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Abstract. In this paper we present the hash function LUX. It is a
stream based hash design. In its internals LUX uses Rindael-like trans-
formations. Hence, our security and efficiency margins are tightly related
to those of Rijndael.

1 Introduction

Stream based hash function design is an alternative to the much more popular,
and widely used, block based design. Typical examples of stream design are
Panama[5], RadioGatun[3], Grindahl[13]. When the block based design usually
operates with message blocks of 512 to 1024 bits of length, the stream design
uses message blocks of much shorter length, say 24 to 64 bits. Other crucial
difference between these two designs is the number of rounds spent to process
one message block. For block design, usually a high number of rounds is used and
each round is fairly simple. For example, SHA-1[8], a block based hash function,
uses 80 rounds to process a message block of 512 bits. The stream based design
on the other hand processes a small chunk of message in just one round, but
this round has highly complex structure. Usually, a difference between these two
designs is also noticeable in the size of their internal state, especially the number
of registers (variables) used for the internal representation of the state. Block
based functions have a relatively small number of registers in their internal state,
e.g. SHA-1 has only 5 registers. But for stream based functions it is common for
the internal state to be composed of a large number of registers.

In this paper we will present LUX, a stream based hash function. The design
principle borrows from RadioGatun [3], yet the internal transformations are dif-
ferent: the core of these transformations is Rijndael based transformation. LUX
scores high in both security and efficiency. Preliminary results show that LUX
is resistant to the standard generic attacks (e.g. herding attack, multicollision
attack, etc.) and has a high speed benchmark.

2 Specifications

LUX is a byte oriented stream based hash function. It supports 224, 256, 384
and 512 bit digests and can hash a message of length up to 254 bits. The only
parameter for the different digests is m which represents the size in the matrices



(the number of rows in the matrices) used for the internal representation of the
state of the function. For LUX-224 and LUX-256 the value of m is 4, while for
LUX-384 and LUX-512 it is 8.

LUX has an internal state S of m x 24 bytes which can be divided into two parts:

— the buffer (B), which is a matrix of m x 16 bytes, denoted B;; where 0 <
i<m-1land 0<j <15

— the core (C), which is a matrix of m x 8 bytes, denoted C; ; where 0 < i <
m—1and0<;<7.

The internal state is manipulated by the state update function. The message is
processed by small chunks of m bytes each.

Digest size|Message block| Core Buffer |Internal state
(in bytes) |[(in bytes)|(in bytes)| (in bytes)

224 4 4 %8 4 %16 96
256 4 4 %8 4 %16 96
384 8 8 x 8 8 x 16 192
512 8 8x8 8 x 16 192

Table 1. Parameters for different digests.

2.1 State Update Function

Important building block of LUX is the state update function @. It takes the
current state S (buffer+core) and a message block M; of m bytes and produces
a new state, i.e.:

Snew — @(Solda Mt)

This process is defined as one round. The state update function @ itself can be
decomposed into several consecutive steps. Let B; ; € GF(2®) be the elements
of the buffer, and C; ; € GF(2%) be elements of the core. Let us denote by B;
the i-th column of the matrix B, i.e. B; = (Bo;, B1,...,Bm—1,)7. Similarly,
Ci = (COJ', Ol,i, ce ;Cm—l,i)T- Let Mt = (Mm—l,ta Mm—Q,t, ey M07t)T be the
input message block of m bytes. Notice that message block is taken in reverse
order. The reason for this is because LUX is little endian oriented function.
Hence, when the message block of bytes is treated as a word on little endian
architecture, no additional swapping of bytes is necessary. With "®” we will
denote vector XOR, addition. Then the state update function, sequentially, does
the following steps:

State update function ¢
InputB:BOHBlH...HBw C:CD|‘01HHC7




1. Add the message block to both the buffer and the core.
By «— Bo ® M,
Co «— Co & M,
2. Update the buffer and the core separately.
B — F(B)
C — G(C)
3. Add the core to the buffer.
for i =0 to 7 do
Bita «— Biya ® C;
4. Feedforward column of the buffer to the core.
C7 — C7 ® Bis

Output B,C

In the step 2 of & we use functions that transform the buffer and the core.
Let us define these remaining functions F' and G.
The function F is used to manipulate only the buffer B. It is a simple cyclic
rotation of the matrix by one column to the right. Therefore F(B), in pseudo
code, can be defined as:

Buffer function F'
Input B = B0H31H e HB15

for i =0 to 15 do
B(it1)ymod 16 < Bi

Output B

The function G is one round of Rijndael where the core is seen as the state
of Rijndael. This round transformation consists of SubBytes, ShiftRows, Mix-
Columns, and AddConstant.

Core function G

Input C

C «— SubBytes(C)
C' — ShiftRows(C)
C — MixColumns(C)
C «— AddConstant(C)

Output C

Although these four transformations are well known from Rijndael, below we
will give a brief description of each of the transformations.
SubBytes. This non-linear byte-wise function is defined exactly as in the Rijndael
specifications, i.e. the S-box used in SubBytes is the same as the S-box used in
Rijndael.
S(X)=Y.

Let X = X;|| X2, where X; are the first four bits of the byte X and X, the last
four bits of X. Then the S-box used in LUX can be defined as:
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ShiftRows. This transformation cyclically rotates to the left, independently, each
row of the core matrix. For LUX-224 and LUX-256, whose core matrix has four
rows, the rotation constants are 0,1,3, and 4. Let us denote this vector by v, i.e.
v = (v1,v9,v3,v4) = (0,1,3,4)L. Then ShiftRows can be defined as:

Cij — Ci(j+vy)mod 8

LUX-384 and LUX-512 have core matrix with eight rows, hence the rotation
vector has eight coordinates: v = (0,1,2,3,4,5,6,7).

MixColumns. The MixColumns operation processes each column of the core ma-
trix independently. A column is treated as an m-element vector in GF(28) and is
multiplied by a matrix in GF(2%). The multiplication is performed modulo the
irreducible polynomial? m(x) = 28 + 2* + 2® + x + 1. For LUX-224 and LUX-256
the matrix that defines this linear transformation is the following?:

02 03 01 01
0102 03 01
0101 02 03
03 01 01 02

CPeY  A.CM; A=

! As in Rijndael-256.
2 As in Rijndael.
3 As in Rijndael.



For LUX-384 and LUX-512 the following matrix* is used:

01 04 01 01 02 Oc 06 08
08 01 04 01 01 02 Oc 06
06 08 01 04 01 01 02 Oc
0c 06 08 01 04 01 01 02
02 0c 06 08 01 04 01 01
01 02 0c 06 08 01 04 01
01 01 02 Oc 06 08 01 04
04 01 01 02 Oc 06 08 01

AddConstant. In hash functions usually constant addition is introduced in order
to stop various slide attacks. Therefore all the constants are different. Yet, our
big state prevents that kind of attack. Nevertheless, Rijndael transformation is
very sensitive to symmetric inputs. If all the elements of the core matrix C' are
the same, then the previous three transformations will produce a new state with,
again, all elements equal to each other. To destroy this unwanted property we
use the fourth transformation AddConstant. It is a simple XOR of 0x2ad01c64
to the core column Cy (in byte representation, for LUX-224 and LUX-256, this
means 0x2a is added to Cj o, 0xdO to Cj 9, Oxlc to Cs o, and 0x64 is added to
C3.0). This constant corresponds to the first 8 hexadecimal digits of e.

AddConstant
Input C

Co «— Co @ 0x2ad01c64

Output C

In case of LUX-384 and LUX-512 the same constant is added to the core col-
umn Cy. The high 4 bytes are considered to be equal to zero, hence Cy ¢, C1 9, C2 0,
and Cj3 stay unchanged after this transformation.

2.2 Initializations and padding

The buffer and the core are initialized by setting all the elements equal to zero.
The standard padding procedure is applied to the message,. First, the message
is divided into message blocks of m bytes (8m bits). If the length of the last
message block is less than 8m bits then this block is padded with one, followed
by number of zeros such that the block length becomes equal to 8m. If the
last block has exactly 8m bits, than additional block is introduced, with one
followed by 8m — 1 zeros. For LUX-224 and LUX-256, at the end two additional
4-byte blocks, containing the binary expression of the length of the non-padded
message, are created. For LUX-384 and LUX-512 only one 8-byte block with the
message length is created. This padded message becomes the input message for
the hash function.

4 As in Grindahl-512.
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Figure 1: The round function of LUX. I - message addition to the buffer and the core.
IT - update of the buffer and the core. III - Addition of the core to the buffer. IV -
addition of one column from the buffer to the core.

2.3 Hashing and output

The hash function LUX, similarly to the other stream based functions, uses the
principle input message / blank rounds / output hash. These three phases are
executed one after another. Depending on the message length and the size of the
digest, the phases have different number of rounds.

Input phase After the state is being initialized and the message is being padded
the input message phase starts. In this phase the whole message, block by block,
is "absorbed”, without outputting anything. Each message block, starting from
the first one, is passed as an argument to the state update function ¢ which
transforms the internal state, in one round, to a new state. The input phase ends
when, sequentially, all message blocks are processed. Obviously the number of
rounds of this phase depends only on the size of the message, i.e. the number of
message blocks in the padded message.

Blank rounds phase Blank rounds phase is typically used to increase the dif-
fusion of the last message blocks. For LUX, this phase consists of 16 rounds. In
each of these rounds the input message block is considered to be block with zero
value.



Output phase In the last phase, the output hash phase, the hash value for the
whole message is produced. In each round, the message input block, same as
in the blank rounds phase, is a block with zeros. Yet, in each round m bytes of
output are produced. The output of one round is the value of the core column
Cj5. Therefore LUX-224 produces its output in the following 7 rounds, LUX-256
in 8 rounds, LUX-384 in 6 rounds, and LUX-512 in 8 rounds. The output core
column is treated in a little endian manner. Therefore first the lowest byte of
this column is outputted, i.e. Cp,_1 3, then the second lowest, i.e., Cy,—2 3, then
Cm—33,¢etc... The last output byte is the byte Cj 3.

From the algorithmic point of view, these three phases do not differ because
they are divided into rounds and in each round the state update function gets the
two necessary parameters: the message block and the internal state. Therefore
the same function @ can be used in all three phases. Let the padded message
consists of k£ blocks. Then the hash function LUX can be defined as:

Hash function LUX-256
Input M = M0||M1H N HM]C,1

for i=0to k — 1

S — d(S, M;)
for i=1 to 16

S — @(S,0)
for i=1 to 8

S — &(S,0)

print Cs

2.4 Reduced Variants

The block based hash function usually takes a high number of rounds to process
one message block. By decreasing this number of rounds, reduced variants of
the function are produced. In the analysis of the hash functions it is common to
analyze these variants if the original function seems to be resistant to attacks.
Since LUX uses different design principle (stream based), obviously, such variants
are not possible. Yet, we can propose an alternative with decreased size of the
internal state. Since the internal state of LUX consists of a core and a buffer,
we propose a variants whose core and/or buffer have less number of columns.
Although we claim it is critical to have a buffer that has 4 columns more than the
core, in the front and at the end (in the passive buffer), yet it will be interesting
to analyze how the security margin behaves for the variants with less number of
columns in the buffer and the core. Reduced internal state variants of LUX-256
are proposed in Table 2.

Different variants can be made by reducing the number of blank rounds, from
16 rounds to 12 or 8 blank rounds. In the output hash phase in each round one
column of output is produced. A variant, where in each round 2 or 4 columns of
output are produced, can also be analyzed.



l [ Core [ Buffer ‘
[ LUX-256 | 4x8 [ 4x16 |

LUX,1-256 | 4 x 8 | 4x12
LUX2-256 | 4 x4 | 4x 16
LUX,3-256 | 4 x4 | 4x12

Table 2. Reduced variants of LUX-256.

We recommend these variants for the research on security margins of LUX
but not for actual use.

2.5 HMAC, PRF, and Randomized Hashing

The LUX hash functions are suitable for a standard construction of HMAC:
HMACk(m) = h((K + a)||h((K + cz)||m)).

The secret key K is padded with extra zeros to have a minimal length divisible
by 4m (8m if LUX-384 or LUX-512 is used). The constants have the following
values: ¢; = 0x5che...be, co = 0x3636...36. The inputs K + ¢1, K + ¢ are
divided into message blocks of m bytes and then processed by the hash function.

LUX can be used as a base of pseudo-random function (PRF) under different
constructions, e.g., as HMAC-PRF.

Randomized hashing can easily be introduced in LUX by the following man-
ner. After the initialization of the state, the first few rounds are used for random-
ized hashing. The input for these rounds is the value of salt. After the salting is
finished, the hashing of the message starts and further processing is as described
in the original hashing scheme. The minimal recommended salt size is n/2 bits
for n bit digests. Hence, we propose salt of size 128 bits for LUX-224 and LUX-
256. This salt is processed in 128 =+ 32 = 4 rounds. For LUX-384 and LUX-512
we propose 256 bit salt that is processed in 256 = 64 = 4 rounds.

3 Design Principles

LUX was designed with both security and efficiency in mind. We were impressed
with the efficiency of the stream based hash designs Panama and RadioGatun
[3, pp-12]. Yet, the updating functions of these designs had little publicity and
analysis. Hence, we decided to utilize a well known and analyzed transformation.
The best candidate, in our opinion, was Rijndael-like transformation. During the
AES selection process Rijndael[7] was thoroughly analyzed and its security is well
understood.



3.1 General Design Principles

The initialization with all-zero values was found to be practical and without any
security flaws. The message padding with the length representation nowadays
is a standard procedure in the design of modern hash functions. We use two
additional blocks at the end for this representation of the message length because
the size of our message block is limited to only m bytes. For LUX-224 and LUX-
256, when m = 4, message block has 32 bits. In order to be able to hash messages
of length up to 2% we have to use two message blocks for the message length.
The number of blank rounds was chosen such that the last message blocks travel
through all stages of the buffer. This way the core can be influenced twice by
the last message block, hence limit the possibilities of the attacker to manipulate
only the core with the last message block.

3.2 Design of the Buffer

The simple linear buffer of Panama, based only on rotations, evolved to a more
complex one in RadioGatun, by adding a feedback from the core to the buffer.
This way it becomes harder to analyze the function because the feedback at the
end of the buffer already depends on the previous states of the core. We have
adopted this idea, so the buffer in LUX gets a feedback from the core.

It is easy to notice that the buffer is twice as big as the core: if the core
is a matrix m X 8 then the buffer is a matrix m x 16. Regarding the buffer
transformations, which can be either a rotation of the columns of the buffer,
or addition the columns of the core to the columns of the buffer (feedback),
the buffer itself, can be divided into two parts: 1) the middle part, the part
with columns 5 to 12, where there is a rotation of columns and a feedback from
the core, and 2) the passive part, the part with columns 1-4 and 13-16, where
there are only column rotations. Increasing the number of columns in the part
of the buffer that is passive has little influence on the efficiency because column
rotations are costless. Yet, this increase has a big influence on the security of the
function. We have chosen 4 columns in the front of the passive buffer because the
message block that is added to the core gets a full diffusion after three rounds of
Rijndael. One additional column (round) just increases this diffusion even more.
A similar reasoning can be applied to the four columns at the end of the passive
buffer.

3.3 Design of the Core

Our main arguments regarding the high security of LUX are based on the core
transformation, which uses the Rijndael-like transformation. Various security
and efficiency properties of Rijndael contributed to choosing it as our basic
transformation. Our parameter m was chosen such that these properties can be
brought to a forefront when implementing on 32-bit and 64-bit platforms.

We have chosen core of size m x 8 (and not m x 4) in order to decrease the
ratio between the size of the message input, which is m bytes, and the size of
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the core, which is 8m bytes. So, for LUX this ratio becomes 1/8 which provides
better security margin. In Panama hash function, this ratio is around 1/2 and
allowed to launch a practical attack. Suggestions were made by the designers of
RadioGatun to decrease this value in order to limit the attacker’s possibilities.
In RadioGatun this ration is around 1/6. Notice, that we have adopted the
suggestions made in the paper of RadioGatun, and count only the size of the
core, without the size of the buffer.

The S-box used in LUX was chosen to be the same as in Rijndael. It has a
maximum difference propagation probability of 276.

The rotation vector in ShiftRows is optimal in a sense of ensuring that the
whole state depends on each particular byte of the core as quickly as possible.
All instances in the family LUX, require three rounds to get a full diffusion.

The matrices in the MixColumns were chosen so that it would have a maximal
branch number. For LUX-224 and LUX-256 this is five, and for LUX-384 and
LUX-512 it is nine.

4 Resistance to Attacks

Opposite to the widely used Merkle-Damgard construction, stream based hash
functions had little publicity. Articles, where is done analysis of similar type of
construction, Sponge functions [2],[4], are published. Yet, because of the blank
rounds, LUX can not be considered a sponge function. For this reason, we can
give preliminary results on the resistance to generic attacks of LUX-kind of
constructions.

For LUX two types of collisions can be studied. One type are the collisions of
the internal state before the blank rounds. This type of collisions are also known
as internal collisions. Other type of collisions are the ”traditional” final collisions
of the hash values. Notice, that every internal collision can lead to final collision
but not the opposite. The internal collisions are harder to achieve because of the
larger internal state. Further we will analyze the security of LUX-256. Similar
analysis (and conclusions) can be made for the rest of the functions in the family
LUX. The internal state of LUX-256 has 24 x 4 x 8 = 768 bits while it produces
256 bit output. Under the assumption that the underlying state update function
is good, one needs, by the birthday paradox, 22" = 2384 different internal states
in order to find one internal collision. In the same time, for the final collision,
this number is much smaller, 2% = 2128 This property of having a internal
state bigger than output hash length has proven to be very useful for increasing
the complexity of some attacks. Benefits of a large state were pointed by Lucks
in [14].

4.1 Generic Attacks

Most of the generic attacks in some way or another use internal collisions. These
attacks applied to functions, whose size of the internal state is same as the output
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hash size, can be very successful. Yet, by increasing the difference between the
sizes of the internal state and the output hash, these attacks stop working.

LUX can be seen as a Merkle-Damgard construction with an output transfor-
mation. Each round of input message phase can be considered as one application
of a compression function in the Merkle-Damgard model. The blank rounds and
output hash phases are the output transformation in this model. So a collision in
the compression function of Merkle-Damgard model means an internal collision
for LUX. Therefore if one wants to launch a generic attack, applicable to the
Merkle-Damgard construction that uses collisions, for the same attack on LUX
he has to build internal collisions for LUX.

There are also a few attacks applicable to different spectrum of hash func-
tions. Let us try to analyze the resistance of LUX to these attacks.

The Length Extension Property. A lot of hash functions that have an
iterative structure suffer from the length extension property. For a function that
has this property, once the attacker has one collision, he can easily build many
other collisions. For example, for Merkle-Damgard functions, if the messages M,
and My collide then for any M the messages M;||M and Ms||M also collide.
LUX-256 has the length extension property, but it requires internal collisions
to be found in the first place. This way, the first step, i.e. finding at least one
collision, of the length extension attack requires 233 effort.

Multicollision Attack. Multicollision set consists of messages that all hash
to the same value. Efficient method was found by Joux [9], that can produce a
multicollision set of 2¢ messages with ¢2"/2 effort for any n-bit Merkle-Damgard
hash function. The brute force method for finding k£ multicollision set will take
2"F " ~ 2", Joux’s method is based on building consecutive collisions for the
hash function using its iterative structure. For LUX these consecutive collisions
all have to be internal collisions. Hence, the actual complexity depends on the
size of the internal state. Since the internal state of LUX-256 has 768 bits, 2¢
multicollision set can be built with ¢2384 effort. This is higher than the simple
2256 brute force method which means LUX is resistant to multicollision attacks.

Herding Attack. In the Herding attack [10], the attacker presents the hash
value of a message without knowing the beginning of the message. The main idea
of the attack is building a so-called diamond structure: a binary tree of collisions.
Similarly to the previous multicollision attack, in order to built the diamond
structure, internal collisions have to be built. For Merkle-Damgard functions,
the herding attack has complexity of around 2% But, for LUX, finding internal
collisions depends on the size of the internal state, so one can expect that this
attack complexity is 25 = 2512 This number is much higher than the brute
force attack on finding the required hash value which will take 225 effort for
LUX-256. Therefore LUX is resistant to the herding attack.




12

Second Preimage Attack. Kelsey and Schneier in [11], discovered a method
that finds second preimages for long messages faster than the brute force. In one
part of the attack they used the fact that having a set of 2¥ intermediate hash
values, one can expect to find a message which hashes to some value of this set
with 2"~F effort. These intermediate hash values for LUX mean internal state
values, hence the probability of the attack increases greatly. The second part
of Kelsey-Schenier attack, finding expandable messages, also deals with finding
collisions which for LUX again means finding internal collisions. If the second
preimage attack on n-bit Merkle-Damgard functions requires 2"/2 + 2"% for a
message of 2¥ blocks, then for LUX-256 the value of n can be replaces by the
internal size, i.e. n = 768. Brute force second preimage attack requires around
2256 effort, which is much lower then the Kelsey-Schneier attack complexity. This
means that LUX can resist the long message second preimage attack.

Length |Multicollisions|Herding| Second
extension attack | preimage
ideal n-bit hash immune 2" 2" 2"
n-bit Merkle-Damgard| 2"/? t2n/2 92n/3 |gn/2 4 gn—k
LUX-n > 2" 2" 2" 2"

Table 3. Resistance of LUX to generic attacks.

4.2 Dedicated Attacks

Differential trails. Most collision attacks on hash functions are based on the
differential approach. A sequence of differences in internal states (trails) are
built, and the messages are chosen such that the final difference is zero.

The differential trails where all differences are fixed values usually have ex-
tremely low probabilities in the case of byte-oriented hash functions. Each active
S-box provides at maximum 27% multiplier to the full probability. As a result,
one round of a trail with all S-boxes being active has probability lower than
2—256.

The attack becomes more powerful if we consider trails with truncated dif-
ferentials, where all non-zero byte differences are united in a single value. Since
S-box converts zero difference to itself the S-box layer does not introduce any
probability. However, the probability is provided by linear transformations (Mix-
Columns in LUX).

Such an attack was successfully mounted on Grindahl by Peyrin in [15]. The
best attack exploited a differential trail of probability 27440, Since parts of the
trail can be attacked independently, the complexity of the full attack was only
2112 while the birthday bound is 2'?%. In terms of conditions on byte differences,
the original trail imposed 55 byte conditions, but 41 of them can be relaxed for
free due to the freedom in the choice of message blocks at each injection.
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Simultaneously, we have analyzed the resistance of LUX to this type of attack.
The best attack we have found has complexity about 2°° and exploits a trail of
probability around 277°4, Again, the trail imposes 88 byte conditions, and 38 of
them can be satisfied for free.

An extension to truncated differential attacks, the attack with structures[12],
is faster but still not fast enough. The best trail for the structure attack provides
an attack of complexity around 22°6 for LUX-256, which is still much higher than
the birthday attack.

Preimage attacks. The state update function is invertible, therefore, it is
possible to compute backwards starting from any state. Nevertheless, starting
from some state and reaching the initial state with all zero values in the registers,
is supposed to be hard. Meet-in-the-middle attack, where the attacker starts from
the initial state going forwards and from the final state going backwards, and
try to to get the same intermediate value at some step, depends on the size of
the internal state. LUX-224 and LUX-256 have an internal state of 768 bits,
so meet-in-the-middle attack requires 23%* effort. This is much higher than the
brute force preimage attack. LUX-384 and LUX-512 has a state of 1536 bits, so
this attack would require 27%® effort. Again, simple brute force preimage attack
has lower complexity.

4.3 Security levels

In addition to the security claims for generic attacks presented in Table 3, the
following security levels, presented in Table 4, are claimed for the hash functions
of the family LUX.

Attack Complexity

Digest 224 | 256 [ 384 | 512
2112 2128 2192 2256

Collision attack
Preimage attack
Second preimage attack
HMAC-PRF distinguisher QM2 | oIZ8 [ 9192 1 9756
Randomized hashing attack || 2112 [ 2128 [ 2192 [ 9256

2224 2256 2384 2512

2224 2256 2384 2512

Table 4. Security levels for LUX.

Also, any m-bit subset of the output bits, meets the required levels for colli-
sion resistance and preimage resistance of 2/2 and 2™ respectively.
5 Performance

The main transformation implemented in LUX is the Rijndael transformation
applied to the core. The transformation on the buffer, which is a simple rotation,
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as well as the feedforwards have low computational complexities. Hence, it is to
be expected that the performance of LUX is tightly related to the performance
of Rijndael. Let us take a look at the software and hardware performance of
LUX. The main point will be made on LUX-256 and LUX-224. Obviously they
have the same efficiency. Then, the results and estimates will be extended for
LUX-512 and LUX-384.

5.1 Software

It is well known from Rijndael’s specifications that SubBytes, ShiftRows, Mix-
Columns, and AddConstant transformations can be implemented altogether as
simple table lookups and XORs [6, pp. 58-59]. Obviously, the same can be ap-
plied to LUX. In one round (one call of the state update function) LUX-256
uses 32 table look-ups and 25 XORs for the core transformation, 8 XORs for
feedforward from the core to the buffer and 3 additional XORs: 2 XORs when
adding the message to the core and the buffer, and 1 XOR for feedforward from
the buffer to the core. So, in total, LUX uses 32 table look-ups and 36 XORs for
processing 4 bytes of message. Regarding the memory requirements, LUX-256
needs 4KB for the tables and additional 96 bytes for the internal state. Hence,
in total it requires little bit more than 4KB of memory.

Memory-speed trade-offs are possible. The entries of the look-up tables are
rotated versions of one another. Therefore implementation with only one table
and with total size (table+internal state) of 1096 bytes can be made. A variant
with straightforward S-Box implementation would require only 256 4+ 96 = 352
bytes of memory.

To get a sense of how fast LUX-256 is, let us try to compare its efficiency
with AES (Rijndael-128). AES uses 4 table look-ups and 4 XORs per column
per round. So, for processing 16 bytes, AES uses 160 table look-ups and 160
XORs. LUX, on the other hand, for processing 16 bytes (in 4 rounds) uses 128
table look-ups and 144 XORs. So the rough estimate is that LUX-256 is 1.2
times faster than AES. When comparing the efficiencies we have not included
the blank rounds phase and output hash phase of LUX-256. Yet, these phases take
only 24 rounds, a number insignificant for longer messages.

LUX-384, LUX-512. The longer digest variants of the family LUX are oriented
towards 64-bit platforms. It can surely be implemented on 32-bit platforms but
then the speed decreases about two times. For LUX-512 the same implementation
tricks, as for LUX-256, can be used. Because of the bigger internal state, the pre-
computed tables are bigger. One table requires 2 KB and in total 8 tables are
used. The internal state is 192 bytes. In total, for an optimal implementation,
it is required around 16 KB of memory. The same memory-speed trade off can
be made for LUX-512. Hence an implementation with only one table of 2KB
is possible. A memory optimized implementation, without tables, would require
256 4 192 = 448 bytes of memory.



15

The optimized implementation for the both, LUX-256 and LUX-512, takes
8KB + 16KB = 24 KB of memory. This amount of memory can easily fit into
L1 cache of modern processors which have at least 32KB L1 data cache.

As already mentioned before, the initial value of LUX is all zero state. Hence,

to set up the algorithm one needs 48 cycles: 16 cycles to set up the core and 32
cycles for the buffer.

| [LUX-224[LUX-256]LUX-384|LUX-512

32-bit platform| 16.7 16.7 28.2 28.2
64-bit platform| 14.9 14.9 12.5 12.5

Table 5. Software estimates in cycles/byte for LUX with Intel Compiler 10.1. The
32-bit platform has Intel Core 2 Duo, 2.4 GHz clock speed, 2GB RAM. The 64-bit
platform has Intel Core 2 Duo, 2.66GHz clock speed, 4GB RAM. Both platforms have
Windows XP (x64) running.

In Table 5, cycles per byte estimate, obtained on our platforms, is presented.
The implementations were made on C and compiled with Intel Compiler. Con-
sidering our previous estimate that LUX-256 is approximately 1.2 times faster
than AES, and considering that the latest implementations of AES on Assem-
bler [1] are reported to run at speed of 10 cycles/byte on some platforms, it
is possible to expect that the speed of LUX will significantly increase with an
optimized Assembler implementation.

8-bit Platforms. LUX is byte oriented, hence it can be easily implemented on
8-bit platforms. The S-Box can be implemented as table look-up. The multiplica-
tion of a variable with a constant, used in MixColumns, also can be implemented
with XOR and table look-up. First a so-called xtime(x)= 02-z is implemented as
table look-up. Then, all the multiplications with a constant can be implemented
by xor-ing the results of a repeated use of xtime [6, pp. 54].

Our estimates for 8-bit platforms are presented in Table 6. A straightforward
implementation is assumed, with two look-up tables of total size of 512 bytes
for the S-Box and xtime and additional 96 bytes (192 bytes for LUX-384 and
LUX-512) for the internal state.

| [LUX-224]LUX-256| LUX-384|LUX-512)]
[8-bit platform| 190 [ 190 [ 190 [ 190 |

Table 6. Estimates in cycles/byte for LUX on 8-bit Amtel AVR.
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To set up the algorithm one needs to initialize the state with all zero bytes.
Hence, for LUX-224 and LUX-256 the set up time is 192 cycles. For LUX-384
and LUX-512 it is 384 cycles.

5.2 Hardware

Hardware implementation parameters of LUX are also tightly related to those of
AES. The framework of LUX-256 can be seen as Rijndael-256 with an additional
component which is the buffer of LUX. Straightforward implementation of this
buffer requires around 6K gates. Hence, the gate estimate of LUX-256 is around
two times the estimate of AES plus additional gates for the buffer. The same
reasoning can be applied to LUX-512 and get a factor of four for the gate count.
A lightweight implementation of LUX-256 would require around 20K gates. For
LUX-512 this number is slightly bigger, around 30K gates. A rough estimate for
high-speed implementations is around 500K gates for LUX-256 and 1M gates for
LUX-512.

6 Advantages and Limitations

The hash family LUX has the following advantages:

— It is based on Rijndael-like transformation. This is well known and thor-
oughly analyzed transformation. From point of view of security, the analysis
of LUX can be focused only on the LUX construction: parameters of the
core and the buffer and how they interact; there is no need to analyze the
underlying transformation (because it is Rijndael). From point of view of
efficiency, all implementation tricks of Rijndael can be used for LUX: fast
implementation with only table look-ups and XORs, different time-memory
trade offs, implementations for 8-bit smart cards and implementations in
hardware. Moreover, any improvement in implementation of AES can di-
rectly influence in improvement for LUX.

— All major generic attacks are prevented by increasing the size of the internal
state.

— Taking into account the results of [1] it is to be expected that LUX will
perform at speed much higher than SHA-2.

— Digest sizes, other than the specified, can be supported. Actually, any digest
size, less than 512 bits, can be produced by taking the values of the core
column Cj5 (possibly truncation of the last value of C3 to some bits) in the
output hash phase.

LUX is considered to have to following limitations:

— Producing digests for LUX-224 and LUX-256 takes almost the same amount
of cycles. Same holds for LUX-384 and LUX-512.
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— Short messages are hashed rather slow compared to long messages. This is

because of the high number of rounds in the blank rounds and output hash
phases which for LUX-256 and LUX-512 is 24 rounds. Yet, LUX has a size
of a message blocks m bytes, where m € {4,8}. This fine parsing of the
message in LUX, compared to the parsing of SHA where the block has a
size of 64 bytes, decrease the padding size and partially compensates the
underperformance for short messages.
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