megabits of data). During these tests, keep track of 
how many milliseconds were consumed, and divide that by 1000 to obtain the number of 
seconds. Then, divide 200 by the number of seconds to obtain a megabits-per-second 
score. I performed this test 10 times and took the best out of ten.

45.9 clocks per byte does not sound very impressive, but please keep in mind I am 
not an expert at optimizing C-code. Also keep in mind that the best-known timings for a 
given algorithm often take months of fine tuning by several experts. For instance, 
Gladman's optimized version of SHA-256 runs at 20.4, 23.3, and 41.0 cycles/byte, 
depending on the platform [34]. In another paper by Hilewitz et al., the authors mention 
that the best published score for SHA-256 is 12 cycles/byte [36]. Which of these numbers 
is correct? All of them? None of them? The answer seems to be that  a) when speed really 
matters, somebody will code the algorithm in Assembly,  and  b) an algorithm's speed is 
heavily dependent on both the compiler and the machine. With that in mind, I believe that 
Abacus can run at about 25 cycles/byte.

If that number seems optimistic, consider the case of Rijndael (which became 
AES). The authors' optimized code, which shipped on the AES CD-ROM, ran at about 
950 cycles/block for a 128-bit block. Shortly thereafter, Gladman (the same man who 
optimized SHA-2), released an optimized version of Rijndael that ran at 363 cycles/block 
for a 128-bit block [24]. That's a 2.6x speedup!

Let's consider a low-level analysis of each operation in Abacus's absorb phase. 
For each message byte that gets absorbed, there are 8 XORs, 8 S-box lookups, 4 counter 
increments, 12 register assignments, an MDS matrix multiplication, and three rolling 
array rotations. By using the four 8x32 tables to precompute the MDS matrix 
multiplication, the MDS step can be done in 9 cycles. Then, by using caterpillar arrays, 
the rolling arrays can be rotated in 9 cycles. If all of these operations were done serially, 
that would only take 49 cycles. (My best results were noticeably better than that, at 36.7 
cycles.) But modern microprocessors and compilers are quite good at combining several 
instructions into a single clock cycle, especially constant-time instructions. All of 
Abacus's steps can be achieved with constant-time instructions. Therefore, I'm certain 
that a talented software optimizer could get Abacus running in 25 cycles/byte or less. 

Below, I show a diagram of this clock cycle analysis.
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For the rest of the tables in this section, I assume that Abacus can absorb a byte of 
message data at 25 cycles/byte. Because the squeeze phase is so similar (it has 6 more 
instructions, all of them constant-time), I assume that it is about 15% slower, and hence, 
the squeeze function can run at 29 cycles/byte.

Table 4:  Setup Time for Abacus on a Personal Computer

Prepended Data Hash Size Est. Clock Cycles
 (None)  224  152
 (None)  256  152
 (None)  384  152
 (None)  512  152
 Hash Length  224  252
 Hash Length  256  252
 Hash Length  384  252
 Hash Length  512  252
 Hash Length, Message Length  224  652
 Hash Length, Message Length  256  652
 Hash Length, Message Length  384  652
 Hash Length, Message Length  512  652
 Hash Length, Message Length, Salt  224  1452
 Hash Length, Message Length, Salt  256  1452
 Hash Length, Message Length, Salt  384  1452
 Hash Length, Message Length, Salt  512  1452

To generate the estimates in table 4, I made the following assumptions:

• It takes 152 clock cycles to setup the internal state (132 cycles to copy the S-box 
entries into the various registers, 4 cycles to reset the counters to zero, 1 cycle to 
reset the output feedback byte to zero, and 15 clocks of overhead)

• The "Hash Length" field is 32-bits (4 bytes) long

• The "Message Length" field is 128-bits (16 bytes) long

• The"Salt" is 256-bits (32 bytes) long

• An optimized implementation of Abacus can absorb a message at the rate of 25 
cycles/byte.

Table 5:  Cost of Generating a Single Message Digest on a Personal Computer

Message Length Hash Size Estd. Clock Cycles
 8 bit  224 bit  4212
 512 bit  224 bit  5787
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 1024 bit  224 bit  7387
 65536 bit  224 bit  208987
 8 bit  256 bit  4382
 512 bit  256 bit  5903
 1024 bit  256 bit  7503
 65536 bit  256 bit  209103
 8 bit  384 bit  4792
 512 bit  384 bit  6367
 1024 bit  384 bit  7967
 65536 bit  384 bit  209567
 8 bit  512 bit  5256
 512 bit  512 bit  6831
 1024 bit  512 bit  8431
 65536 bit  512 bit  210031

To generate the estimates in table 5, I made the following assumptions:

• An optimized implementation of Abacus can absorb a message at the rate of 25 
cycles/byte.

• There are 135 blank rounds between the absorb and the squeeze phase

• A blank round costs the same as absorbing a message byte (i.e. 25 cycles/blank 
round)

• An optimized implementation of Abacus can squeeze out a hash byte at the rate of 
29 cycles/byte.

8.7   8-bit Processor Estimates

Although Abacus can function on an 8-bit smartcard, there are some drawbacks. First, 
there is the issue of the rolling arrays. The efficient implementation discussed above, 
which requires several hundred (or several thousand) extra bytes for the large, is not very 
desirable on a smartcard. This is because smartcards tend to have extremely low amounts 
of RAM or ROM: they prize memory even more than they prize speed. To conserve 
memory, Abacus would most likely be implemented with the rolling arrays "in place". In 
such an implementation, three FOR loops would have to iterate over the three rolling 
arrays once per clock to rotate them. 

Alternatively, the rolling arrays would be emulated using variable addressing: the 
addressing of  rb ,  rc ,  and  rd  would not use constant lookups (i.e.  rc[24]), but 
instead would use variable lookups (i.e. rc[rc_upd_idx]  and  rc[rc_tap_idx] ). 
After each clock, the  _upd_idx  and  _tap_idx  would be incremented for the three 
rolling arrays. This would be noticeably faster than having to rotate the entire array after 
each clock. 
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The straightforward way of incrementing the four counters is not the fastest. The 
modulo operator would be cost-prohibitive on a smartcard (and possibly not even 
available). Instead, use the conditional-increment, as described in section 8.4. (i.e.   
ctr++;  if (ctr == modulus) {ctr = 0;}  )

The MDS step also presents a problem. There are two options:  1) compute all of 
the finite field multiplications on-the-fly (using bitshifts and conditional XORs),  or 2) 
hardwire the finite field multiplication into two lookup tables. For the purpose of this 
analysis, I assume that option 2 was chosen. Furthermore, I assume that all instructions 
are done serially (i.e. that parallelization is not possible).

Cycles-per-Byte Estimates on a Smartcard

8 XORs  + 
4 counter increments (at 2 cycles a piece)  + 
8 S-box lookups  +
12 register reads  + 
6 index increments to emulate the rotating arrays (at 2 cycles a piece) +
the MDS step (which has 12 XORs and 8 lookups)
___________________________________________________________
= 68 cycles/byte to absorb

The squeeze phase has 6 more instructions (2 S-box lookups, 3 XORs, and one 
assignment), so I estimate that the squeeze phase would take 74 cycles/byte.

Admittedly, these estimates are somewhat crude. It's possible that Abacus would 
be faster (or slower) in an actual smartcard implementation. I'd also guess that an expert 
could beat my estimates by at least 15%.

Table 6:  Setup Time for Abacus on a Smartcard

Prepended Data Hash Size Est. Clock Cycles
 (None)  224  152
 (None)  256  152
 (None)  384  152
 (None)  512  152
 Hash Length  224  424
 Hash Length  256  424
 Hash Length  384  424
 Hash Length  512  424
 Hash Length, Message Length  224  1512
 Hash Length, Message Length  256  1512
 Hash Length, Message Length  384  1512
 Hash Length, Message Length  512  1512
 Hash Length, Message Length, Salt  224  3688
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 Hash Length, Message Length, Salt  256  3688
 Hash Length, Message Length, Salt  384  3688
 Hash Length, Message Length, Salt  512  3688

To generate the estimates in table 6, I made the following assumptions:

• It takes 152 clock cycles to setup the internal state (132 cycles to copy the S-box 
entries into the various registers, 4 cycles to reset the counters to zero, 1 cycle to 
reset the output feedback byte to zero, and 15 clocks of overhead)

• The "Hash Length" field is 32-bits (4 bytes) long

• The "Message Length" field is 128-bits (16 bytes) long

• The"Salt" is 256-bits (32 bytes) long

• An optimized implementation of Abacus can absorb a message at the rate of 68 
cycles/byte on a smartcard.

Table 7:  Cost of Generating a Single Message Digest on a Smartcard

Message Length Hash Size Estd. Clock Cycles
 8 bit  224 bit  11320
 512 bit  224 bit  15604
 1024 bit  224 bit  19956
 65536 bit  224 bit  568308
 8 bit  256 bit  11616
 512 bit  256 bit  15900
 1024 bit  256 bit  20252
 65536 bit  256 bit  568604
 8 bit  384 bit  12800
 512 bit  384 bit  17104
 1024 bit  384 bit  21436
 65536 bit  384 bit  569788
 8 bit  512 bit  13984
 512 bit  512 bit  18268
 1024 bit  512 bit  22620
 65536 bit  512 bit  570972

To generate the estimates in table 7, I made the following assumptions:

• An optimized implementation of Abacus can absorb a message at the rate of 68 
cycles/byte on a smartcard.

• There are 135 blank rounds between the absorb and the squeeze phase
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• A blank round costs the same as absorbing a message byte (i.e. 68 cycles/blank 
round)

• An optimized implementation of Abacus can squeeze out a hash byte at the rate of 
74 cycles/byte on a smartcard.

8.8   Hardware Estimates

Most of what Abacus does can be implemented very efficiently in hardware. Since fixed 
bitwise and bytewise permutations are essentially free in hardware, the rolling arrays can 
be rotated at almost no cost. Furthermore, bytewise XOR is a very cheap operation 
(perhaps 20-30 gates), and bytewise addition is also fairly low (80-100 gates). It is known 
also [24] that MDS matrix multiplication and finite fields can be implemented fairly 
efficiently in hardware. The most expensive component of Abacus, by far, is the S-box. It 
might take between 1000 and 3100 gates. 

Because the absorb and squeeze round functions process data one byte at a time, 
Abacus has a very small footprint in hardware. There are not dozens of complex, 
heterogeneous rounds. There is just one round. Furthermore, the similarity between 
squeeze and absorb rounds suggests that much of the logic could be shared and re-used 
between the absorb module and the squeeze module.

In [15], the authors mention that AES can be implemented in 3,600 gates, and in 
[3] the authors mention that RC4 can be implemented in 12,951 gates. Since Abacus is 
midway between those two in terms of complexity, I'd estimate Abacus's gate count to be 
7,500.

9   Additional Uses for Abacus

Hash functions, in their barest form, compute message digests that look random. In the 
real world, however, hash functions are often used in combination with other data and 
protocols to provide solutions for common, security-critical tasks. 

9.1   Hash Message Authentication Codes (HMAC)

Abacus may be used as a keyed hash message authentication code (HMAC) [31]. The 
purpose of an HMAC is to provide data integrity and authentication of a message by 
computing a hash that only a valid user would be able to generate. Essentially, the 
HMAC accepts a key while hashing a message. This ensures that the hash output value 
will be dependent upon a key that is only known to the people who are valid 
users/authenticators. 
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The HMAC construction is only secure as long as the underlying hash function is 
secure. Because Abacus is resistant to the attacks that exploit Merkle-Damgård (i.e. 
message extension, multicollisions, fixed points), it seems certain that Abacus would 
provide a stronger HMAC than MD5 or SHA-1. 

In the following formula for the HMAC construction,  m is the message, k is the 
key, H is the underlying hash function, ipad and opad are strings of constant bytes, the ║ 
symbol denotes concatenation, and the ⊕ symbol denotes XOR: 

HMACk(m) = H( (k ⊕ opad) ║  H((k ⊕ ipad)║m) )

Abacus can be used in the exact method shown above because it is a drop-in 
replacement for the SHA-2 family. Bearing in mind that HMAC assumes the message 
block size is larger than the hash size, I recommend using "pseudo-blocks" of 512-bits for 
a 224- or 256-bit hash sizes, and using pseudo-blocks of 1024-bits for 384- and 512-bit 
hash sizes. (A pseudo-block is simply a string of 8-bit message blocks treated as one 
logical unit.)

Alternatively, Abacus can simplify the HMAC process. By accepting a 
randomization string (salt), Abacus incorporates the core concept behind HMAC: keying 
a hash function. Simply use the salt as a key, and digest the message in one pass (without 
having to call the hash function twice as shown in the HMAC formula two paragraphs 
above). In Abacus, the opad and ipad strings are not necessary because the internal state 
is initialized to the S-box, which is a complex and non-linear array of bytes. It may be 
useful to increase the number of  blank rounds to 180 so that the key has even more time 
to spread entropy throughout the internal state prior to generating the hash output.

9.2   Deterministic Random Bit Generators (DRBG)

Being designed like a stream cipher, Abacus is particularly well-suited to generate long 
strings of pseudo-random bits. As described in NIST SP 800-90, deterministic random bit 
generators (DRBGs) built from non-invertible (one-way) hash functions can be used to 
generate random bit sequences [58]. In sections 4, 5, 6 and 7, I've shown that Abacus is 
secure and one-way, and therefore appropriate for use as a DRBG. And because Abacus 
can be used as a drop-in replacement for the SHA-2 family, it can easily be substituted 
for SHA-224, SHA-256, SHA-384, and SHA-512 in the Hash_DRBG construct 
described in chapter 10 of SP 800-90 [58]. 

Abacus has several advantages when being used as a DRBG. In particular, 
Abacus accepts randomization strings (salts) that can contain the entropy data, nonce, and 
personalization strings that are required to initialize the Hash_DRBG construct [58]. 
Abacus also has its own counters, and in combination with the rolling arrays, they 
guarantee a minimum period of 245. If Abacus is chosen for SHA-3, NIST can simplify 
the requirements of the Hash_DRBG construct.

Due to Abacus's large internal state, seed lengths of 888 or higher are probably 
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appropriate (888 is the size recommended for SHA-384 and SHA-512).

9.3   Digital Signatures (DSS)

As described in FIPS 186-2 [29], the Digital Signature Standards (DSS) requires a hash 
function that is both one-way and collision resistant. In chapter 4 of FIPS 186-2, the hash 
function is required to generate hash lengths of 160, 224, and 256 bits. By being a drop-
in replacement for the SHA-2 family, Abacus can easily replace SHA-2 in the Digital 
Signature Algorithm. 

Abacus's ability to generate variable length hashes would also be helpful for the 
DSS. If it becomes necessary to expand the hash length of DSS from 256 bits to 512 bits, 
or even an arbitrary length, Abacus could easily accommodate that. Whatever the hash 
size may be, I recommened using pseudo-blocks (as described in section 9.1) that are 
larger than the hash size. In particular, a hash size of 224- or 256-bits would require a 
pseudo block of 512-bits, and a hash size of 384- or 512-bits would require a pseudo-
block of 1024 bits.

9.4   Pseudo-Random Functions (PRF)

A pseudo-random function (PRF) is one that produces random looking output, no matter 
how similar the inputs are. In the same way that a random oracle's "answers" are assigned 
at random to any given "question" [4], a PRF's output must also hide correlations 
between input questions and make recovery of the input infeasible. Abacus meets these 
requirements with its preimage resistance and second preimage resistance. Furthermore, 
Abacus uses blank rounds for the explicit purpose of providing strong decorrelation of 
the internal state.

10    Advantages and Disadvantages

Disadvantages.

1) The Abacus S-box is random, and therefore impossible to simplify. In hardware, it 
requires more gates, and on a smartcard, it requires more bytes of memory. These are 
certainly disadvantages for some uses. However, the random S-box is a source of 
strength against algebraic attacks and unknown future attacks.

2) A further drawback of Abacus is that it uses blank rounds. These blank rounds 
effectively tack on a constant amount of work to finalize the hash value. For short 
messages (i.e. 1 to 150 bytes), the cost of executing the blank rounds will be larger 
than absorbing the message itself. 

3) Unlike the typical Merkle-Damgård hash function, Abacus uses a more robust form of 
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message padding which embeds the hash length, the message length, and a random salt 
into the beginning and end of the overall message. All together, this padding adds at 
least 40 bytes of information to the message, thus increasing the cost of hashing for 
small messages. 

Advantages.

1) By design, Abacus is platform-agnostic. It doesn't rely on tricks or optimizations that 
only exist on one brand of microprocessor or smartcard. It doesn't favor big-endian or 
little-endian architecture. Instead, Abacus has a flexible and simple set of instructions 
that will be efficient and easy to implement on any conceivable platform.

2) With its heavy use of parallelism, Abacus will perform well in hardware and also on 
future microprocessors. Speed increases of 2x to 4x are quite possible.

3) Abacus has three tunable parameters than can be increased or decreased at will to 
make speed/security trade-offs. For classified government applications, Abacus could 
use 180 blank rounds and 2 absorb clocks per round. 

4) Abacus's byte-at-a-time structure makes the hash function easy to analyze. The effect 
of a single message byte can be easily observed, which makes cryptanalysis clean and 
simple. Furthermore, this byte-at-a-time design gives Abacus a small hardware 
footprint and makes Abacus's performance much easier to optimize.

5) Additionally, Abacus was designed with a wide margin of security. Its internal state 
is more than twice the size of the maximum hash size currently required by NIST. 
After 98 blank rounds, Abacus is resistant to all known cryptanalytic attacks, but by 
default it has 135 blank rounds to provide a security buffer. 

6) Abacus produces a variable length hash. This flexibility makes Abacus a great choice 
for SHA-3, because over time, computers will get faster and larger hash sizes will be 
necessary for security. Abacus is fully capable of expanding its hash size to 
accommodate current and future needs.

11   Conclusions

Abacus is a new cryptographic primitive. With its novel combination of rolling arrays, 
counters, an MDS matrix, and an S-box, Abacus resembles a stream cipher more than it 
does a classical hash function. 

Initial cryptanalysis efforts find no significant weaknesses in Abacus. In fact, 
Abacus is resistant to many serious attacks, such as fixed points, multicollisions, second 
preimage attacks, herding attacks, and length extension attacks.

Over the next several months, new and interesting attacks on Abacus will 
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probably emerge. I invite—and encourage—anyone to try to break Abacus. 

11.1   Future Directions

Abacus lends itself well to alternate designs. 

It would be interesting to design a nibble-wise version of Abacus that operates on 
4-bit nibbles. For instance, the S-box would be 4x4, the rolling arrays would contain 
nibbles, and all operations would be on nibbles. Due to time constraints, I was not able to 
conduct any such tests. There would be, however, definite value in cryptanalyzing a 
reduced wordsize version of Abacus.

On the other side of the spectrum, it is easy to imagine a version of Abacus that 
operates on 10-bit words, or even 12-bit words. The S-boxes would be much larger, but 
also much stronger.  The counters would be prime numbers close to 1024, or even 4096. 
And of course the average expected cycle lengths would grow exponentially.

In extremely memory constrained environments, such as an RFID tag, it could be 
useful to design a version of Abacus with reduced register sizes, perhaps 19 and 41 bytes 
for  rc  and  rd. An 8-bit S-box built from recursive 4x4 S-boxes, such as in Crypton 
[49], would also cut down the memory and gates required. These changes would reduce 
the minimum cycle length and the expected security, but could enable the hash function 
to run on platforms that otherwise wouldn't accomodate one.

Personal computers, on the other hand, don't really need to worry about memory 
constraints.  rc  and  rd  could be expanded to, say, 73 and 191 bytes, respectively. This 
would increase the minimum cycle length to 248, and the average expected cycle length to 
22190 . Between the internal state being much larger, and the tap positions spanning a 
greater amount of history, the hash function would be significantly more secure.

Finally, for ultra-secure applications, Abacus could use secret, application-
specific S-boxes, like in the GOST block cipher [64]. It's possible to imagine an Abacus 
variant with four different and indepedent S-boxes, two of which are algebraically 
generated, and two of which are randomly generated (but endowed with many good 
cryptographic properties). And during the absorb and squeeze phases, add a third or 
fourth series of S-boxes to increase the number of active S-boxes. Just thinking about it 
makes me want to start coding ;-)
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AES        MDS Matrix and byte-oriented design
HAIFA        Embedding the message length, hash length, and salt in the message
Mars        Forward and Backward mixing should be equally strong
Py (Roo)       Rolling arrays
RadioGatún Cryptographic sponge with blank rounds
RC4        Invertibly absorbing the key into a large, byte-oriented internal state
RC4 Hash    Ways of using RC4 as a hash function
SNOW        Using a special purpose finite-state machine and shift registers
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Below is a list of mathematical and cryptographic terms. These definitions are meant for 
the lay-reader. For a more rigorous treatment, refer to [52] and [64]. 

Avalanche Effect A basic measure of a function's randomness. The avalanche effect is when a 
change in a single input bit will cause half of the output bits to change (on 
average). 

Avalanches A cryptosystem that undergoes a complete avalanche effect x times is said to 
have x avalanches.

Bit A number that can take two values: 0 or 1.

Bitwise Operation A mathematical operation that is performed on bits.

Block A fixed-size array of bits. 64-bit, 128-bit, 512-bit, and 1024-bit blocks are 
common. Most hash functions, especially those that use the Merkle-Damgård 
construction, digest a message one block at a time. Abacus uses an 8-bit block.

Block Cipher An encryption paradigm in which a single key is used to encrypt and decrypt 
data. The encryption is done on blocks of 64-bits or larger. Every bit of the 
ciphertext should depend on every bit of the plaintext and every bit of the key.

Boolean Function A function that takes a bit-array of a particular size and returns a single bit.

Branch Number In a linear transformation, the branch number (or just "branch") expresses how 
many outputs are guaranteed to change if a certain number of inputs is changed. 
A branch number is optimal when it equals n + 1 , where n is the size of the 
array.

Byte A byte is 8 bits. A number that can take 256 values, ranging from 0 to 255. All 
operations on bytes can be thought of as taking place in the Galois Field, GF
(28).

Chaining Variable A chaining variable that provides feedback from round to round within a hash 
function, or provides feedback from block to block between two consecutive 
calls to a hash function. 

Cipher A code. An algorithm. A method of secret writing. Also, abbreviation for "block 
cipher" or "stream cipher".

Ciphertext Encrypted data.

Clock Advancing a cryptosystem by one position. Usually, clocking entails shifting a 
register or array to the left by one position, and possibly incrementing a counter. 
Abacus does both. Sometimes "clock" is synonymous with "round". In Abacus, 
a round has one or more clocks.

Cryptanalysis The science of breaking ciphers.

Cryptographic Sponge A kind of hash function that has a large (usually secret) internal state, uses a 
permuatation function instead of a compression function, and tends to output a 
variable length hash value. Cryptographic sponges "asborb" a message and 
"squeeze" out a hash.

Cryptography The science of making and breaking ciphers.
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Cryptology The science of making ciphers.

Cryptosystem A general term for any kind of cryptographic system. A cryptosystem can refer 
to a block cipher, a hash function, or a stream cipher, or a protocol involving 
one of those.

Diffusion Spreading the influence of bits or bytes, so that they affect many other bits or 
bytes. Diffusion is what allows cryptosystems to achieve the avalanche effect, 
and also to be resistant to various kinds of cryptanalysis.

Digest To hash a message. To take a large value and make it smaller. Also, "digest" is 
an abbreviation of message digest.

Exclusive Or Often abbreviated as "XOR". A bitwise operation that is extremely common in 
cryptography because it's fast, invertible, and simple. For two bits, j and k, the 
exclusive or operation returns 1 when j and k are different from each other, and 
returns 0 if j and k are the same. Denoted as ^

Finite Field A mathematical concept in which all operations (such as addition, subtraction, 
multiplication, and division) take place in a set with a finite number of elements. 
If the result of an operation would be larger than the size of the set, or negative, 
then that result "wraps-around". In cryptography, finite fields of 28  and  232  are 
very common.

Galois Field Denoted GF. A Galois field is another name for a finite field.

Hamming Distance Abbreviated as HD. The number of elements that differ between two equal-
length strings. Just as with Hamming Weight, that string can be any datatype. 
The HD between [5, 6, 7, 8, 9] and [5, 6, 3, 8, 4] is 2.  The HD between the bit-
string [01110000] and [01110100] is 1, since 1 bit differs.

Hamming Weight Abbreviated as HW. The number of non-zero elements in a string. That string 
can be bits, bytes, nibbles, 32-bit words, or any other datatype. For example, the 
string of 8 bits represented as 00100011 has a HW of 3. A string of 5 bytes 
represented as 0xA9 0x4E 0x00 0x05 0x7D has a HW of 4, because 4 bytes are 
non-zero.

Hash "Hash" can be used as a verb, "to hash", meaning to digest something by using a 
hash function. "Hash" is also used as a noun to refer to the output of a hash 
function.

Hash Function A mathematical function that takes a message of practically any size and returns 
a fixed size output. Typically, the output looks random in relation to the input.

Initialization Vector Often abbreviated as IV. Before a message is digested, the hash function is 
initialized to a certain starting point. In a classic Merkle-Damgård  hash 
function, the chaining variable is simply assigned to a fixed n-bit value. 
Similarly, Abacus initializes its internal state prior to hashing.

Intermediate Hash Value A chaining variable that is passed between two consecutive calls to a 
compression function. The Merkle-Damgård construction requires an 
intermediate hash value to be updated as each message block is digested. 
Abacus does not use an intermediate hash value in the strict definition of the 
term.

Internal State Data, usually secret, that is stored inside a cryptosystem and updated after each 
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round. Instead of using an intermediate hash value, Abacus uses an internal 
state.

Iterate To repeat. "Iterate" is often used in reference to rounds.

Key The key that allows a user to encrypt and decrypt data using a cipher.

Linear A function is linear when it preserves relationships of addition and 
multiplication. In other words, multiplicative and additive relations between the 
input elements are also present in the output elements.

Linear Transformation A transformation (i.e. simple function) that acts on arrays of bits or bytes. 
Linear transformations can be used to ensure good diffusion in a block cipher or 
hash function. But because of their linearity, linear transforms don't provide any 
security by themselves.

Maximum Distance Separable Commonly abbreviated as MDS. Maximum distance separable is a theory that's 
used to describe functions with strong diffusion properties.

MDS See "Maximum Distance Separable".

MDS Matrix A matrix that represents an MDS code.

Merkle-Damgård A common, well-understood, and elegant framework for building hash 
functions. The Merkle-Damgård construction is built around a compression 
function that takes a large block and generates a smaller hash output. This hash 
output is passed from block to block as a chaining variable.

Message The information that is being digested by a hash function. A message can be 
practically any length. In real life, a message tends to be a file or a short string 
of text.

Message Digest Synonym for "hash function".

mod 2n Modular addition in a finite field of size 2n.

Modular Addition  Addition that takes place in a finite field. If the result of the addition is larger 
than the finite field size, then the result wraps back around starting from zero. 
The number 259 in a finite field of size 256 would wrap back around and 
become 3.

Non-linear A function is non-linear when it does not preserve relationships of addition and 
multiplication. Certain non-linear functions are extremely chaotic, and tiny input 
differences can result in massive, unpredictable output differences.

Plaintext Raw, unencrypted data.

Pseudocode A series of instructions that looks similar to a computer program, but is meant 
for human reading. Normally, pseudocode is higher-level and less formal than a 
computer program would be.

Pseudo-random Since cryptosystems and mathematical functions are deterministic, they can 
never be truly random. Instead, their output is called "pseudo-random". Strong 
pseudo-random functions are indistinguishable from a random function even 
after enormous amounts of scrutiny.

Random Unpredictable, chaotic. In order to destroy correlations between input and 
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output bits, every cryptosystem strives to produce random-looking output.

Round Most hash functions and ciphers are built from small, relatively simple functions 
called rounds. By repeating (or "iterating") a round, a cipher becomes stronger 
and more random-looking.

Stream Cipher A kind of cipher that takes a key, and then produces a very long sequence of 
random-looking bits (or bytes). Stream ciphers are usually much faster than 
block ciphers or hash functions, and are built using different design principles.

Subkey It's common for a block cipher to have several subkeys, which are derived from 
the (main) key.

S-box A substitution table that takes one number and returns another. S-boxes are 
usually permutations, and tend to have equal sized inputs and outputs (i.e. 8-bits 
each). At the core of many block ciphers and stream ciphers there is an S-box. 
They provide non-linearity to a cryptosystem.

Word Depending on the context, a word is either 16, 32, or 64 bits. Operations on 
words take place in GF(216), GF(232), or GF(264), respectively.

XOR Exclusive Or.

A.2   S-box Properties

As listed in section 3.2, the Abacus S-box has several properties that are well-understood 
within the cryptographic community. The definition of each property is given below.

Maximum Difference Distribution Table (DDT) entry.  This value is directly related 
to differential cryptanalysis. To find the maximum DDT entry for an 8-bit S-box, build a 
two-dimensional table with 256 entries going across and 256 going down. The columns 
represent input constants (ICs), and the rows represent output constants (OCs). Iterate 
over all 65,536 entries in the table and tally up the number of times that   sbox[x⊕IC] ⊕ 
sbox[x] = OC  for each value x. The maximum number of times this occurs is the Max 
DDT entry for the S-box. This number should be as low as possible. 4 is the lowest 
possible for a mathematical S-box, and 6 is the lowest possible for a random S-box [60]. 
Also, see [12] for the authors' pioneering work on differential distributions.

Maximum Linear Approximation Table (LAT) bias.  This value is directly related to 
linear cryptanalysis. To find the maximum LAT bias, perform an algorithm similar to the 
one used for finding the Max DDT entry. While iterating over the 65,536 entries,  try to 
match the following equation for each value x:  (HammingDistance(x & IC, sbox[x] & 
OC) % 2) = 0  , where the & symbol denotes bitwise AND, the % symbol denotes 
modulo, and HammingDistance() returns the number of bits that differ between two 
bytes. Tally up the number of times that equation holds true for a given IC/OC pair, and 
subtract the result from 128. Take the absolute value of that. Now, this is the bias for a 
particular aMask/bMask pair. The Max LAT bias for the overall table is the largest of 
such biases. 16 is the lowest possible for a mathematical S-box, and 28 is the lowest 
possible for a random S-box [60]. Also, see [51] for his brilliant initial work on linear 
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cryptanalysis and the piling-up lemma.

Nonlinear Order.  The nonlinear order of an S-box is the minimum nonlinear order over 
all combinations of affine functions of the input. In other words, the higher the nonlinear 
order is, the farther the S-box is from being an affine function (or set of affine functions). 
For an S-box of size n bits, the maximal nonlinear order is n-1. Nearly every random 8-
bit S-box has a nonlinear order of 7. See [46] for more details. 

Shortest Cycle.  All permutations have cycles. A cycle occurs when x is recursively fed 
into the S-box and eventually lands back on x. For instance, if  sbox[19] = 19,  then that 
is a cycle of length one (also called a fixed point). If  sbox[sbox[254]] = 254,  then that is 
a cycle of length 2. An S-box with no fixed points is called a derangement.

Distance to Strict Avalanche Criteria (DSAC).  Strict avalanche criteria requires that if 
any given input bit is flipped, then any given output bit flips exactly 50% of the time. In 
practice, no 8-bit S-box can meet the strict avalanche criteria, so instead, the "distance" to 
strict avalanche criteria is measured. The lower this number is, the better the S-box.

Distance to Maximum Order Strict Avalanche Criteria (DMOSAC).  This property is 
similar to DSAC, only even more grueling. Maximum order strict avalanche criteria 
requires that if any combination of input bits is flipped, then any given output bit flips 
exactly 50% of the time. Again, it's not possible for an 8-bit S-box to meet MOSAC, so 
the distance is measured. The lower this number is, the better the S-box.

Distance to Bit Independence Criteria (DBIC).  Bit Independence Criteria requires that 
if any given input bit is flipped, any two output bits will flip independently of each other. 
Like with DSAC and DMOSAC, it's not possible for an 8-bit S-box to meet the bit 
independence criteria, so instead, the distance is measured. Again, the lower this 
distance, the stronger the S-box. 

Distance to Maximum Order Bit Independence Criteria (DMOBIC).  This property 
is similar to DBIC, except instead of flipping one input bit, any number of input bits is 
flipped. Then, the output is measured to see if any two output bits flip independently of 
each other or are correlated. Because an 8-bit S-box can't fulfill MOBIC perfectly, the 
distance to MOBIC is measured. The lower this distance, the stronger the S-box.

See [41] for a lucid discussion on cycles, DSAC, DMOSAC, DBIC, and DMOBIC. In 
[54], the authors discuss how to build S-boxes with various desirable properties.
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A.3   Test Vectors

The following test vectors are in hexadecimal (i.e. 0xFF = 255). The hash length is 256-
bits in all of these tests, and the message that generated the hash is shown on the first line 
of each cluster.

# ShortMsgKAT_256.txt
# Algorithm Name: Abacus
# Principal Submitter: Neil Sholer

Len = 0
Msg = 00
MD = 8740006A59E57CE233E5445C3DD8B5D17ED6C8DBEB76DD32358BC5ABFF819C62

Len = 1
Msg = 00
MD = 52BE81BDA27A5660205DA2ECA85CEED2D5F1BCAC65646FBD92B50EFE0A773A62

Len = 2
Msg = C0
MD = C3609D465E172BFC28091BEC8F5E642674CB6EADB6169D31955F739BE1DCE9C9

Len = 3
Msg = C0
MD = 7CFE5C00A6FC927605AE986A5DB1B3E4A1D4534BC131EFE8F16D4CC720D322D5

Len = 4
Msg = 80
MD = C053C97F15C8BBD005B60FA24480F4418CA26EEDAC227ED7183BFB02F239C46B

Len = 5
Msg = 48
MD = 20CF1FF2D1470D1A2280322EE3441021E568213758312915A8EEC2E4074DC247

Len = 6
Msg = 50
MD = 5D104285C466C496F4C15B94E542FB787E5F4DA88FF15898662942BF1A3337B3

Len = 7
Msg = 98
MD = 7A464D6279BD0EFCA749E018D692BF9C03978615B6E4FF2844223A72186D6685

Len = 8
Msg = CC
MD = CD70E14C2E2FFDB554C718A66AE69C01B9A8FF11C2EF1C60A2E35294294D4A98

Len = 9
Msg = 9800
MD = DF968D6D5F8DE36B13261A40FB5A0F109E58F29DE35D722D4C6ACB56BB61B60A

Len = 10
Msg = 9D40
MD = 89E6F62165D9EDB7197DE7FEB6C5AF2C6E82508AA59409C7334EB99293EED868

Len = 11
Msg = AA80
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MD = B552212F62BD1F186910801FF51C025D84661AA476A50BF6378BFEB1FC50A400

Len = 12
Msg = 9830
MD = 4D0351611FDB8988FA2B57A6DF6715F23DD5D769765A74D460E244440CBCF971

Len = 13
Msg = 5030
MD = 11697613BA899ED7DBA921833B793F96E94F2723DD7B2205FE95EB90DE4F8FF7

Len = 14
Msg = 4D24
MD = 07A0BF419E04CA7BB5E53DD445798AD1AAFB9E617020E90C95D6537D8E67460A

Len = 15
Msg = CBDE
MD = 5176B26C98108F99B47BBCE1C9A45545CCFAF237A20765D5D1358218402468B2

Len = 16
Msg = 41FB
MD = B5648D0E638911215CD9AE5DA9C4DBF1F698957844BD7ECBD2CA4A226CD42DAA
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