
Cryptanalysis of Twister

Florian Mendel, Christian Rechberger, and Martin Schläffer

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria.

{florian.mendel,christian.rechberger,martin.schlaeffer}@iaik.tugraz.at

Abstract. In this paper, we present a pseudo-collision attack on the compression function of all
Twister variants (224,256,384,512) with complexity of about 226.5 compression function evalua-
tions. We show how the compression function attack can be extended to construct collisions for
Twister-512 slightly faster than brute force search. Furthermore, we present a second-preimage at-
tack for Twister-512 with complexity of about 2448 compression function evaluations and memory
requirement of 264

1 Description of Twister

The hash function Twister is an iterated hash function based on the Merkle-Damg̊ard design
principle. It processes message blocks of 512 bits and produces a hash value of 224, 256, 384,
or 512 bits. If the message length is not a multiple of 512, an unambiguous padding method is
applied. For the description of the padding method we refer to [1]. Let m = m1‖m2‖ · · · ‖mt be
a t-block message (after padding). The hash value h = H(m) is computed as follows:

H0 = IV

Hi = f(Hi−1, Mi) for 0 < i ≤ t

Ht+1 = f(Ht, C) = h ,

where IV is a predefined initial value and C is the value of the checksum. It is computed
from the intermediate values of the internal state after each Mini-Round. Note that while for
Twister-224/256 the checksum is optional it is mandatory for Twister-384/512. The compression
function of Twister basically consists of 3 Maxi-Rounds. Each Maxi-Rounds consist of 3 or 4
Mini-Rounds (depending on the output size of Twister) and is followed by a feed-forward XOR-
operation.

Mini- Mini- Mini- Mini- Mini- Mini- Mini- Mini- Mini-

0

Maxi-Round Maxi-Round Maxi-Round

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

H
t-1

H
t

Round Round Round Round Round Round Round Round Round

M
1 0

M
21 0

M
31

M
4

M
5

M
6

M
7

M
8

++ +

Fig. 1. The compression function of Twister-224/256.

The Mini-Round of Twister is very similar to the Advanced Encryption Standard (AES) [4].
It updates an 8× 8 state S of 64 bytes as follows:

MessageInjection A 8-byte message block M is inserted (via XOR) into the last row of the 8× 8
state S.



Mini- Mini- Mini- Mini- Mini- Mini- Mini- Mini- Mini- Mini-

0 0

Maxi-Round Maxi-Round Maxi-Round

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
10

H
t-1

H
t

Round Round Round Round Round Round Round Round Round Round

M
1 0

M
21 0

M
31

M
4

M
5

M
6

M
7

M
8

+ ++

Fig. 2. The compression function of Twister-384/512.

AddTwistCounter A 8-byte block counter is xored to the second column of the sate S.
SubBytes is identical to the SubBytes operation of AES. It applies an S-Box to each byte of the

state independently
ShiftRows is a cyclic left shift similar to the ShiftRows operation of AES. It rotates row j by

(j − 1) (mod 8) bytes to the left.
MixColumns is similar to the MixColumns operation of AES. It applies a 8 × 8-MDS matrix A

to each column of the state S.

After the last message block and /or the checksum has been processed, the final hash value is
generated from the last chaining value by an output transformation. For a detailed description
of Twister we refer to [1].

2 Pseudo-collision for the compression function

In this section, we present a pseudo-collision attack on the compression function of Twister for
all output sizes. The attack has a complexity of about 226.5 compression function evaluations.
In the attack we use the characteristic of Figure 3 for the first Maxi-Round (3 Mini-Rounds) of
Twister. The 3 Mini-Rounds are denoted by r1, r2 and r3 and the state after the Mini-Round
ri is denoted by Si. The initial state or chaining value is denoted by S0. In the attack we
add a difference in message word M1 (8 active bytes) to the state S0, which results in a full
active state S1 after the first Mini-Round r1. After the MixColumns transformation of the second
Mini-Round r2, the differences result in 8 active bytes of the last row of state S2, which can be
canceled by the message word M3 in the third Mini-Round r3.

S
0

S
1

S
2

S
3

r
1

r
2

r
3

H
t-1

M
1 0

M
20

M
3

MI
ATC
SB
SR
MC

MI
ATC
SB
SR
MC

MI

MI
ATC
SB
SR
MC

+

Fig. 3. Characteristic to construct a pseudo-collision in the first Maxi-Round.

The message differences and values for the state are found using a meet-in-the-middle ap-
proach and Figure 4 shows the characteristic in detail. We start with message word differences
in M1 and M3 at states S′1 and S2. The differences can be propagated backward and forward
through the MixColumns transformation with a probability of one (Step 1). Then, we simply
need to find a match for the resulting input and output differences of the SubBytes layer of
round r2 (Step 2).

2



S
0

S
1
' S

1
S
2
'' S

2
''' S

2
S
3
' S

3

r
1

r
1

r
2

r
2

r
2

r
3

r
3

H
t-1

M
1

Step 1
0
M
20

Step 2 Step 1 M
3

ATC
SB
SR
MC

MI
MI
ATC

SC
MRSB

SR
MC MI

ATC
SB
SR
MC

+

Fig. 4. We start with differences in states S′
1 and S2 injected by message words M1 and M3, and propagate

backward and forward (Step 1) to find a match for the S-box of round r2 (Step 2).

Step 1. We start the attack with 8 active bytes in state S′1 and S2 (injected by message words
M1 and M3) and compute backward and forward to two full active states S′′2 and S′′′2 . The
is happens with a probability of one due to the properties of the ShiftRows and MixColumns
transformations. We repeat the computation 228 times for message word M1 and 228 times for
message word M3. Hence, we get 256 pairs of input/output differences for the S-boxes of round
r2.

Step 2. Next, we show how to find a match for these input/output differences of the 64 S-boxes.
Note that for the S-box, the probability of a matching input/output difference pair is about one
half if we can chose the (absolute) value of the S-box input freely. Hence, we expect to find a
match for all 64 S-boxes with a probability of 2−64. Note that we can adapt the differences of
8 S-boxes by injecting proper differences in message word M2. This reduces the complexity of
finding a matching pair for the full SubBytes layer to 2−56. With the 228 input and 228 output
differences of Step 1, we expect to find at least one match due to the birthday paradox. Note
that in fact we get 256 matches since we can choose from at least two possible values for each
S-box match.

Once we have fixed the values of the state S′′2 such that the difference match for SubBytes
layer this also determines S0, and the differences in the message words. Hence, we have con-
structed a pseudo-collision for one Maxi-Round with complexity of 228. Note that the first Maxi-
Round is equal for Twister-224/256 and Twister-384/512. Hence, by constructing a pseudo-
collision for the first Maxi-Round we get a pseudo-collision for the compression function of
Twister-224/256 and Twister-384/512. The attack has a complexity of about 228/3 ≈ 226.5

compression function evaluations.

3 Collision Attack on Twister-512

In this section, we show how the pseudo-collision attack on Twister-512 can be extended to the
hash function. We first show how to construct collisions in the compression function of Twister-
512 with a complexity of 2223 compression function evaluations. This collision attack on the
compression function is then extended to a collision attack on the hash function. The extension
is possible by combining a multicollision attack and a birthday attack on the checksum. The
attack has a complexity of about 2252 evaluations of the compression function of Twister-512.

3.1 Collision Attack on the compression Function of Twister-512

For the collision attack on the compression function of Twister-512 we can use the characteristic
of the previous section in the last Maxi-Round (see Figure 5). Remember that in Twister-512
the 3 message words M6, M7 and M8 are injected in the last Maxi-Round. Hence, we can use
the first 5 message words M1 −M5 for a birthday match on 56 state bytes with a complexity

3



of 28·56/2 = 2224. Since the 8 bytes of the last row can always be adapted by using the freedom
in the (absolute) values of the message word M6, we only need to match 56 out of 64 bytes. It
can be summarized as follows:

1. Compute 2224 pseudo-collisions for the last Maxi-Round of Twister-512 and save them in a
list L. This has a complexity of about 3 · 2224 Mini-Round computations.
Note that we can choose from 23·64 = 2192 differences in M6, M7 and M8 in the attack.
Furthermore, by varying the values of M7, we get additional 264 degrees of freedom. Hence,
we can construct up to 2256 pseudo-collisions for the last Maxi-Round.

2. Compute the input of the last Maxi-Round by going forward and check for a match in the list
L. After testing about 2224 candidates for the input of the last Maxi-Round we expect to find
a match in the list L and hence a collision for the compression function of Twister-512. Note
that finishing this step of the attack has a complexity of about 2224+2·2160+296+232 ≈ 2224

Mini-Round computations.

Hence, we can find a collision for the compression function of Twister-512 for an predefined
chaining value with complexity of about 2223 compression function evaluations (10 · 2223 Mini-
Round computations) and memory requirements of 2224. The memory requirements of this
attack can significantly be reduced by applying a memory-less variant of the meet-in-the-middle
attack introduced by Quisquater and Delescaille in [5].

0

S
0

S
1

S
2

S
3

S
4

r
7

r
8

r
9

r
10

H
t

M
6

M
7

M
8

MI
ATC
SB
SR
MC

MI
ATC
SB
SR
MC

MI

MI
ATC
SB
SR
MC

+MI

MI
ATC
SB
SR
MC

+

Fig. 5. The characteristic for the last Maxi-Round of Twister-512.

3.2 Collision Attack on the Hash Function Twister-512

In this section, we show how the collision attack on the compression function can be extended
to the hash function. The attack has a complexity of about 2252 evaluations of the compression
function of Twister-512. Note that the hash function defines, in addition to the common iterative
structure, a checksum computed over the outputs of each Mini-Round which is then part of
the final hash computation. Therefore, to construct a collision in the hash function we have to
construct a collision in the iterative structure (i.e. chaining variables) as well as in the checksum.
To do this we use multicollisions similar as in the recent collision attack on the hash function
GOST [3].

A multicollision is a set of messages of equal length that all lead to the same hash value. As
shown in [2], constructing a 2t collision, i.e. 2t messages consisting of t message blocks which all
lead to the same hash value, can be done with a complexity of about t · 2x for any iterated hash
function, where 2x is the cost of constructing a collision in the compression function. As shown
in the previous section, collisions for the compression function of Twister-512 can be constructed
with a complexity of 2223. Hence, we can construct a 2256 collision with a complexity of about
256 · 2223 ≈ 2231 evaluations of the compression function of Twister-512. With this method we
get 2256 values for the checksum C that all lead to the same chaining value H256.

4



To construct a collision in the checksum of Twister-512 we have to find 2 distinct messages
consisting of 257 message blocks (256 message blocks for the multicollision and 1 message block
for the padding) which produce the same value in the checksum. By applying a birthday at-
tack we can find these 2 messages with a complexity of about 2256 checksum computations and
memory requirements of 2256. Due to the high memory requirements of the birthday attack,
one could see this part as the bottleneck of the attack. However, the memory requirements can
be significantly reduced by applying a memory-less variant of the meet-in-the-middle attack
introduced by Quisquater and Delescaille in [5]. Hence, we can find a collision for Twister-512
with a complexity of about 2231 compression function evaluations (10 Mini-Rounds) and about
2256 checksum computations (8 xor operations and 8 modular additions of 64-bits). In general
the cost for one checksum computations is smaller than one compression function evaluation.
Depending on the implementation 1 checksum computation is 1/x compression function evalu-
ation. Assume x = 16, then we can find a collision for Twister slightly faster than brute force
search with a complexity of about 2252 compression function evaluations and negligible memory
requirements.

4 A Second-Preimages for Twister-512

In this section, we present a second-preimage for Twister-512 with complexity of about 2448

compression function evaluations and memory requirements of 264. Assume we want to construct
a second preimage for the message m = m0‖ · · · ‖m514. Then the attack can be summarized as
follows:

1. Construct a 2512 collision for the first 512 message blocks of Twister-512. This has a com-
plexity of about 512 · 2256 ≈ 2265 compression function evaluations (using a birthday attack
to construct a collision for each message block) and needs 29 memory to save the multicol-
lision. Hence, we get 2512 values for the checksum which all lead to the same chaining value
H512.

2. Start from H514 and invert the last Maxi-Round to get S6 (input the the last Maxi-Round).
This can be summarized as follows:
(a) Choose a random value for S6 and compute S10 = H514 ⊕ S6.
(b) For all 264 choices of M8 compute backward from S10 to the message injection of M7

and save the state S′7 = MessageInjection(S7, M7) in a list L.
(c) For all 264 choices of M6 compute forward from S6 to the message injection of M7 and

check for match od S7 in the list L. Note that we can still choose m7 and hence we only
need to match 448 (out of 512) bits. Since we have in total 2128 pairs, this step of the
attack will succeed with probability 2−320. By repeating the attack 2320 times we can
invert the last Maxi-Round of Twister. This has a complexity of about 2384 compression
function evaluations.

3. Compute 264 candidates for S6 by inverting the last Maxi-Round and save them in a list L.
This has a complexity of about 2448.

4. Start from H512 and compute forward to S6 and check for a match in the list L. After testing
about 2448 candidates for S6 we expect to find a match in the list L and hence a second
preimage for Twister.

5. Once we have constructed a preimage for the iterative part, we still have to ensure that
the value of the checksum is correct. Therefore, we now use the fact that the checksum of
Twister is invertible and we have 2512 values for the checksum which all lead to the same
chaining value H512. By using a meet-in-the-middle-attack, we can construct the needed
value in the checksum. This has a complexity of about 2257 checksum computations and

5



memory requirements of 2256. Again the memory requirements can be significantly reduced
by using a memory-less variant of the meet-in-the-middle attack.

Hence, we can construct a second-preimage for Twister-512 with complexity of about 2448

and memory requirements of 264. Note that our attach requires that the first message consists
of at least 514 message blocks. Due to the output transformation of Twister-512, we can not
extend the attack to a preimage attack on Twister-512.

5 Conclusion

This paper shows two things: Although Twister is heavily based on a Merkle-Damg̊ard style
iteration (as many other hash function like SHA-2), the corresponding reduction proof that
reduces the collision resistance of the hash function to the collision resistance of the compression
function is not applicable anymore. We show practical (in time and memory) attacks that
invalidate such an assumption about the compression function.

Secondly, we give a theoretical collision and second preimage attack on the hash function
Twister-512. Although the practicality of the proposed attacks might be debatable, it neverthe-
less exhibits non-random properties that are not present in SHA-512.

Acknowledgements

The authors wish to thank the designers of Twister for useful comments and discussions.

References

1. Ewan Fleischmann, Christian Forler, and Michael Gorski. The Twister Hash Function Family. Submission to
NIST, 2008.

2. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In
Matthew K. Franklin, editor, CRYPTO, volume 3152 of LNCS, pages 306–316. Springer, 2004.

3. Florian Mendel, Norbert Pramstaller, Christian Rechberger, Marcin Kontak, and Janusz Szmidt. Cryptanal-
ysis of the GOST Hash Function. In David Wagner, editor, CRYPTO, volume 5157 of LNCS, pages 162–178.
Springer, 2008.

4. National Institute of Standards and Technology. FIPS PUB 197, Advanced Encryption Standard (AES).
Federal Information Processing Standards Publication 197, U.S. Department of Commerce, November 2001.

5. Jean-Jacques Quisquater and Jean-Paul Delescaille. How Easy is Collision Search. New Results and Applica-
tions to DES. In Gilles Brassard, editor, CRYPTO, volume 435 of LNCS, pages 408–413. Springer, 1989.

6


