FPGA Implementation of Shabal: Our First
Results* (1/15/2010)

Romain Feron and Julien Francq

EADS Defence & Security, Cyber Security Customer Solutions Center (CSCSC)

Abstract. In this short note, we describe a new hardware implementa-
tion of Shabal. Our results outperform the state-of-the-art. In particular,
Shabal can achieve a high throughput, and can also be implemented with
very low area.

Key words: SHA-3 Contest, Shabal, Hardware Implementation, FPGA.

1 Preliminaries

In this section, we summarize the algorithm specifications of Shabal.

It uses a sequential iterative hash construction to process messages in
blocks of 512 bits (see Figure 1). Shabal operates with 32-bit words, so
each 512-bit input block M, is partitioned into 16 words. Its internal
state consists of the three components A (384 bits), B and C' (both 512
bits). W stores a 64-bit message-block counter. In Figure 1, the boxed
plus sign (M) represents a 32-bit addition (modulo 2??), and the boxed
minus sign (5) represents a 32-bit subtraction (modulo 23?). Circled plus
sign (@) represents a bit-by-bit XOR, operation.

— — — —
SN N N TN
| |
> ¢r @r
-

o—— =
o—— =

DD
5 T T TI_IY

Fig. 1. Shabal’s Mode of Operation.

=]

QW >
E2

b
b

Shabal construction makes use of a keyed permutation P depicted in
Figure 2. P consists of 48 steps, each updating one 32-bit word of A and

* This work was partially supported by the French Agence Nationale de la Recherche
through the SAPHIR2 project under Contract ANR-08-VERS-014.

2 Romain Feron and Julien Francq

B. Each step (except the first one) involves the result of the previous one,
so it can be considered that P is based on a Non-Linear Feedback Shift
Register (NLFSR) construction. It features two multiplications called U
and V with small constants (resp. 3 and 5) modulo 232, rotations of words
by 1 (denoted <« 1) or 15 bits (< 15) to the left', an AND operation,
and additions modulo 232 in order to update A words at the last step of
a permutation (not depicted in Figure 2).

<« 15

] D—>D—>

M
G*D*D—D—D—D—D—D—D (1]

@

@

Fig. 2. Permutation P.

2 First Remarks

We want to get a high-speed implementation of Shabal. To do so, we
have to compute as many calculations as possible in parallel. In that way,
at the beginning of the permutation, we can compute in one clock cycle:
e the incrementation of the counter W (see Figure 1),
e B+ B+ M, (see Figure 1),

L A rotation of B words by 17 bits to the left is also needed at the first step of a
permutation, but it is not depicted in Figure 2.

FPGA Implementation of Shabal: Our First Results (1/15/2010) 3

o A+ A@®W (see Figure 1),

e B+ B « 17 (for each B word).
At the end of a permutation, it is also possible to compute in parallel
(and in one clock cycle) all A words which are results of the operation
A < A+ C. Finally, the subtraction of the message block C' <— C — M
and the swappping of B and C can be computed likewise.
At first sight, it appears that P has a restricted parallelizability, so fur-
ther investigations are needed to compute it in less than 48 cycles.

3 Proposed Hardware Architecture

In our high-speed implementation of Shabal, we take into account all
the remarks given in Section 2. Moreover, we apply the shift-register
approach proposed in [BCCM™08] (page 105), and we implement all the
operations of P (U, V, rotations, XORs, additions) in parallel.
The multiplications modulo 2%? with 3 and 5 are efficiently implemented
using the shift-then-add method.
In this way, our VLSI implementation of Shabal’s mode of operation
includes:

e 8 x 32 X 2-input XOR gates,
54 32-bit adders?,
1 32-bit subtractor,
2 x 32 NOT gates®,
1 x 32 x 2-input AND gates,
2 32-bit incrementers for W,
simple wiring for rotation operations.

4 Results and Discussion

We choose to design Shabal on a FPGA platform rather than in an ASIC
because of its low cost relative to this latter, its greater flexibility, and
its easier prototyping process. In order to ease comparisons between our
hardware implementation of Shabal with the state-of-the-art [BBH™ 09]
[KIM*10], we choose to give results (area and throughput) on the same
platform, which is Virtex-5 FPGA [X06].

The post-place and route results for throughput (resp. area-) optimized
design presented in this paper is plotted in Table 1 (Table 2).

Table 1 shows that we globally outperform the state-of-the-art: our de-
sign takes the least amount of area (i.e. it occupies the least number of
FPGA slices), it produces the best throughput (denoted TP), and conse-
quently, the best throughput per slice (which is considered as a hardware
efficiency factor).

Except for the throughput, Table 2 exhibits the same results.

Shortly, our Shabal implementation currently gives the best overall bal-
ance between throughput and area of the state-of-the-art, when imple-
mented on a Virtex-5.

2 16 for computing B + B + M,, (see Figure 1), 2 for computing &/ and V (see Figure
2) and 36 for computing A +— A + C at the end of a permutation.

3 Note that we implement the @ module having OxFF---F as one of its inputs (see
Figure 2) with 32 NOT gates.

4 Romain Feron and Julien Francq

Architecture||Nb. Slices| TP (Mbps)| TP /Nb. Slices (Kbps/slice)
[BBHT09] 2768 1450 523
[KIMT10] 1251 1739 1390
Our Work 1171 2588 2210

Table 1. High-Speed Implementation Results.

Architecture||Nb. Slices| TP (Mbps)| TP /Nb. Slices (Kbps/slice)
[BBHT09] 2307 1330 576
Our Work 596 1142 1916

Table 2. Low-Area Implementation Results.

5 Conclusion

In this short note, we described our first hardware implementation of
Shabal. In one hand, we have shown that Shabal can achieve a high
throughput, and can be implemented with very low area in other hand.
In a funny way, we can say that, contrary to the French Rugby player
Chabal (see Figure 3), its homonym Shabal can be fast and lightweight.

Fig. 3. Chabal: 1.92 m, 115 kg (credits: http: //www.flickr.com/photos/sam_herd /2620280308/).

References

[BBHT09] B. Baldwin, A. Byrne, M. Hamilton, N. Hanley, R. P.

McEvoy, W. Pan, and W. P. Marnane. FPGA Implemen-

FPGA Implementation of Shabal: Our First Results (1/15/2010)

tations of SHA-3 Candidates: CubeHash, Grgstl, LANE,
Shabal and Spectral Hash. In Cryptology ePrint Archive,
number 342, 2009.

[BCCM™08] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier,

[KIM™T10]

[X06]

T. Fuhr, A. Gouget, T. Icart, J.-F. Misarsky, M. Naya-
Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard, C. Thuil-
let, and M. Videau. Shabal, a Submission to NIST’s Cryp-
tographic Hash Algorithm Competition Initiated by the
Saphir project. 2008.

K. Kobayashi, J. Tkegami, S. Matsuo, K. Sakiyama, and
K. Ohta. Evaluation of Hardware Performance for the SHA-
3 Candidates Using SASEBO-GII. In Cryptology ePrint
Archive, number 010, 2010.

Production Product Specification of Virtex-E Field Pro-
grammable Gate Arrays, Xilinx. 2006.

5

