Collisions and Preimages for Sarmal

Florian Mendel and Martin Schlaffer

Institute for Applied Information Processing and Communications (TAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria.

{florian.mendel,martin.schlaeffer}@iaik.tugraz.at

Abstract. In this paper, we show a collision attack on the hash function of Sarmal with different
salt. The attack has a complexity of on/3 compression function evaluations and memory requirement
of 2™/3. Since the salt of Sarmal is only 256 bits the attack works only for variants of Sarmal up
to 384 bits. Note that we can choose the messages in our attack and hence we can even construct
meaningful collisions for the hash function.

Furthermore, we show how to construct preimages for Sarmal faster than brute force search if
the attacker can choose the salt value. The attack works for all output sizes of Sarmal and with
a complexity of 2"/2** compression function evaluations and memory requirements of 2"/2~% for
n = {224,256}, and 2" 2% compression function evaluations and memory requirements of 2128~
for n = {384, 512}.

1 Description of Sarmal

The hash function Sarmal is an iterated hash function based on the HAIFA framework. It
processes message blocks of 512 bits and produces a hash value of 224, 256, 384, or 512 bits. If
the message length is not a multiple of 512, an unambiguous padding method is applied. For
the description of the padding method we refer to [4]. Let M = M| Ma]| - - ||M; be a t-block
message (after padding). The hash value h is computed as follows:

Hy=1V
Hi:f(Hz;l,Mi,S,i) for0<i<t
h = trunc, (H;)
where trunc, denotes the truncation to n bits. IV is a predefined initial value and s is the salt
of 256-bits. The compression function f of Sarmal basically consist of two streams « and 3. Let
M; the i-th message block of 512 bits, H;—1 = hgl||h1 the previous chaining value of 512 bits,

S = spl|s1 the 256-bit salt, and ¢ the 64-bit block counter. Then the compression function f is
computed as follows:

f(hollh1, M;, sol|s1,t) = alho, M;, so,t) @ B(h1, M;, s1,t) @ hol|ha (1)

For a detailed description of o and /3 we refer to [4], since we do not need it for our attack.

2 Collision for Sarmal with different salt

In this section, we present a collision for the hash function Sarmal with different salt. For the
sake of simplicity, we show how the collision attack for Sarmal works for a single message block.
First, we choose two arbitrary different message blocks M; and M/. To get a collision we require
that:

f(HO;MlaS7 1) S f(H(LM{aS,a]-) =0

Using Equation (1) we get:

alhg, My, s0,1) @ B(h1, My, s1,1) ® hollh1 @ a(ho, M, s5,1) @ B(hy, My, s1,1) @ hollhy =
a(ho, M1, 50,1) @ B(h1, M1, s1,1) @ aho, My, sy, 1) @ B(he, My, s1,1) =0

Since hg, h1, My, and M| are fixed in the attack, the above equation can be rewritten as:

u(s0) @ v(s1) @ w(sp) © =(57) =0)
with
u(sp) = a(ho, M1, so, 1)
v(s1) = B(h1, M1, 51,1)
w(sf)) = Oé(h()a Miv 367 1)
2(8/1) = ﬂ(hla Miv Slla 1)

In order to construct a collision for Sarmal with different salt, we have to solve equation (2).
This can be done by using the generalized birthday attack [5]. Wagner shows that this system
can be solved with a complexity of about 2"/3 computations and memory.

Note that we can independently choose 2'2® values for each of sg, 51, s4, s1- Hence, this attack
works only for variants of Sarmal with an output size up to n = 128 - 3 = 384 bits. In other
words, the attack is not applicable to Sarmal-512 at the moment. However, it can be used to
construct collisions for Sarmal-224, Sarmal-256 and Sarmal-384.

Table 1. Summary of results.

complexity | memory
Sarmal-224 Q74T Q74T
Sarmal-256 2854 2854
Sarmal-384 Q128 Q128

By allowing differences in the chaining variables as well, we can construct pseudo-collisions
for all output sizes of Sarmal, with 2"/3 computations and memory. Note that we can choose
the messages in our attack and hence, we can even construct meaningful collisions for the hash
function.

3 Preimage for Sarmal with chosen salt

In [3], Nikolic showed a preimage attack for Sarmal-512. The attack has a complexity of about
238442 and memory requirement of 21?8=%. However, to date no preimage attack on the other
output sizes of Sarmal is known. In this section, we show how the preimage attack for Sarmal
can be extended to all output sizes, if the attacker can choose the salt value in the preimage
attack. The attack works similar as the collision attack. Suppose we seek a preimage of h for
Sarmal. For the sake of simplicity, we show how the attack works for a single message block.
First we choose an arbitrary message block M; with correct padding. To get a preimage we
require that:

f(Ho,M1,5,1)=h

Using Equation (1) we get:
a(hg, My, so,1) @ B(h1, M1, s1,1) @ hollh1 = h
Since hg, h1, and M are fixed in the attack, the above equation can be rewritten as:
u(so) ®v(s1) =h @ hg|lhy = h* (3)
with

U(SQ) = Oé(ho, Ml, S0, 1)
U(Sl) = /B(hlv M17 S1, 1)

In order to construct a preimage for Sarmal, we have to solve equation (3). This can be done
by using a birthday attack. Since we assume in the attack that we can choose the salt, we
can independently choose 2'2® values for sy and 2'2® values for s;. Hence, we can construct
preimages for Sarmal with all output sizes faster than brute force search. Since, the two salt
values sg and s are only 128 bits, we get only 2256 candidates for h in the birthday attack. In
other words the attack succeeds only with a probability of 27128 and 272°6 for Sarmal-384 and
Sarmal-512, respectively. Hence, we have to repeat the attack 2128 and 22°6 times with different
choices for the message to find a preimage for Saraml-384 and Sarmal-512, respectively. The
complexities and memory requirements for all output sizes of Sarmal are summarized in Table 2
with different time-memory trade offs. Note that more efficient memory-less variants of the
attacks might be devised by using cycle-finding algorithms [1, 2].

Table 2. Summary of results with < 112 for n = 224 and = < 128 for n = {256,284, 512}.

complexity | memory
Sarmal-224 | 2!12+= gli2—z
Sarmal-256 | 2128+® gl28-z
Sarmal-384 | 2%56+= gl28-z
Sarmal-512 | 238%4+2 gl28—2

References

1. Richard P. Brent. An improved Monte Carlo factorization algorithm. BIT Numerical Mathematics, 20(2):176—
184, June 1980.

2. Robert W. Floyd. Nondeterministic Algorithms. Journal of the Association for Computing Machinery,
14(4):636—644, October 1967.

3. lvica Nikolic. Preimage attack on Sarmal-512. Available online, 2008.

Kerem Varici, Onur Ozen, and Celebi Kocair. Sarmal: SHA-3 Proposal. Submission to NIST, 2008.

5. David Wagner. A Generalized Birthday Problem. In Moti Yung, editor, CRYPTO, volume 2442 of LNCS,
pages 288-303. Springer, 2002.

=

